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For the last entury, the graph theory has been exploited in order to solve mathematisproblems more pratially, with aspets more onrete. In his book Enumerative Combi-natoris (Volume 2), Rihard P. Stanley develops the priniple of Transfer-matrix methodwhih, using ombinatorial and algebrai results, an o�er some interesting onlusionson ounting issues.1 De�nitions and notationsLet G be a �nite direted graph, id est a triple (V, E, ϕ) where :
• V = {v1, v2, ..., vp} is a �nite set of verties ;
• E is a �nite set of direted edges ;
• ϕ is a map from E to V 2 = V × V .If ϕ(e) = (u, v), then we say that e is an edge from u to v, with initial vertex uand �nal vertex v, denoted by u = I(e) and v = F(e).In the speial ase where u = v, the edge e is alled a loop.A walk Γ in G of length n from u to v (we'll say a n-walk from u to v) is a sequene

e1e2...en of n edges suh that I(e1) = u, F(en) = v and for 1 ≤ i < n, F(ei) = I(ei+1).In the speial ase where u = v, then Γ is alled a losed walk based at u.Now we want the edges to be weighted, so we take a weight funtion ω : E −→ Rwith R a ommutative ring (we an take R = C for example).If Γ = e1e2...en is a walk, then we de�ne the weight of Γ by
ω(Γ) = ω(e1)ω(e2)...ω(en).For i, j ∈ [p] = {1, 2..., p} and n ∈ N, we de�ne

Aij(n) =
∑

ω(Γ)where the sum is over all n-walks from vi to vj .In partiular Aij(0) = δij .The aim of the Transfer matrix method is to evaluate Aij(n).1



2 Adjaeny matrixWe an easily interpret the number Aij(n) as an entry in a p × p matrix.Let A = (Aij)i,j∈[p] ∈ Mp(R) de�ned by
Aij =

∑

ω(e)where the sum is over all edges from vi to vj .We note that
∀i, j ∈ [p], Aij = Aij(1).The matrix A is alled the adjaeny matrix of the graph G with respet to the weightfuntion ω.Theorem 1 Let n ∈ N. Then the (i, j)-entry of the matrix An is equal to Aij(n).Proof : By indution on n.For n = 1, the propriety is trivially veri�ed (by de�nition of the adjaeny matrix).For n ≥ 1, we suppose que the (i, j)-entry of the matrix An is equal to Aij(n), id est

An
i,j is the sum of weights on every n-walk from vi to vj . A (n+1)-walk from vi to vj is a

n-walk from vi to a vertie vk, followed by an edge from vk to vj. By indution hypothesis,the sum of all weights on n-walks from vi to vk is the number Ai,k(n). Moreover, the sumof all weights on edges from vk to vj is Ak,j. Then there are exatly Ai,k(n)×Ak,j weightson (n + 1)-walks from vi to vj ending by (vkvj). So the sum of weights on (n + 1)-walksfrom vi to vj is
p

∑

k=1

Ai,k(n) × Ak,j = Ai,j(n + 1).

�3 Generating funtionNow we want to analyze the behavior of the funtion Aij(n). Let's de�ne the generatingfuntion of Aij(n) :
Fij(G, λ) =

∑

n≥0

Aij(n)λn.Theorem 2 The generating funtion Fij(G, λ) is given by the identity
Fij(G, λ) = (−1)i+j det((I − λA) ⋄ (j, i))

det(I − λA)where (M ⋄ (j, i)) represents the matrix obtained from M by removing the j-th row andthe i-th olumn of M .Thus in partiular, Fij(G, λ) is a rational funtion of λ whose degree < n0, with n0multipliity of 0 as an eigenvalue of A. 2



Proof : Thanks to Theorem 1, we know that Aij(n) = An
i,j. Then Fij(G, λ) is the

(i, j)-th oe�ient of the matrix ∑

n≥0

λnAn.On the right hand, sine R is a ommutative ring, the series ∑

n≥0

λnAn is geometriand we know that
∑

n≥0

λnAn = (I − λA)−1.On the other hand, we know that if B is any invertible matrix (ie it exists B−1 as
BB−1 = B−1B = I) then we know that B−1 = 1

det B
tomB where the matrix tomB isthe o-matrix of B (ie matrix with (i, j)-th term equal to (−1)i+j det(B ⋄ (i, j))

=⇒ B−1
ij = (−1)i+j det(B ⋄ (j, i))

det B
.Let's suppose that A ∈ Mp(R). We know that det(A − λI) is the harateristipolynomial of A and we note n0 the multipliity of zero as root of the harateristipolynomial :

det(A − λI) = (−1)p(λp + α1λ
p−1 + ... + αp−n0

λn0).Then
det(I − λA) = 1 + α1λ + ... + αp−n0

λp−n0ie det(I − λA) is a polynomial in λ whih veri�ed deg det(I − λA) = p − n0. And sine
deg det(I − λA ⋄ (j, i)) ≤ p − 1, it follows that

deg Fij(G, λ) ≤ p − 1 − (p − n0) < n0.

