Théorème de Riemann

Francinou-Gianella-Nicolas, Oraux X-ENS Analyse 1, page 206

Théorème : Soit $\sum a_n$ une série réelle semi-convergente et $\alpha \in \mathbb{R}$. Alors il existe une permutation σ de \mathbb{N} telle que la série $\sum a_{\sigma(n)}$ soit convergente de somme α .

• La série $\sum a_n$ n'est pas absolument convergente, donc la famille $(a_n)_{n\geq 0}$ n'est pas sommable. On note A (resp. B) l'ensemble des indices $n\geq 0$ tels que $a_n\geq 0$ (resp. $a_n<0$). L'ensemble $\mathbb N$ est réunion disjointe de A et de B.

La partie A est infinie sinon, à partir d'un certain rang les a_n seraient négatifs et la convergence de la série équivaudrait à l'absolue convergence. Or $\sum a_n$ est semi-convergente. De même, B est infini.

• Les familles $(a_n)_{n\in A}$ et $(a_n)_{n\in B}$ ne sont pas sommables. En effet, supposons par exemple $(a_n)_{n\in A}$ sommable. Alors si on pose pour $n\geq 0$

$$a_n' = \begin{cases} 0 \text{ si } a_n < 0\\ a_n \text{ si } a_n \ge 0 \end{cases}$$

la série $\sum a'_n$ est absolument convergente et donc convergente.

La série $\sum (a_n - a'_n)$ est donc convergente et même absolument convergente puisque $a_n - a'_n$ est de signe constant négatif. Comme $a_n = (a_n - a'_n) + a'_n$, a_n est la somme de termes généraux de deux séries absolument convergentes. Il s'ensuit que $\sum a_n$ est absolument convergente, ce qui est contraire à l'hypothèse.

De même, on montre que $(a_n)_{n\in B}$ n'est pas sommable.

On va construire $\sigma(n)$ par récurrence sur n. On pose $\sigma(0)=0$ et pour $n\geq 1$, deux cas se présentent :

- 1. Si $\sum_{k=0}^{n-1} a_{\sigma(k)} \leq \alpha$, on va ajouter un terme positif : on prend pour $\sigma(n)$ le plus petit des entiers k de A distincts de $\sigma(0), \ldots, \sigma(n-1)$ (ce plus petit élément est bien défini).
- 2. Si $\sum_{k=0}^{n-1} a_{\sigma(k)} > \alpha$, on va ajouter un terme négatif : on prend pour $\sigma(n)$ le plus petit des entiers k de B distincts de $\sigma(0), \ldots, \sigma(n-1)$.

L'application σ est par contruction injective. Montrons qu'elle est surjective. Imaginons un instant qu'il existe $N \in \mathbb{N}$ qui ne soit pas dans l'image de σ . Supposons par exemple $N \in A$. Les $\sigma(k)$ dans A sont tous inférieurs à N et ils sont donc en nombre fini. Il existe donc un rang n_0 à partir duquel tous les $\sigma(n)$ sont dans B. Par conséquent, si $n \geq n_0$, on obtient

$$\sum_{k=0}^{n-1} a_{\sigma(k)} > \alpha$$

Comme cette série est à termes négatifs (sauf pour un nombre fini de termes), et que ses sommes partielles sont minorées, elle converge. La famille $(a_{\sigma(n)})_{n\in\mathbb{N}}$ est donc sommable. Mais, à un nombre fini de termes près, la famille des $a_{\sigma(n)}$ est la famille $(a_n)_{n\in B}$ qui, elle, n'est pas sommable. La contradiction permet de conclure que σ est bijective.

• Il reste à prouver que $\sum a_{\sigma(n)}$ converge et est de somme α . Soit $\varepsilon > 0$. Comme la série $\sum a_n$ converge, a_n tend vers 0. On a également $a_{\sigma(n)}$ convergente vers 0. En effet, il existe $n_1 \geq 0$ tel que si $n \geq n_1$, $|a_n| \leq \varepsilon$. Par injectivité de σ , il n'y a qu'un nombre fini de $n \in \mathbb{N}$ tel que $\sigma(n) \leq n_1$. Soit donc $n_0 > \max\{k \; ; \; \sigma(k) \leq n_1\}$. Si $n \geq n_0$, $\sigma(n) \geq n_1$ et $|a_{\sigma(n)}| \leq \varepsilon$.

1

• Il existe un rang $N \ge n_0$ tel que $\sigma(N) \in A$ et $\sigma(N+1) \in B$ car on a vu que les $\sigma(n)$ ne pouvaient rester dans A (resp. B).

Posons pour $n \geq 0$, $S_n = \sum_{k=0}^n a_{\sigma(k)}$. Montrons que si $n \geq N$, $|S_n - \alpha| \leq \varepsilon$. Si $\sigma(N) \in A$, c'est que $S_{N-1} \leq \alpha$ et si $\sigma(N+1) \in B$, c'est que $S_N > \alpha$. Or $|S_N - S_{N-1}| = |a_{\sigma(N)}| \leq \varepsilon$. Donc S_N appartient à $[\alpha - \varepsilon, \alpha + \varepsilon]$.

Soit n>N Imaginons que $S_n>\alpha+\varepsilon$. Comme on passe de S_{n-1} à S_n d'un saut de longueur $a_{\sigma(n)}$ inférieur ou égal à ε , on ne peut avoir $S_{n-1}\leq \alpha$. Cela entraı̂ne $a_{\sigma(n)}<0$ et finalement $S_{n-1}\geq S_n$. Mais alors de proche en proche, on obtient $\alpha+\varepsilon< S_n\leq S_{n-1}\leq S_{n-2}\leq \ldots \leq S_N$. On obtient une contradiction. Donc $S_n\leq \alpha+\varepsilon$.

Imaginons que $S_n < \alpha - \varepsilon$. Comme on passe de S_{n-1} à S_n d'un saut de longueur $a_{\sigma(n)}$ inférieur ou égal à ε , on ne peut avoir $S_{n-1} > \alpha$. Cela entraı̂ne $a_{\sigma(n)} \ge 0$ et finalement $S_{n-1} \le S_n$. Mais alors de proche en proche, on obtient $\alpha - \varepsilon > S_n \ge S_{n-1} \ge S_{n-2} \ge \ldots \ge S_N$. C'est encore une contradiction et $S_n \ge \alpha - \varepsilon$.

Ainsi, pour $n \geq N$, $|S_n - \alpha| \geq \varepsilon$.

Conclusion : on a donc contstruit une bijection σ de $\mathbb N$ telle que $\sum a_{\alpha(n)}$ converge et

$$\sum_{n=0}^{+\infty} a_{\sigma(n)} = \alpha$$