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For the last 
entury, the graph theory has been exploited in order to solve mathemati
sproblems more pra
ti
ally, with aspe
ts more 
on
rete. In his book Enumerative Combi-natori
s (Volume 2), Ri
hard P. Stanley develops the prin
iple of Transfer-matrix methodwhi
h, using 
ombinatorial and algebrai
 results, 
an o�er some interesting 
on
lusionson 
ounting issues.1 De�nitions and notationsLet G be a �nite dire
ted graph, id est a triple (V, E, ϕ) where :
• V = {v1, v2, ..., vp} is a �nite set of verti
es ;
• E is a �nite set of dire
ted edges ;
• ϕ is a map from E to V 2 = V × V .If ϕ(e) = (u, v), then we say that e is an edge from u to v, with initial vertex uand �nal vertex v, denoted by u = I(e) and v = F(e).In the spe
ial 
ase where u = v, the edge e is 
alled a loop.A walk Γ in G of length n from u to v (we'll say a n-walk from u to v) is a sequen
e

e1e2...en of n edges su
h that I(e1) = u, F(en) = v and for 1 ≤ i < n, F(ei) = I(ei+1).In the spe
ial 
ase where u = v, then Γ is 
alled a 
losed walk based at u.Now we want the edges to be weighted, so we take a weight fun
tion ω : E −→ Rwith R a 
ommutative ring (we 
an take R = C for example).If Γ = e1e2...en is a walk, then we de�ne the weight of Γ by
ω(Γ) = ω(e1)ω(e2)...ω(en).For i, j ∈ [p] = {1, 2..., p} and n ∈ N, we de�ne

Aij(n) =
∑

ω(Γ)where the sum is over all n-walks from vi to vj .In parti
ular Aij(0) = δij .The aim of the Transfer matrix method is to evaluate Aij(n).1



2 Adja
en
y matrixWe 
an easily interpret the number Aij(n) as an entry in a p × p matrix.Let A = (Aij)i,j∈[p] ∈ Mp(R) de�ned by
Aij =

∑

ω(e)where the sum is over all edges from vi to vj .We note that
∀i, j ∈ [p], Aij = Aij(1).The matrix A is 
alled the adja
en
y matrix of the graph G with respe
t to the weightfun
tion ω.Theorem 1 Let n ∈ N. Then the (i, j)-entry of the matrix An is equal to Aij(n).Proof : By indu
tion on n.For n = 1, the propriety is trivially veri�ed (by de�nition of the adja
en
y matrix).For n ≥ 1, we suppose que the (i, j)-entry of the matrix An is equal to Aij(n), id est

An
i,j is the sum of weights on every n-walk from vi to vj . A (n+1)-walk from vi to vj is a

n-walk from vi to a verti
e vk, followed by an edge from vk to vj. By indu
tion hypothesis,the sum of all weights on n-walks from vi to vk is the number Ai,k(n). Moreover, the sumof all weights on edges from vk to vj is Ak,j. Then there are exa
tly Ai,k(n)×Ak,j weightson (n + 1)-walks from vi to vj ending by (vkvj). So the sum of weights on (n + 1)-walksfrom vi to vj is
p

∑

k=1

Ai,k(n) × Ak,j = Ai,j(n + 1).

�3 Generating fun
tionNow we want to analyze the behavior of the fun
tion Aij(n). Let's de�ne the generatingfun
tion of Aij(n) :
Fij(G, λ) =

∑

n≥0

Aij(n)λn.Theorem 2 The generating fun
tion Fij(G, λ) is given by the identity
Fij(G, λ) = (−1)i+j det((I − λA) ⋄ (j, i))

det(I − λA)where (M ⋄ (j, i)) represents the matrix obtained from M by removing the j-th row andthe i-th 
olumn of M .Thus in parti
ular, Fij(G, λ) is a rational fun
tion of λ whose degree < n0, with n0multipli
ity of 0 as an eigenvalue of A. 2



Proof : Thanks to Theorem 1, we know that Aij(n) = An
i,j. Then Fij(G, λ) is the

(i, j)-th 
oe�
ient of the matrix ∑

n≥0

λnAn.On the right hand, sin
e R is a 
ommutative ring, the series ∑

n≥0

λnAn is geometri
and we know that
∑

n≥0

λnAn = (I − λA)−1.On the other hand, we know that if B is any invertible matrix (ie it exists B−1 as
BB−1 = B−1B = I) then we know that B−1 = 1

det B
t
omB where the matrix t
omB isthe 
o-matrix of B (ie matrix with (i, j)-th term equal to (−1)i+j det(B ⋄ (i, j))

=⇒ B−1
ij = (−1)i+j det(B ⋄ (j, i))

det B
.Let's suppose that A ∈ Mp(R). We know that det(A − λI) is the 
hara
teristi
polynomial of A and we note n0 the multipli
ity of zero as root of the 
hara
teristi
polynomial :

det(A − λI) = (−1)p(λp + α1λ
p−1 + ... + αp−n0

λn0).Then
det(I − λA) = 1 + α1λ + ... + αp−n0

λp−n0ie det(I − λA) is a polynomial in λ whi
h veri�ed deg det(I − λA) = p − n0. And sin
e
deg det(I − λA ⋄ (j, i)) ≤ p − 1, it follows that

deg Fij(G, λ) ≤ p − 1 − (p − n0) < n0.

