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For the last century, the graph theory has been exploited in order to solve mathematics
problems more practically, with aspects more concrete. In his book Enumerative Combi-
natorics (Volume 2), Richard P. Stanley develops the principle of Transfer-matriz method
which, using combinatorial and algebraic results, can offer some interesting conclusions
on counting issues.

1 Definitions and notations

Let G be a finite directed graph, id est a triple (V, E, ¢) where :
o V ={vy,vy,...,u,} is a finite set of vertices ;
e F is a finite set of directed edges ;
e pisamapfrom Fto V2=V xV,.

If p(e) = (u,v), then we say that e is an edge from u to v, with initial vertex u
and final vertex v, denoted by u = I(e) and v = F(e).
In the special case where u = v, the edge e is called a loop.

A walk I' in G of length n from u to v (we’ll say a n-walk from u to v) is a sequence
e1€s...6, of n edges such that I(e;) = u, F(e,) = v and for 1 <i <n, F(e;) =I(e;41).
In the special case where u = v, then I' is called a closed walk based at u.

Now we want the edges to be weighted, so we take a weight function w: £ — R
with R a commutative ring (we can take R = C for example).
If I' = ejes...6, is a walk, then we define the weight of I' by

w(l) = w(er)w(ez)...w(ey).

For i,j € [p] = {1,2...,p} and n € N, we define

Aij(n) =) w(I)

where the sum is over all n-walks from v; to v;.
In particular A;;(0) = 6;;.
The aim of the Transfer matriz method is to evaluate A;;(n).



2 Adjacency matrix

We can easily interpret the number A;;(n) as an entry in a p X p matrix.

Let A = (Aij)i,je[p} S MP(R) defined by

A= wle)

where the sum is over all edges from v; to v;.
We note that
Vi, j € [p], Aij = Ay(1).

The matrix A is called the adjacency matrix of the graph G with respect to the weight
function w.

Theorem 1 Let n € N. Then the (i, j)-entry of the matriz A" is equal to A;j(n).

Proof : By induction on n.

For n = 1, the propriety is trivially verified (by definition of the adjacency matrix).

For n > 1, we suppose que the (i, j)-entry of the matrix A” is equal to A;;(n), id est
A7 is the sum of weights on every n-walk from v; to v;. A (n+1)-walk from v; to v; is a
n-walk from v; to a vertice vy, followed by an edge from v, to v;. By induction hypothesis,
the sum of all weights on n-walks from v; to vy is the number A; x(n). Moreover, the sum
of all weights on edges from vy, to v; is Ag ;. Then there are exactly A; x(n) x Ay ; weights
on (n + 1)-walks from v; to v; ending by (vyv;). So the sum of weights on (n + 1)-walks
from v; to v; is

p
Z A%k(n) X Ak,j = A%](n + 1)
k=1

3 Generating function

Now we want to analyze the behavior of the function A;;(n). Let’s define the generating
function of A;;(n) :

Fy(GN) = Ay(n)A.

n>0

Theorem 2 The generating function F;;(G,\) is given by the identity

where (M o (j,1)) represents the matriz obtained from M by removing the j-th row and
the i-th column of M.

Thus in particular, F;;j(G,\) is a rational function of X whose degree < ng, with ng
multiplicity of 0 as an eigenvalue of A.



Proof : Thanks to Theorem 1, we know that A;;(n) = Af;. Then F;(G, \) is the

(i, 7)-th coefficient of the matrix > A"A™.
n>0

On the right hand, since R is a commutative ring, the series > A"A" is geometric
n>0
and we know that
D ONAT = (1= MA)

n>0

On the other hand, we know that if B is any invertible matrix (ie it exists B! as

BB™! = B7'B = I) then we know that B! = ——— ‘comB where the matrix ‘comB is

the co-matrix of B (ie matrix with (7, j)-th term equal to (—1)" det(B ¢ (i, 7))

det(B o (j,1))
det B ’

1 i+j
= B =(-1)"

Let’s suppose that A € M,(R). We know that det(A — AI) is the characteristic
polynomial of A and we note ny the multiplicity of zero as root of the characteristic
polynomial :

det(A — M) = (=1)P(N 4+ ax N7+ o+ pong A™).

