Théorème des deux carrés

Francinou-Gianella-Nicoas, Oraux X-ENS Algèbre 1, page 145

Exercice:

Soit p un nombre premier impair.

1. Montrer que si p est une somme de deux carrés d'entiers, on a nécessairement $p \equiv 1[4]$.

On suppose à présent que p congru est à 1 modulo 4.

- 2. Dénombrer les carrés dans $(\mathbb{Z}/p\mathbb{Z})^*$.
- 3. En déduire qu'il existe $n \in \mathbb{Z}$ tel que $n^2 \equiv -1[p]$
- 4. Démontrer qu'il existe $(a, b) \in \mathbb{Z}^2$ tels que

$$0 < \sqrt{b} < \sqrt{p}$$
 et $\left| b \frac{n}{p} - a \right| \le \frac{1}{\sqrt{p}}$

- 5. Montrer que $p = (bn ap)^2 + b^2$.
- 1. Modulo 4, un carré est congru à 0 ou 1. Si un entier est somme de deux carrés, il sera donc congru modulo 4 à 0, 1 ou 2.

Comme p est un entier premier impair, il ne peut être congru ni à 0 ni à 2 (car il serait alors divisible par 2). Il s'ensuit qu'un entier premier impair, somme de deux carrés d'entiers est congru à 1 modulo 4.

2. p étant premier, $\mathbb{K} = \mathbb{Z}/p\mathbb{Z}$ est un corps. On a donc, si $x, y \in \mathbb{K}^*$,

$$x^2 = y^2 \Leftrightarrow (x - y)(x + y) = 0 \Leftrightarrow x = y \text{ ou } x = -y$$

Par conséquent, à tout carré de \mathbb{K}^* , correspondent exactement deux antécédents dans \mathbb{K}^* par l'application $x \mapsto x^2$ (on a bien pour $x \in \mathbb{K}^*$, $x \neq -x$ puisque la caractéristique de \mathbb{K} est p > 2). Il y a donc $\frac{Card(\mathbb{K}^*)}{2} = \frac{p-1}{2}$ carrés dans \mathbb{K}^*

3. Il suffit de prouver que -1 est un carré dans \mathbb{K} . Si $x \in \mathbb{K}^*$ est un carré, on peut écrire $x = y^2$ avec $y \in \mathbb{K}^*$ et d'après le petit théorème de Fermat,

$$x^{(p-1)/2} = y^{2(p-1)/2} = y^{p-1} = 1$$

Donc x est racine du polynôme $P=X^{(p-1)/2}-1$. Les $\frac{p-1}{2}$ carrés non nuls de $\mathbb K$ sont donc racines de P. Or, P a au plus $\frac{p-1}{2}$ racines (distinctes ou confondues) dans le corps $\mathbb K$. Nécessairement P est scindé et ses racines sont exactement les carrés de $\mathbb K^*$.

Comme $p \equiv 1[4]$, on a que $\frac{p-1}{2}$ est pair, ainsi $(-1)^{(p-1)/2} = 1$ et -1 est un carré dans \mathbb{K} .

- 4. Posons $N = E(\sqrt{p}) + 1$ et $\xi = \frac{n}{p}$. Considérons les N réels $x_k = k\xi E(k\xi)$ de l'intervalle $\left[0, 1\right[$ pour $0 \le k \le N 1$ et les N intervalles $\left[0, \frac{1}{N}\right], \left[\frac{1}{N}, \frac{2}{N}\right], \dots, \left[\frac{N-1}{N}, 1\right[$.
 - Supposons d'abord que l'un des x_k soit dans $\left[\frac{N-1}{N}, 1\right[$. Comme $x_0 = 0$, on a k > 0 et si on pose b = k et $a = E(k\xi) + 1$, on obtient :

$$0 < b \le N - 1 < \sqrt{p}$$
 et $\left| b \frac{n}{p} - a \right| = |x_k - 1| \le \frac{1}{N} \le \frac{1}{\sqrt{p}}$

l'inégalité $N-1<\sqrt{p}$ étant stricte car $\sqrt{p}\not\in\mathbb{N}$.

• Dans le cas contraire, les N réels x_k sont dans les N-1 intervalles $\left[\frac{k}{N}, \frac{k+1}{N}\right[$ avec $0 \le k \le N-2$. D'après le principe des tiroires, il existe k et l distincts tels que x_k et x_l soient dans le même intervalle. Supposons par exemple k < l. Notons alors b = l - k et $a = E(l\xi) - E(k\xi)$. On a de nouveau

$$0 < b \le N - 1 < \sqrt{p}$$
 et $\left| b \frac{n}{p} - a \right| = \left| (l - k)\xi - (E(l\xi) - E(k\xi)) \right| = \left| x_l - x_k \right| \le \frac{1}{N} \le \frac{1}{\sqrt{p}}$

Dans tous les cas, nous avons démontré l'existence de $(a,b)\in\mathbb{Z}^2$ tel que

$$0 < b < \sqrt{p}$$
 et $\left| b \frac{n}{p} - a \right| \le \frac{1}{\sqrt{p}}$

5. Les inégalités obtenues dans la question précédente impliquent que

$$0 < b^2 < p$$
 et $(bn - ap)^2 \le p$ et donc $0 < (bn - ap)^2 + b^2 < 2p$

D'autre part, on a $n^2 + 1 \equiv 0[p]$ et donc

$$(bn - ap)^{2} + b^{2} = b^{2}(n^{2} + 1) - 2admp + a^{2}p^{2} \equiv 0[p]$$

Comme cet entier appartient à]0,2p[, cela implique l'égalité :

$$(bn - ap)^2 + b^2 = p$$

Conclusion : Tout nombre premier impair est somme de deux carrés d'entiers si et seulement s'il est congru à 1 modulo 4.