�Spe
ial 
aseLet
CG(n) =

∑

ω(Γ)where the sum is over all 
losed n-walks in G.Clearly, we have CG(1) = tr(A).Corollary 1 Let Q(λ) = det(I − λA). Then
∑

n≥1

CG(n)λn =
−λ Q′(λ)

Q(λ)
.Proof : Thanks to Theorem 1, we have CG(n) =

p
∑

i=1

Aii(n) = tr(An).We 
an 
all ω1, ω2, ... ωq the eigenvalues ofA whi
h are not null. Then tr(An) = ωn
1 + ... + ωn

q ,so
∑

n≥1

CG(n)λn =
ω1 λ

1 − ω1λ
+ ... +

ωq λ

1 − ωqλand the result follows putting all over the denominator (1−ω1λ)...(1−ωqλ) = Q(λ) sin
ethe numerator be
omes−λQ′(λ). 3



4 Counting words on a �nite alphabet without �xedfa
torsLet A be the 3-letter alphabet A = {1, 2, 3}. Let A∗ be the set of �nite words on A.Problem 1 : we want to 
ount how many words u = a1a2...an ∈ A∗ exist su
h thatneither 11 nor 23 is a fa
tor of u (is neither 11 nor 23 appear as 
onse
utive terms aiai+1in u).
2

1 3Figure 1Let f(n) be the wanted number.Let G be the dire
ted graph given by Figure 1. G 
learly represents the situation :if there is an edge between i and j, the fa
tor ij is allowed in the word u. The words oflength n are the (n − 1)-walks on G and if we set ω(e) = 1 for every edge e, then
f(n) =

∑

i,j∈{1,2,3}

Aij(n − 1).We have A =





0 1 1
1 1 0
1 1 1



.By simple 
al
ulation, we obtain Q(λ) = det(I − λA) = 1 − 2λ − λ2 + λ3.Setting Qij(λ) = det((I − λA) ⋄ (j, i)), from Theorem 2 we dedu
e that
F (λ) =

∑

n≥0

f(n + 1)λn =
∑

i,j∈{1,2,3}

(−1)i+jQij(λ)

Q(λ)
.Theorem 2 a�rms that deg F (λ) < 0 so, sin
e the denominator is a 3-degree polynomial,the numerator has to be a polynomial of degree at most 2. The determination of thenumerator only needs 3 parti
ular values : f(1) = 3, f(2) = 7, f(3) = 16. It follows that

F (λ) =
3 + λ − λ2

1 − 2λ − λ2 + λ3
.Problem 2 : now, among the results above, we want to impose that ana1 is alsodi�erent of 11 or 23. How many words are suitable ?Let g(n) be the wanted number.Clearly, g(n) represents the number of 
losed n-walks in G. By Corollary 1, we 
ana�rm that

∑

n≥0

g(n)λn =
−λ Q′(λ)

Q(λ)
=

−λ(−2 − 2λ + 3λ2)

1 − 2λ − λ2 + λ3
.4



Problem 3 : we want to 
ount how many words u = a1a2...an ∈ A∗ exist su
h thatneither 12 nor 213 , 222 , 231, or 313 is a fa
tor of u (is neither 11 nor 213 , 222 , 231, or
313 appear as 
onse
utive terms aiai+1 or ajaj+1aj+2 in u).

11 12 13

21 22 23

31 32 33Figure 2Let h(n) be the wanted number.Let H be the dire
ted graph given by Figure 2. H 
learly represents the situation :if there is an edge between ab and ac, the fa
tor abc is allowed in the word u. The wordsof length n are the (n − 2)-walks on H and if we set ω(e) = 1 for every edge e, then
h(n) =

∑

ab,cd∈{H}

Aab,cd(n − 2).

Here we have A =

























1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1
1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0
0 0 0 0 0 0 1 1
1 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0
0 0 0 0 0 1 1 1

























.

Thus, ∑

n≥0

h(n)λn is a rational fun
tion with denominator Q(λ) = det(I − λA).Proposition 1 Let A be a �nite alphabet, A∗ the set of �nite words on A. Let F be a�nite subset of A∗. Let f(n) be the number of words a1a2...an ∈ A∗ su
h that no fa
tor
aiai+1...ai+j is in F .Then

∑

n≥0

f(n)λn ∈ C(λ).

