Théorème d'inversion locale

Monier, Analyse MP, page 547

Théorème: Soient E,F deux \mathbb{R} -evn de dimensions finies, et soit U un ouvert de E. Soit également $\varphi: U \to F$ de classe \mathcal{C}^1 et $a \in U$.

Si $d_a\varphi$ est bijective, alors:

- $\dim(E) = \dim(F)$
- Il existe un voisinage ouvert V de a dans E tel que φ soit un \mathcal{C}^1 -difféomorphisme de V sur $\varphi(V)$.

Preuve: En munissant E et F de bases, il est clair qu'on peut se ramener au cas où $E=\mathbb{R}^p$, $F=\mathbb{R}^n$, munis de leurs bases canoniques et de la norme $\|\cdot\|_{\infty}$.

Comme $d_a \varphi : \mathbb{R}^p \to \mathbb{R}^n$ est linéaire bijective, on a nécessairement p = n.

Montrons qu'on peut se ramener au cas où $d_a \varphi = Id_{\mathbb{R}^n}$. Notons $T = d_a \varphi \in \mathcal{GL}(\mathbb{R}^n)$. Alors T^{-1} existe et $T^{-1} \in \mathcal{GL}(\mathbb{R}^n)$, donc $d_{\varphi(a)}T^{-1} = T^{-1}$. On en déduit que $T^{-1} \circ \varphi$ est de classe \mathcal{C}^1 sur U et

$$d_a\left(T^{-1}\circ\varphi\right) = \left(d_{\varphi(a)}T^{-1}\right)\circ\left(d_a\varphi\right) = T^{-1}\circ T = Id_{\mathbb{R}^n}$$

Si le théorème est démontré pour $T^{-1} \circ \varphi$, il existe un voisinage ouvert V de a dans E tel que $T^{-1} \circ \varphi$ soit un \mathcal{C}^1 -difféomorphisme de V sur $(T^{-1}\circ\varphi)(V)$; il est clair qu'alors φ est un \mathcal{C}^1 -difféomorphisme de $V \operatorname{sur} \varphi(V)$, puisque $\varphi = T \circ (T^{-1} \circ \varphi)$ et que T est un \mathcal{C}^1 -difféomorphisme de $(T^{-1} \circ \varphi)(V)$ sur $\varphi(V)$.

Montrons qu'on peut aussi se ramener au cas où a = 0 et $\varphi(a) = 0$

Considérons $\psi: h \mapsto \varphi(a+h=-\varphi(a))$, qui est de classe \mathcal{C}^1 sur $U_0=\{h\in\mathbb{R}^n; a+h\in U\}$. Comme $d_0\psi = d_a\varphi$, $d_0\psi$ est bijective.

Si le théorème est démontré pour ψ , il existe un voisinage ouvert V_0 de 0 dans \mathbb{R}^n tel que ψ soit un \mathcal{C}^1 -difféomorphisme de V_0 sur $\psi(V_0)$. Il est clair qu'alors φ est un \mathcal{C}^1 -difféomorphisme de $V = \{x \in \mathcal{C}^1 : x \in$ \mathbb{R}^n ; $x - a \in V_0$ } sur $\varphi(V) = \{ y \in \mathbb{R}^n ; y - \varphi(a) \in \psi(V_0) \}.$

Ceci montre qu'on peut se ramener au cas (plus commode) où $a=0, \ \varphi(a)=0, \ d_a\varphi=Id_{\mathbb{R}^n}$

Construction d'une bijection.

L'application $g: \begin{array}{ccc} U & \to & \mathbb{R}^n \\ x & \mapsto & x-\varphi(x) \end{array}$ est de classe \mathcal{C}^1 sur U et $d_0g=0$. Notons g_1,\ldots,g_n les applications composantes de $g: \ \forall x \in U, g(x)=(g_1(x),\ldots,g_n(x))$.

