Théorème de prolongement

Gourdon, Analyse, page 24

Théorème:

Soient (E,d) et (F,δ) deux espaces métriques, et soit A une partie de E dense dans E.

On suppose de plus que (F,δ) est complet. Soit $f:(A,d)\to (F,\delta)$ une application uniformément continue. Montrer l'existence d'une unique fonction $g:E\to F$ uniformément continue, telle que $g_{|A}=f$.

Lemme: Soient (E, d) et (F, δ) deux espaces métriques, et soit A une partie de E dense dans E. Si $f: (A, d) \to (F, \delta)$ est continue et si

$$\forall x \in E \backslash A, \quad \lim_{\substack{y \to x \\ y \in A}} f(y) \quad \text{existe}$$

alors il existe une unique fonction $f: E \to F$, continue, telle que $g_{|_A} = f$.

Définissons $g: E \to F$ de la manière suivante :

$$\forall x \in A, \ g(x) = f(x) \quad \text{et} \quad \forall x \in E \backslash A, \ g(x) = \lim_{\substack{y \to x \\ y \in A}} f(y)$$

Montrons que g est continue sur E. Soit $x \in E$ et $(x_n)_{n \in \mathbb{N}^*}$ une suite de points de E tendant vers x. Pour tout $n \in \mathbb{N}^*$, on a $\lim_{\substack{y \to x_n \\ y \in A}} f(y) = g(x_n)$. On en déduit facilement que

$$\forall n \ge 1, \exists y_n \in A / d(x_n, y_n) \le \frac{1}{n} \quad \text{et} \quad \delta(g(x_n), f(y_n)) < \frac{1}{n}$$

La relation:

$$d(x, y_n) \le d(x, x_n) + d(x_n, y_n) \le \frac{1}{n} + d(x, x_n)$$

montre alors que $\lim_{n\infty}y_n=x,$ et donc $\lim_{n\infty}f(y_n)=g(x).$ Maintenant, les inégalités

$$\delta(g(x_n), g(x)) \leq \delta(g(x_n), f(y_n)) + \delta(f(y_n), g(x)) \leq \frac{1}{n} + \delta(f(y_n), g(x))$$

montrent que $\lim_{n \to \infty} g(x_n) = g(x)$. Ceci étant vrai pour toute suite (x_n) de E tendant vers x, on en conclut que g est continue en x, et ceci pour tout $x \in E$.

Unicité: Soient g et $h: E \to F$ deux applications continues telles que $g_{|A} = h_{|A}$.

- Par hypothèse, g(x) = h(x) pour tout $x \in A$
- Soit $x \in E \setminus A$. Comme g est continue et que A est dense dans E, il existe une suite (x_n) de points de A tendant vers x. On a

$$g(x) = \lim_{n \to \infty} g(x_n) = \lim_{n \to \infty} f(x_n)$$
, de même, $h(x) = \lim_{n \to \infty} f(x_n)$

ce qui suffit pour conclure que g(x) = h(x).

Preuve du théorème :

L'idée est de se ramener au lemme précédent puis de prouver que la fonction g obtenue est bien uniformément continue.

Soit $x_0 \in E \setminus A$. Montrons que $\lim_{\substack{y \to x_0 \\ y \in A}} f(y)$ existe. Soit $\varepsilon > 0$. Comme f est uniformément continue sur A,

$$\exists \alpha > 0, \ \forall (x,y) \in A^2, \quad f(x,y) < \alpha \implies \delta(f(x),f(y)) < \varepsilon$$

En particulier, si $x,y \in A$ vérifient $d(x,x_0) < \frac{\alpha}{2}$ et $d(y,x_0) < \frac{\alpha}{2}$, on a $d(x,y) < \alpha$ donc $\delta(f(x),f(y)) < \varepsilon$. Comme (F,δ) est complet, d'après le critère de Cauchy pour les fonctions, on en déduit que $\lim_{\substack{y \to x_0 \\ y \in A}} f(y)$ existe.

D'après le résultat du lemme, la fonction g définie sur E par :

$$\forall x \in A, g(x) = f(x)$$
 et $\forall x \in E \backslash A, g(x) = \lim_{\substack{y \to x \\ y \in A}} f(y)$

est continue sur E. Nous allons prouver qu'elle est uniformément continue sur E. Fixons $\varepsilon > 0$. Par hypothèse, f est uniformément continue sur A, donc

$$\exists \alpha > 0, \ \forall (x,y) \in A^2, \ d(x,y) < \alpha \Longrightarrow \delta(f(x),f(y)) < \varepsilon$$

Donnons nous $(x,y) \in E^2$ avec $d(x,y) < \alpha$. Comme A est dense dans E, il existe deux suites (x_n) et (y_n) de points de A tendant respectivement vers x et y. La distance étant conitnue, on a $\lim_{n \to \infty} d(x_n, y_n) = d(x,y) < \alpha$, ce qui montre l'existence de $N \in \mathbb{N}$ tel que $d(x_n, y_n) < \alpha$ pour tout $n \ge N$. Ainsi, pour tout $n \ge N$, $\delta(f(x_n), f(y_n)) < \varepsilon$ et en faisant tendre n vers $+\infty$, on obtient $\delta(g(x), g(y)) \le \varepsilon$. Ceci est vrai pour tout couple $(x,y) \in E^2$ tel que $d(x,y) < \alpha$, la fonction g est donc uniformément continue sur E.

L'unicité découle de l'unicité dans le lemme, car une fonction uniformément continue est en particulier continue.