�Speial aseLet
CG(n) =

∑

ω(Γ)where the sum is over all losed n-walks in G.Clearly, we have CG(1) = tr(A).Corollary 1 Let Q(λ) = det(I − λA). Then
∑

n≥1

CG(n)λn =
−λ Q′(λ)

Q(λ)
.Proof : Thanks to Theorem 1, we have CG(n) =

p
∑

i=1

Aii(n) = tr(An).We an all ω1, ω2, ... ωq the eigenvalues ofA whih are not null. Then tr(An) = ωn
1 + ... + ωn

q ,so
∑

n≥1

CG(n)λn =
ω1 λ

1 − ω1λ
+ ... +

ωq λ

1 − ωqλand the result follows putting all over the denominator (1−ω1λ)...(1−ωqλ) = Q(λ) sinethe numerator beomes−λQ′(λ). 3



4 Counting words on a �nite alphabet without �xedfatorsLet A be the 3-letter alphabet A = {1, 2, 3}. Let A∗ be the set of �nite words on A.Problem 1 : we want to ount how many words u = a1a2...an ∈ A∗ exist suh thatneither 11 nor 23 is a fator of u (is neither 11 nor 23 appear as onseutive terms aiai+1in u).
2

1 3Figure 1Let f(n) be the wanted number.Let G be the direted graph given by Figure 1. G learly represents the situation :if there is an edge between i and j, the fator ij is allowed in the word u. The words oflength n are the (n − 1)-walks on G and if we set ω(e) = 1 for every edge e, then
f(n) =

∑

i,j∈{1,2,3}

Aij(n − 1).We have A =





0 1 1
1 1 0
1 1 1



.By simple alulation, we obtain Q(λ) = det(I − λA) = 1 − 2λ − λ2 + λ3.Setting Qij(λ) = det((I − λA) ⋄ (j, i)), from Theorem 2 we dedue that
F (λ) =

∑

n≥0

f(n + 1)λn =
∑

i,j∈{1,2,3}

(−1)i+jQij(λ)

Q(λ)
.Theorem 2 a�rms that deg F (λ) < 0 so, sine the denominator is a 3-degree polynomial,the numerator has to be a polynomial of degree at most 2. The determination of thenumerator only needs 3 partiular values : f(1) = 3, f(2) = 7, f(3) = 16. It follows that

F (λ) =
3 + λ − λ2

1 − 2λ − λ2 + λ3
.Problem 2 : now, among the results above, we want to impose that ana1 is alsodi�erent of 11 or 23. How many words are suitable ?Let g(n) be the wanted number.Clearly, g(n) represents the number of losed n-walks in G. By Corollary 1, we ana�rm that

∑

n≥0

g(n)λn =
−λ Q′(λ)

Q(λ)
=

−λ(−2 − 2λ + 3λ2)

1 − 2λ − λ2 + λ3
.4



Problem 3 : we want to ount how many words u = a1a2...an ∈ A∗ exist suh thatneither 12 nor 213 , 222 , 231, or 313 is a fator of u (is neither 11 nor 213 , 222 , 231, or
313 appear as onseutive terms aiai+1 or ajaj+1aj+2 in u).

11 12 13

21 22 23

31 32 33Figure 2Let h(n) be the wanted number.Let H be the direted graph given by Figure 2. H learly represents the situation :if there is an edge between ab and ac, the fator abc is allowed in the word u. The wordsof length n are the (n − 2)-walks on H and if we set ω(e) = 1 for every edge e, then
h(n) =

∑

ab,cd∈{H}

Aab,cd(n − 2).

Here we have A =

























1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1
1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0
0 0 0 0 0 0 1 1
1 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0
0 0 0 0 0 1 1 1

























.

Thus, ∑

n≥0

h(n)λn is a rational funtion with denominator Q(λ) = det(I − λA).Proposition 1 Let A be a �nite alphabet, A∗ the set of �nite words on A. Let F be a�nite subset of A∗. Let f(n) be the number of words a1a2...an ∈ A∗ suh that no fator
aiai+1...ai+j is in F .Then

∑

n≥0

f(n)λn ∈ C(λ).