Puisque g est de classe \mathcal{C}^1 sur U et que $\forall (i,j) \in \{1,\ldots,n\}^2, \frac{\partial g_i}{\partial x_i}(0) = 0$, il existe r > 0 tel que

$$\begin{cases} \overline{B(0,r)} \subset U \\ \forall x \in \overline{B(0,r)}, \forall (i,j) \in \{1,\ldots,n\}^2, \left| \frac{\partial g_i}{\partial x_j}(x) \right| \leq \frac{1}{2n} \end{cases}$$

 $g_i \text{ est donc lipschitzienne et } \forall x \in \overline{B(0,r)}, \ \forall i \in \{1,\dots,n\}, \\ |g_i(x)| = |g_i(x) - g_i(0)| \leq n\frac{1}{n} \|x\|_\infty \leq \frac{r}{2}$ D'où $\|g(x)\|_\infty = \max_{1 \leq i \leq n} |g_i(x)| \leq \frac{r}{2}$. Ceci prouve que $\forall x \in \overline{B(0,r)}, \ g(x) \in \overline{B\left(0,\frac{r}{2}\right)}$

Soit
$$y \in \overline{B\left(0, \frac{r}{2}\right)}$$
. Considérons $g_y: \begin{array}{ccc} U & \to & \mathbb{R}^n \\ x & \mapsto & y+g(x) \end{array}$.

Pour tout x de B(0,r), on a

$$||g_y(x)||_{\infty} = ||y + g(x)||_{\infty} \le ||y||_{\infty} + ||g(x)||_{\infty} \le \frac{r}{2} + \frac{r}{2} = r$$

Ainsi $\forall x \in \overline{B(0,r)}, g_y(x) \in \overline{B(0,r)}$. Pour tout $(x_1,x_2) \in \left(\overline{B(0,r)}\right)^2$, on a comme plus haut g qui sera lipschitzienne:

$$||g_y(x_1) - g_y(x_2)||_{\infty} = ||g(x_1) - g(x_2)||_{\infty} \le \frac{1}{2} ||x_1 - x_2||_{\infty}$$

1

Ceci montre que l'application $h_y: \begin{array}{ccc} \overline{B\left(0,r\right)} & \to & \overline{B\left(0,r\right)} \\ x & \mapsto & g_y(x) \end{array}$ est contractante. Comme $\overline{B\left(0,r\right)}$ est complète (car fermée dans un evn de dimension finie), le théorème du point fixe montre que h_y admet un point fixe et un seul. Puisque $h_y(x) = x \Leftrightarrow y = \varphi(x)$, on conclut :

$$\forall y \in \overline{B\left(0,\frac{r}{2}\right)}, \ \exists ! x \in \overline{B\left(0,r\right)} \ / \ \varphi(x) = y$$

Ainsi, $\varphi^{-1}\left(\overline{B\left(0,\frac{r}{2}\right)}\right)\subset\overline{B\left(0,r\right)}$ et l'application $\varphi_{1}:\ \varphi^{-1}\left(\overline{B\left(0,\frac{r}{2}\right)}\right)\ \rightarrow\ \overline{B\left(0,\frac{r}{2}\right)}$ est une bijection.

Continuité de φ_1 .

Soit $(x_1, x_2) \in \left(\overline{B(0, r)}\right)^2$. On a:

$$||x_1 - x_2|| = ||(\varphi(x_1) + g(x_1)) - (\varphi(x_2) + g(x_2))||$$

$$\leq ||\varphi(x_1) - \varphi(x_2)|| + ||g(x_1) - g(x_2)|| \leq ||\varphi(x_1) - \varphi(x_2)|| + \frac{1}{2}||x_1 - x_2||$$

d'où $||x_1 - x_2|| \le 2||\varphi(x_1) - \varphi(x_2)||$. Ainsi, pour tout (y_1, y_1) de $\left(\overline{B(0, \frac{r}{2})}\right)^2$:

$$\|\varphi_1^{-1}(y_1) - \varphi_1^{-1}(y_2)\| \le 2\|\varphi(\varphi_1^{-1}(y_1)) - \varphi(\varphi_1^{-1}(y_2))\| = 2\|y_1 - y_2\|$$

ce qui montre que φ_1^{-1} est 2-lipschitzienne, donc continue.

Différentiabilité de φ_1 .

Voyons si φ_1^{-1} est de classe \mathcal{C}^1 sur un voisinage ouvert de 0.