5



5 Counting permutations su
h that |σ(i) − i| ≤ 1Let Sn be the set of permutations of [n] = {1, 2, ..., n}Problem 1 : we want to 
ount how many permutations σ ∈ Sn exist su
h that
∀i, |σ(i) − i| ≤ 1.Let f(n) be the wanted number.For i ∈ [n], we only have three possibilities to σ(i) : i − 1, i, or i + 1. Furthermore,the values for σ(i) depend on the 
hoi
es made for σ(i − 1) and σ(i − 2). Let's try andrepresent the situation by a graph.Set G be a dire
ted graph whose verti
es 
onsist of pairs (a, b) ∈ {0,±1} for whi
hit is possible to have ∣

∣

∣

∣

σ(i) − i = a
σ(i + 1) − i − 1 = b

. An edge will 
onne
t (a, b) to (b, c) if itis possible to have ∣

∣

∣

∣

∣

∣

σ(i) − i = a
σ(i + 1) − i − 1 = b
σ(i + 2) − i − 2 = c

. We dedu
e that the only possible verti
esare v1 = (−1,−1), v2 = (−1, 0), v3 = (−1, 1) , v4 = (0, 0) , v5 = (0, 1), v6 = (1,−1),
v7 = (1, 1).

v2 v4

v1 v6 v5

v3 v7Figure 3Then, a n-walk inG is a sequen
e ((α1, α2), (α2, α3)), ((α2, α3), (α3α4)), ..., ((αn, αn+1), (αn+1, αn))whi
h represents the permutation σ ∈ Sn+2 su
h that ∀i ∈ [n + 2], σ(i) = i + αi.We need to impose α1 6= −1 and αn+2 6= 1, thus f(n + 2) represents the number of
n-walks in G from vi ∈ {v4, v5, v6, v7} to vj ∈ {v1, v2, v4, v6}. If we set ω(e) = 1 for everyedge e ∈ G, then

f(n + 2) =
∑

i=4,5,6,7

∑

j=1,2,4,6

(An)ij .By a 
al
ulation, we obtain Q(λ) = det(I − λA) = (1 − λ2)(1 − λ − λ2).Like in example 1, (1 − λ2)(1 − λ − λ2)
∑

n≥0

f(n + 2)λn has a degree less larger than
deg Q(λ) + 3 = 6 : we just need the initial values f(0), f(1), ...f(6). By this method, we�nd :

∑

n≥0

f(n)λn =
1

1 − λ − λ2so f(n) = Fn+1 where Fn is the n-th Fibonna
i number de�ned by {

F1 = 1, F2 = 1
∀n, Fn+2 = Fn+1 + Fn6



Problem 2 : we want to 
ount how many permutations σ ∈ Sn exist su
h that
∀i, σ(i) − i ≡ 0,±1 (mod n).Let g(n) be the wanted number.It is indeed the same problem than before, but we 
an allow that a1 = n and an = 1.Thus, g(n) is just the number of 
losed n-walks of the form

((α1, α2), (α2, α3)), ((α2, α3), (α3, α4)), ..., ((αn−1, αn), (αn, α1)), ((αn, α1), (α1, α2)).By Corollary 1, we 
an a�rm that
∑

n≥0

g(n)λn =
−λ/Q′(λ)

Q(λ)
=

2λ

1 − λ
+

λ(1 + 2λ)

1 − λ − λ2
,so g(n) = Ln+2 where Ln is the n-th Lu
as number de�ned by {

L1 = 1, L2 = 3
∀n, Ln+2 = Ln+1 + LnProposition 2 Let A be a �nite subset of Z. Let's note fA(n) the number of permutations

σ ∈ Sn su
h that ∀i ∈ Nn, σ(i) − i ∈ A.Then
∑

n≥0

fA(n)λn ∈ C(λ).Proposition 3 Let A be a �nite subset of Z. Let's note gA(n) the number of permutations
σ ∈ Sn su
h that ∀i ∈ Nn, ∃j ∈ A / σ(i) − i ≡ j (mod n).Then there is a polynomial Q(λ) ∈ C[λ] for whi
h

∑

n≥0

gA(n)λn =
−λQ′(λ)

Q(λ)
.6 Con
lusionThe transfer-matrix method has simple theoreti
al foundations but however implies re-sults whi
h are very appre
iable : �rst the 
ombinatorial aspe
t whi
h links the number

Aij(n) to the powers of the adja
en
y matrix, and also the algebrai
 part whi
h givesthe rationality of the generating fun
tion of Aij(n), a result whi
h is not obvious at �rstsight.Thus, 
on
rete tools like graphs 
an help redu
e 
ombinatorial problems in easier re-sults, and the transfer-matrix method is a good example of appli
ations they 
an have inmathemati
s nowadays.Referen
es[1℄ Stanley, Ri
hard P., Enumerative Combinatori
s Vol. 2, Cambridge University Press,1999[2℄ Mény, Jean-Manuel, Aldon, Gilles and Xavier, Lionel, Introdu
tion à la théorie desgraphes, butinage graphique, CRDP A
adémie de Lyon, 20057


