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Théorème : Soit a < b dans R, fn : [a, b] → R une suite de fonctions continues qui
converge simplement vers une fonction continue f .

1. Si chaque fonction fn est croissante, alors la convergence est uniforme.

2. Si la suite (fn)n∈N est croissante, i.e. fn ≤ fn+1, alors la convergence est
uniforme.

1. Soit ε > 0. La fonction f est continue sur le compact [a, b]. D'après le théorème de Heine, elle
est uniformément continue. Considérons η > 0 un module d'uniforme continuité de f pour ε et
S = (a = a0 < a1 < . . . an−1 < an = b) une subdivision de [a, b] de pas inférieur à η. Il existe
n0 ∈ N tel que pout tout entier n ≥ n0 et tout i ∈ {0, . . . , n}, |f(ai)− fn(ai)| ≤ ε. Soit n ≥ n0 et
x ∈ [a, b]. Supposons ai ≤ x ≤ ai+1 avec 0 ≤ i ≤ n − i. On a |f(x) − f(ai)| ≤ ε et on peut alors
écrire :

|f(x)− fn(x)| ≤ |f(x)− f(ai)|+ |f(ai)− fn(ai)|+ |fn(ai)− fn(x)|
≤ ε + ε + (fn(x)− fn(ai))
≤ 2ε + fn(ai+1)− fn(ai) (car fn est croissante)
≤ 2ε + |fn(ai+1)− f(ai+1)|+ |f(ai+1)− f(ai)|+ |f(ai)− fn(ai)|
≤ 5ε

La convergence est donc uniforme.

2. Posons pour n ≥ 0, gn = f − fn ≥ 0. Alors (gn) est une suite décroissante de fonctions continues
qui converge simplement vers la fonction nulle. Notons αn = ‖gn‖∞. Il s'agit de prouver que cette
suite converge vers 0. Comme αn = sup

x∈[a,b]

gn(x), la suite (αn) est décroissante et positive. Elle est

donc convergente vers un réel α ≥ 0.
Raisonnons par l'absurde et supposons α > 0. Considérons pour n ≥ 0 les parties

Kn = {x ∈ [a, b] , gn(x) ≥ α

2

Chaque partie Kn est non vide, bornée car contenue dans [a, b], et en tant qu'image réciproque
du fermé [α

2 , +∞[ par la fonction continue gn, Kn est fermée dans [a, b] donc dans R. Comme
gn+1 ≤ gn, on a Kn+1 ⊂ Kn. Il s'ensuit, par le théorème des compacts emboîtés, que

⋂
n≥0

Kn est

non vide. Il existe donc c appartenant à tout Kn et par conséquent tel que gn(c) ≥ α
2 pour tout n,

ce qui contredit la convergence simple vers 0.

Application : Théorème de Glinveko-Cantelli
Supposons (Xn)n une suite de v.a.i.i.d. Notons F la fonction de répartition commune
des Xn et posons si t ∈ R, et n ∈ N∗ :

Fn(t) =
1
n

n∑

k=1

1]−∞,t](Xk)

Alors, presque sûrement, on a :

sup
t∈R

|Fn(t)− F (t)| →
n∞

0

Commençons par faire deux remarques. Premièrement, pour tout t ∈ R, nFn(t) suit la loi binomiale
B(n, F (t)). Deuxièmement, d'après la loi forte des grands nombres, on a, pour tout t ∈ R �xé Fn(t) →
F (t) p.s.
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Reste à voir que la convergence est uniforme en t. Si n ≥ 1, on pose

Vn = sup
t∈R

|Fn(t)− F (t)|

Lemme : Si on dé�nit F← sur [0, 1] par F←(u) = inf{x , F (x) ≥ u}, on a la propriété

F←(u) ≤ x ⇐⇒ u ≤ F (x)

valable pour tous x ∈ R et u ∈ [0, 1].

Corollaire : Soit Y une v.a.r. de fonction de répartition G et soit U une v.a.r. de loi U([0, 1]) a même
loi que Y .

Il su�t d'écrire
P(G←(U) ≤ x) = P(U ≤ G(x)) = G(x)

Soit (Un)n une suite de v.a.r. indépendantes et de même loi U([0, 1]). On a :

Vn = sup
t∈R

∣∣∣∣∣
1
n

n∑

i=1

1(Xi≤t) − F (t)

∣∣∣∣∣
loi= sup

t∈R

∣∣∣∣∣
1
n

n∑

i=1

1(F←(Ui)≤t) − F (t)

∣∣∣∣∣ = sup
t∈R

∣∣∣∣∣
1
n

n∑

i=1

1(Ui≤F (t)) − F (t)

∣∣∣∣∣

Si on pose s = F (t), il vient :

sup
t∈R

∣∣∣∣∣
1
n

n∑

i=1

1(Ui≤F (t)) − F (t)

∣∣∣∣∣ = sup
s∈F (R)

∣∣∣∣∣
1
n

n∑

i=1

1(Ui≤s) − s

∣∣∣∣∣ ≤ sup
s∈[0,1]

∣∣∣∣∣
1
n

n∑

i=1

1(Ui≤s) − s

∣∣∣∣∣

Ainsi, il su�t de montrer que le théorème de Glivenko-Cantelli est vrai dans le cas particulier où les
Xi(= Ui) sont des lois uniformes sur [0, 1]. Grâce à la loi des grands nombres, on sait que pour tout
s ∈ R, il existe un ensemble négligeable Ns de Ω véri�ant :

∀ω ∈ Ω\Ns :
1
n

n∑

i=1

1(Ui(ω)≤s) −→ s

Comme une réunion dénombrable d'ensembles négligeables est encore négligeable, on en déduit l'existence
d'une partie négligeable N de Ω véri�ant :

∀ω ∈ Ω\N, ∀s ∈ [0, 1] ∩Q :
1
n

n∑

i=1

1(Ui(ω)≤s) −→ s

En fait, la croissance de s 7→ 1
n

n∑

i=1

1(Ui(ω)≤s) fait que l'on a :

∀ω ∈ Ω\N, ∀s ∈ [0, 1] :
1
n

n∑

i=1

1(Ui(ω)≤s) −→ s

(en e�et, si s ∈ [0, 1] et ω ∈ Ω\N , on se donne une suite croissante (resp. décroissante) (sn) (resp.
(tn)) de [0, 1] ∩Q qui croît (resp. décroît) vers s ; on a alors, pour k �xé et n ≥ 1 :

1
n

n∑

i=1

1(Ui(ω)≤sk) ≤
1
n

n∑

i=1

1(Ui(ω)≤s) ≤
1
n

n∑

i=1

1(Ui(ω)≤tk)

ce qui, en faisant n →∞ nous permet d'obtenir :

sk ≤ lim inf
n∞

1
n

n∑

i=1

1(Ui(ω)≤s) ≤ lim sup
n∞

1
n

n∑

i=1

1(Ui(ω)≤s) ≤ tk

On conclut alors en faisant k →∞ )

Pour chaque ω ∈ Ω\N , 1
n

n∑

i=1

1(Ui(ω)≤s) converge donc simplement vers s sur [0, 1]. En fait, la

convergence est uniforme grâce au théorème de Dini. Ceci achève la démonstration.
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