Puisque φ est de classe \mathcal{C}^1 sur U, l'application $x \mapsto \det(J_{\varphi}(x))$ est de classe \mathcal{C}^0 sur U. Comme $\det(J_{\varphi}(0)) = \det(I_n) = 1 \neq 0$, il existe alors $r_1 > 0$ tel que : $\forall x \in \overline{B(0,r_1)}$, $\det(J_{\varphi}(x)) \neq 0$. En remplaçant dans l'étude précédente r par $\min(r, r_1)$, on peut donc supposer : $\forall x \in \overline{B(0, r)}, d_x \varphi \in$ $\mathcal{GL}(\mathbb{R}^n)$. D'autre part, l'application $\begin{array}{ccc} \mathcal{GL}(\mathbb{R}^n) & \to & \mathcal{L}(\mathbb{R}^n) \\ \varphi & \mapsto & \varphi^{-1} \end{array}$ est continue (en effet, en passant aux matrices dans la base canonique, les termes de la matrice de φ^{-1} s'expriment comme quotients, sommes, produits, à partir des termes de la matrice de φ).

Il en résulte, par composition, que l'application $\overline{B(0,r)} \to \mathcal{L}(\mathbb{R}^n)$ est continue sur le fermé $x \mapsto (d_x \varphi)^{-1}$ borné $\overline{B(0,r)}$ de l'evn \mathbb{R}^n de dimension finie. Il existe donc alors $M \in \mathbb{R}^+$ tel que

$$\forall x \in \overline{B(0,r)}, \ |||(d_x\varphi)^{-1}||| \leq M \qquad \text{(où, pour } f \in \mathcal{L}(\mathbb{R}^n), \ |||f||| = \sup_{x \in \mathbb{R}^n \setminus \{0\}} \frac{\|f(x)\|}{\|x\|})$$

Soient $y_0, y \in B(0, \frac{r}{2}), x_0 = \varphi_1^{-1}(y_0), x = \varphi_1^{-1}(y)$. On a:

$$\begin{aligned} \|\varphi_{1}^{-1}(y) - \varphi_{1}^{-1}(y_{0}) - (d_{x_{0}}\varphi)^{-1}(y - y_{0})\| &= \|x - x_{0} - (d_{x_{0}}\varphi)^{-1}(\varphi(x) - \varphi(x_{0}))\| \\ &= \|(d_{x_{0}}\varphi)^{-1}((d_{x_{0}}\varphi)(x - x_{0}) - (\varphi(x) - \varphi(x_{0})))\| \\ &\leq M \|\varphi(x) - \varphi(x_{0}) - (d_{x_{0}}\varphi)(x - x_{0})\| \end{aligned}$$

Comme φ est de classe \mathcal{C}^1 sur U, on a :

$$\varphi(x) = \varphi(x_0) + (d_{x_0}\varphi)(x - x_0) + \underset{x \to x_0}{o} (\|x - x_0\|_{\infty})$$

D'autre part, φ_1^{-1} est 2-lipschitzienne, donc $||x-x_0||_{\infty} \le 2||y-y_0||_{\infty}$. Il en résulte :

$$\varphi(x) - \varphi(x_0) - (d_{x_0}\varphi)(x - x_0) = \underset{y \to y_0}{o} (\|y - y_0\|_{\infty})$$

Ainsi, φ_1^{-1} est différentiable en y_0 , donc en tout point de $B\left(0,\frac{r}{2}\right)$.

En notant $V = \varphi_1^{-1}\left(B\left(0, \frac{r}{2}\right)\right)$ et $\varphi_2: \begin{array}{ccc} V & \to & \varphi(V) \\ x & \mapsto & \varphi(x) \end{array}$, φ_2 est de classe \mathcal{C}^1 sur l'ouvert V, bijective, φ_2^{-1} est différentiable sur $\varphi(V) = \overline{B(0,\frac{r}{2})}$ et

$$\forall x \in V, (d_{\varphi(x)}\varphi_2^{-1}) \circ (d_x\varphi) = d_x(Id_{\mathbb{R}^n}) = Id_{\mathbb{R}^n}$$

Ceci montre, en passant aux matrices jacobiennes, que les dpp de φ_2^{-1} s'expriment comme quotients (à dénominateur ne s'annulant pas), sommes, produits, des dpp de φ , donc sont continues. Finalement, $\varphi_2^$ est de classe \mathcal{C}^1 sur $\varphi(V)$, et φ_2 est un \mathcal{C}^1 -difféomorphisme de V sur $\varphi(V)$.