Then
det(/ — AA) =1+ A+ ... + qpp AP

ie det( — AA) is a polynomial in A which verified degdet(/ — AA) = p — ng. And since
degdet(I — AA < (j,1)) < p—1, it follows that

deg F;;(G,\) <p—1—(p—ng) < ny.

Special case

Let
Ca(n) =) w(T)

where the sum is over all closed n-walks in G.

Clearly, we have Cg(1) = tr(A).

Corollary 1 Let Q(\) = det(I — AA). Then

n_ A QN
;CG(W =00

p
Proof : Thanks to Theorem 1, we have Cg(n) = > Aj;(n) = tr(A™).
i=1

We can call wy, wy, ... w, the eigenvalues of A which are not null. Then tr(A") = i + ... + Wy,

S0
o wr A Y A
Cl—w AT T —w

> Cen)A"

n>1

and the result follows putting all over the denominator (1 —w;iA)...(1 —w,A) = Q(A) since
the numerator becomes —AQ’(\).



4 Counting words on a finite alphabet without fixed
factors

Let A be the 3-letter alphabet A = {1,2,3}. Let .A* be the set of finite words on .A.

Problem 1 : we want to count how many words v = ajas...a, € A* exist such that
neither 11 nor 23 is a factor of u (is neither 11 nor 23 appear as consecutive terms a;a;
in u).

Figure 1

Let f(n) be the wanted number.

Let G be the directed graph given by Figure 1. G clearly represents the situation :
if there is an edge between ¢ and j, the factor ¢5 is allowed in the word u. The words of
length n are the (n — 1)-walks on G and if we set w(e) = 1 for every edge e, then

fin)= > Ayn-1).

Z7J€{17273}

0 1
We have A = 1 0
1 1

= e

, we obtain Q(\) = det(I — MNA) =1 —2X\ — X2 + \3,
(I —AA) o (4,1)), from Theorem 2 we deduce that

By simple calculatio
Setting @Q;7(\) = det

FO) =) fln+1A\" = > (_1)&;33“)
n>0 i,j€{1,2,3}

~—~

Theorem 2 affirms that deg F'(A) < 0 so, since the denominator is a 3-degree polynomial,
the numerator has to be a polynomial of degree at most 2. The determination of the
numerator only needs 3 particular values : f(1) =3, f(2) =7, f(3) = 16. It follows that

3+ N
1 —2X = A2\

FA)

Problem 2 : now, among the results above, we want to impose that a,a; is also
different of 11 or 23. How many words are suitable ?

Let g(n) be the wanted number.

Clearly, g(n) represents the number of closed n-walks in G. By Corollary 1, we can

affirm that
Zg(n)k” AR\ (220 3\?)

o QN 1—2 = A2+ A3




Problem 3 : we want to count how many words v = ajas...a, € A* exist such that
neither 12 nor 213 , 222, 231, or 313 is a factor of u (is neither 11 nor 213, 222 | 231, or
313 appear as consecutive terms a;a;+1 Or a;aj11aj1o in u).

(@ @ ®
@@

Figure 2

Let h(n) be the wanted number.

Let H be the directed graph given by Figure 2. H clearly represents the situation :
if there is an edge between ab and ac, the factor abc is allowed in the word u. The words
of length n are the (n — 2)-walks on H and if we set w(e) = 1 for every edge e, then

h(n) = Z Aab,cd(n — 2)

ab,cde{H}
11000000
000O0OTO0OT11
1 00 0O0O0O0OD0 0
001 01O0O0O0
Here we have A = 00000011
1 00 0O0O0O0D0 0
00111000
000O0O0OT1T1:1

Thus, Y h(n)\" is a rational function with denominator Q(\) = det(I — \A).

n>0

Proposition 1 Let A be a finite alphabet, A* the set of finite words on A. Let F be a
finite subset of A*. Let f(n) be the number of words ayas...a, € A* such that no factor
AiQit1...Qipg 15 1 F.
Then

> fm)Ar e C(N).

n>0



5 Counting permutations such that |o(i) — | <1

Let S, be the set of permutations of [n] = {1,2,...,n}
Problem 1 : we want to count how many permutations o € S,, exist such that

Vi, |o (i) — i < 1.

