Equidistribution des statistiques mahoniennes

Stanley, Enumerative combinatorics, page

Théorème:

Pour $\sigma \in \mathcal{S}_n$, on désigne par

$$inv(\sigma) = Card\left(\{(i,j) \in [n]^2 \ / \ i < j \ \text{et} \ \sigma(i) > \sigma(j)\}\right)$$

$$maj(\sigma) = \sum_{\substack{i \in [n] \\ \sigma(i) > \sigma(i+1)}} i$$

Alors,

$$\sum_{\sigma \in \mathcal{S}_n} q^{inv(\sigma)} = \sum_{\sigma \in \mathcal{S}_n} q^{maj(\sigma)}$$

Preuve:

Le but est de construire une bijection φ de S_n sur S_n telle que

$$\forall \sigma \in \mathcal{S}_n, \quad inv(\varphi(\sigma)) = maj(\sigma)$$

On notera $[n] = \{1, ..., n\}.$

La construction de φ se fait de la manière suivante : Soit $a \in [n]$ et σ un mot sur l'alphabet [n], à lettres distinctes.

• Si la dernière lettre de σ est plus petite que a, le mot σ admet clairement une unique factorisation

$$(v_1b_1, v_2b_2, \dots, v_pb_p)$$

appelée sa a-factorisation, qui a les propriétés suivantes :

- 1. Chaque b_i $(1 \le i \le p)$ est une lettre telle que $b_i < a$.
- 2. Chaque v_i $(1 \le i \le p)$ est un mot qui est soit vide, soit qui ne contient que des lettres plus grandes que a.
- Si la dernière lettre de σ est plus grande que a, le mot σ admet clairement une unique factorisation

$$(v_1b_1, v_2b_2, \ldots, v_pb_p)$$

appelée sa a-factorisation, qui a les propriétés suivantes :

- 1. Chaque b_i $(1 \le i \le p)$ est une lettre telle que $b_i > a$.
- 2. Chaque v_i $(1 \le i \le p)$ est un mot qui est soit vide, soit qui ne contient que des lettres plus petites que a.

Posons alors

$$\gamma_a(\sigma) = b_1 v_1 b_2 v_2 \dots b_n v_n$$

La bijection va être définie par récurrence sur la longueur des mots, de la manière suivante :

Si σ est de longueur 1, on pose

$$\varphi(\sigma) = \sigma$$

Si $|\sigma| \geq 2$, on écrit $\sigma = va$ avec a la dernière lettre de σ . Par récurrence, on détermine $v' = \gamma_a (\varphi(v))$ et on pose $\varphi(\sigma)$ comme la concaténation :

$$\varphi(\sigma) = v'a = \gamma_a (\varphi(v)) a$$

 φ est alors clairement bijective d'inverse ψ décrite en annexe.

Montrons que $\forall \sigma \in \mathcal{S}_n, inv(\varphi(\sigma)) = maj(\sigma)$

Par récurrence sur la longueur de σ : On pose $\sigma = a_1 a_2 \dots a_n$ et pour tout $a \in [n]$, on note $l_a(\sigma)$ (resp. $r_a(\sigma)$) le nombre d'indices i tels que $1 \le i \le m$ et $a_i \le a$ (resp. $a_i > a$). Bien entendu, $l_a(\sigma) + r_a(\sigma) = |\sigma|$. Cependant,

$$inv(\sigma a) = inv(\sigma) + r_a(\sigma)$$

Alors, si la dernière lettre de σ est plus petite ou égale à a, on a

$$inv(\gamma_a(\sigma)) = inv(\sigma) - r_a(\sigma), \quad maj(\sigma a) = maj(\sigma)$$

Si la dernière lettre de σ est strictement plus grande que a, on a alors

$$inv(\gamma_a(\sigma)) = inv(\sigma) + l_a(\sigma), \quad maj(\sigma a) = maj(\sigma) + l_a(\sigma) + r_a(\sigma)$$

L'égalité cherchée est alors une conséquence de ces 5 relations avec la définition par récurrence de φ . Déjà :

$$inv (\varphi(\sigma a)) = inv (\gamma_a (\varphi(\sigma)) a)$$

$$= inv (\gamma_a (\varphi(\sigma))) + r_a (\gamma_a (\varphi(\sigma)))$$

$$= inv (\gamma_a (\varphi(\sigma))) + r_a(\sigma)$$

puisque $\gamma_a(\varphi(\sigma))$ est seulement un réordonnement des lettres de σ . Alors, si la dernière lettre de σ est plus petite ou égale à a, on a par récurrence,

$$inv (\varphi(\sigma a)) = inv (\gamma_a (\varphi(\sigma))) + r_a(\sigma)$$

$$= [inv (\varphi(\sigma)) - r_a(\sigma)] + r_a(\omega)$$

$$= maj(\sigma)$$

$$= maj(\sigma a)$$

Finalement, si la dernière lettre de σ est strictement plus grande que a, on a par récurrence,

$$\begin{array}{lll} inv\left(\varphi(\sigma a)\right) & = & Inv\left(\gamma_a\left(\varphi(\sigma)\right)\right) + r_a(\sigma) \\ & = & inv\left(\varphi(\sigma)\right) + l_a(\sigma) + r_a(\sigma) \\ & = & maj(\sigma) + |\sigma| \\ & = & maj\left(\sigma a\right) \end{array}$$