5



5 Counting permutations suh that |σ(i) − i| ≤ 1Let Sn be the set of permutations of [n] = {1, 2, ..., n}Problem 1 : we want to ount how many permutations σ ∈ Sn exist suh that
∀i, |σ(i) − i| ≤ 1.Let f(n) be the wanted number.For i ∈ [n], we only have three possibilities to σ(i) : i − 1, i, or i + 1. Furthermore,the values for σ(i) depend on the hoies made for σ(i − 1) and σ(i − 2). Let's try andrepresent the situation by a graph.Set G be a direted graph whose verties onsist of pairs (a, b) ∈ {0,±1} for whihit is possible to have ∣

∣

∣

∣

σ(i) − i = a
σ(i + 1) − i − 1 = b

. An edge will onnet (a, b) to (b, c) if itis possible to have ∣

∣

∣

∣

∣

∣

σ(i) − i = a
σ(i + 1) − i − 1 = b
σ(i + 2) − i − 2 = c

. We dedue that the only possible vertiesare v1 = (−1,−1), v2 = (−1, 0), v3 = (−1, 1) , v4 = (0, 0) , v5 = (0, 1), v6 = (1,−1),
v7 = (1, 1).

v2 v4

v1 v6 v5

v3 v7Figure 3Then, a n-walk inG is a sequene ((α1, α2), (α2, α3)), ((α2, α3), (α3α4)), ..., ((αn, αn+1), (αn+1, αn))whih represents the permutation σ ∈ Sn+2 suh that ∀i ∈ [n + 2], σ(i) = i + αi.We need to impose α1 6= −1 and αn+2 6= 1, thus f(n + 2) represents the number of
n-walks in G from vi ∈ {v4, v5, v6, v7} to vj ∈ {v1, v2, v4, v6}. If we set ω(e) = 1 for everyedge e ∈ G, then

f(n + 2) =
∑

i=4,5,6,7

∑

j=1,2,4,6

(An)ij .By a alulation, we obtain Q(λ) = det(I − λA) = (1 − λ2)(1 − λ − λ2).Like in example 1, (1 − λ2)(1 − λ − λ2)
∑

n≥0

f(n + 2)λn has a degree less larger than
deg Q(λ) + 3 = 6 : we just need the initial values f(0), f(1), ...f(6). By this method, we�nd :

∑

n≥0

f(n)λn =
1

1 − λ − λ2so f(n) = Fn+1 where Fn is the n-th Fibonnai number de�ned by {

F1 = 1, F2 = 1
∀n, Fn+2 = Fn+1 + Fn6



Problem 2 : we want to ount how many permutations σ ∈ Sn exist suh that
∀i, σ(i) − i ≡ 0,±1 (mod n).Let g(n) be the wanted number.It is indeed the same problem than before, but we an allow that a1 = n and an = 1.Thus, g(n) is just the number of losed n-walks of the form

((α1, α2), (α2, α3)), ((α2, α3), (α3, α4)), ..., ((αn−1, αn), (αn, α1)), ((αn, α1), (α1, α2)).By Corollary 1, we an a�rm that
∑

n≥0

g(n)λn =
−λ/Q′(λ)

Q(λ)
=

2λ

1 − λ
+

λ(1 + 2λ)

1 − λ − λ2
,so g(n) = Ln+2 where Ln is the n-th Luas number de�ned by {

L1 = 1, L2 = 3
∀n, Ln+2 = Ln+1 + LnProposition 2 Let A be a �nite subset of Z. Let's note fA(n) the number of permutations

σ ∈ Sn suh that ∀i ∈ Nn, σ(i) − i ∈ A.Then
∑

n≥0

fA(n)λn ∈ C(λ).Proposition 3 Let A be a �nite subset of Z. Let's note gA(n) the number of permutations
σ ∈ Sn suh that ∀i ∈ Nn, ∃j ∈ A / σ(i) − i ≡ j (mod n).Then there is a polynomial Q(λ) ∈ C[λ] for whih

∑

n≥0

gA(n)λn =
−λQ′(λ)

Q(λ)
.6 ConlusionThe transfer-matrix method has simple theoretial foundations but however implies re-sults whih are very appreiable : �rst the ombinatorial aspet whih links the number

Aij(n) to the powers of the adjaeny matrix, and also the algebrai part whih givesthe rationality of the generating funtion of Aij(n), a result whih is not obvious at �rstsight.Thus, onrete tools like graphs an help redue ombinatorial problems in easier re-sults, and the transfer-matrix method is a good example of appliations they an have inmathematis nowadays.Referenes[1℄ Stanley, Rihard P., Enumerative Combinatoris Vol. 2, Cambridge University Press,1999[2℄ Mény, Jean-Manuel, Aldon, Gilles and Xavier, Lionel, Introdution à la théorie desgraphes, butinage graphique, CRDP Aadémie de Lyon, 20057