Let f(n) be the wanted number.

For i € [n], we only have three possibilities to o(i) : i — 1, 4, or i + 1. Furthermore,
the values for o(7) depend on the choices made for (i — 1) and o(i — 2). Let’s try and
represent the situation by a graph.

Set G be a directed graph whose vertices consist of pairs (a,b) € {0,+1} for which
oli)—i=ua

cli+1)—i—1=b" An edge will connect (a,b) to (b,c) if it

it is possible to have

o(i)—i=ua
is possible to have | o(i+1) —i—1=05b . We deduce that the only possible vertices
o(i+2)—1—2=c
are vp = (—1,—1), Vg = (—1,0), U3y = (—1,1) , Uy = (0,0) , U5 = (0,1), Vg = (1,—1),
Ur = (1, 1)

Figure 3

Then, a n-walk in G is a sequence ((, ag), (2, a3)), (a2, a3), (aza)), ..., ((an, Qngr), (Qpp1, )
which represents the permutation o € S,,42 such that Vi € [n+2],0(i) =i+ ;.

We need to impose a3 # —1 and a2 # 1, thus f(n + 2) represents the number of
n-walks in G from v; € {vy, vs,v6,v7} to v; € {v1,v9,v4,v6}. If we set w(e) =1 for every

edge e € GG, then
fn+2)= % > (A"
i=4,5,6,7 j=1,2,4,6
By a calculation, we obtain Q(\) = det(] — AA) = (1 — A?)(1 — A — \?).
Like in example 1, (1 — A?)(1 — A — A?) > f(n + 2)A\" has a degree less larger than

n>0

deg Q(A\) +3 =6 : we just need the initial values f(0), f(1),...f(6). By this method, we

find : ]
D FmN = s
n>0
=1 F=1

so f(n) = F,41 where F, is the n-th Fibonnaci number defined by { V. Fooo— Fooi 4+ F
y I'n4+2 — L'n+1 n

6



Problem 2 : we want to count how many permutations o € S,, exist such that
Vi,o(i) —i=0,£1 (mod n).

Let g(n) be the wanted number.
It is indeed the same problem than before, but we can allow that a; = n and a, = 1.
Thus, g(n) is just the number of closed n-walks of the form

((alu a2)7 (Oég, 053))’ ((Oég, O{3>, (Oég, 054)), crey ((an—17 an)u (an7 O(l)), ((ana O{1>, (a17 a2))
By Corollary 1, we can affirm that

L NQO) 24 A(1+2y)
;9 QN 1o 1-a-ar

lel, L2:3

so g(n) = L,+2 where L,, is the n-th Lucas number defined by { Vi, Lyvo = Loit + Lo

Proposition 2 Let A be a finite subset of Z. Let’s note fa(n) the number of permutations
o €S, such that Vi € N,,0(i) —i € A.

Then
Z fA )\n - (C )

n>0

Proposition 3 Let A be a finite subset of ZZ. Let’s note ga(n) the number of permutations
o €S, such that Vi e N,,35 € A/ o(i) —i=j (mod n).
Then there is a polynomial Q(X) € C[A] for which

n_ —AQ'(A)

6 Conclusion

The transfer-matrix method has simple theoretical foundations but however implies re-
sults which are very appreciable : first the combinatorial aspect which links the number
A;j(n) to the powers of the adjacency matrix, and also the algebraic part which gives
the rationality of the generating function of A;;(n), a result which is not obvious at first
sight.

Thus, concrete tools like graphs can help reduce combinatorial problems in easier re-
sults, and the transfer-matrix method is a good example of applications they can have in
mathematics nowadays.

References

[1] Stanley, Richard P., Enumerative Combinatorics Vol. 2, Cambridge University Press,
1999

[2] Mény, Jean-Manuel, Aldon, Gilles and Xavier, Lionel, Introduction a la théorie des
graphes, butinage graphique, CRDP Académie de Lyon, 2005



