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Introduction

Consider Ornstein-Uhlenbeck equation with the function ϕ:

d

dt
u(t, x) = ∆u −∇ϕ(x) · ∇u := Lu, i.c. u(0, x) = u0(x).

◮ L∗(u) = ∆u + div(u∇ϕ(x)) in L2(dx),
∫

uLvdx =
∫

vL∗udx
and L∗ is called Fokker Planck equation.

◮ u(t, x) → 0 if
∫

e−ϕ = ∞, ex: ϕ = 0, heat equation.

◮ u(t, x) →
∫

u0dµϕ if
∫

e−ϕ < ∞ where

dµϕ(x) =
exp(−ϕ(x))

Zϕ
dx , Zϕ =

∫

exp(−ϕ(x))dx

ex: ∇ϕ(x) = x , classical Ornstein-Uhlenbeck equation.
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The ”good” space to study Orstein-Uhlenbeck semi-group is
L2(µϕ) because L is symmetric:

∫

f Lg dµϕ =

∫

g Lf dµϕ = −

∫

∇f · ∇gdµϕ,

the total mass is conserved:
∫

u(t, x)dµϕ(x) =
∫

u0dµϕ.
How converge, in the second case, the O.U. equation?

Theorem
Poincaré inequality or spectral gap inequality:

∀f , Varµϕ(f ) :=

∫
(

f −

∫

fdµϕ

)2

dµϕ 6 C

∫

|∇f |2dµϕ,

is equivalent to the exponential L2-convergence of u to
∫

u0dµϕ:

∫
(

u(t, x) −

∫

u0dµϕ

)2

dµϕ 6 e−t/CVarµϕ(u0) .
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Example

◮ Dimension n: Hess(ϕ) > λId with λ > 0 then C > 2/λ.

◮ Dimension 1: if ϕ(x) = |x |α with α > 1.

Then Poincaré inequality holds

Varµϕ(f ) :=

∫
(

f −

∫

fdµϕ

)2

dµϕ 6 C

∫

|∇f |2dµϕ,

Remark
We get the same result for Logarithmic Sobolev inequality for the
probability measure µϕ.
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As Porous medium equation (ut = ∆um) can be considered as a
generalization of heat equation.
We consider here the generalization of Ornstein-Uhlenbeck
equation weighted porous medium equation (WPME).

Let m > 1:

d

dt
u(t, x) = ∆um−∇ϕ(x)·∇um = L(um), i.c. u(0, x) = u0(x) > 0.

Questions are:

◮ Existence.

◮ Asymptotic behaviour (L2 convergence), as
Ornstein-Uhlenbeck equation, link between the asymptotic
behaviour and ϕ.

◮ The link between some functional inequalities as Poincaré...
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Existence

Theorem
Let u0 be a C∞ positive initial condition on Lm+1

µψ
(Rd) then there

exists a unique classical solution of the weighed porous medium
equation (WPME).

◮ This is not a difficult problem but we did not found any
reference.

◮ Based on a course given by J.L. Vásquez in Montréal (1990):
◮ On a bounded domain Ω ⊂ R

n for bounded initial condition.
◮ L1-contraction principle gives uniqueness of the solution
◮ Extension on R

n for all positive initial condition.
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Convergence to the equilibrium

Theorem (As Poincaré inequality)

Lq-Poincaré inequality with q = 2/(m + 1) u0 ∈ L2(µϕ),

∀f > 0, Varµϕ(f q)1/q :=

(

∫

f 2qdµ −

(
∫

f qdµϕ

)2
)1/q

6 CP

∫

|∇f |2dµϕ,

is equivalent to the polynomial L2-convergence,

∫
(

u −

∫

u0dµϕ

)2

dµϕ 6
1

(

Varµϕ(f )−(m−1)/2 + 4mCP(m−1)
(m+1)2

t
)2/(m−1)

.
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Proof: Take F (t) = Varµϕ(u), we get

F ′(t) = −
8m

(m + 1)2

∫

|∇u
m+1

2 |2dµϕ

Lq-Poincaré inequality implies

∂

∂t
Varµψ (u) ≤ −

8CPm

(m + 1)2
(

Varµψ (u)
)

m+1
2 .

On the other side, the L2-convergence implies that

F ′(0) 6 −
8mCP

(m + 1)2
F (0)1+2/(m−1),

implies Lq-Poincaré.
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Condition and example

The main difficulties is to prove such inequalities and Tools are
Capacity-measure inequalities.
Let µ a probability measure and ν a positive measure on M. If
A ⊂ Ω ⊂ M,

Capν(A,Ω) := inf

{
∫

|∇f |2dν; f ∈ C1(M), 1IA 6 f 6 1IΩ

}

.

Let q ∈ (0, 1) and defined

βP = sup

{

∑

k∈Z

µ(Ωk)1/(1−q)

Capν(Ωk ,Ωk+1)q/(1−q)

}(1−q)/q

∈ [0,+∞],

where the supremum is taken over all Ω ⊂ M with µ(Ω) = 1/2 and
all sequences (Ωk)k∈Z

such that for all k ∈ Z, Ωk ⊂ Ωk+1 ⊂ Ω.
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Theorem
Let µ a probability measure and ν a positive measure on M.

◮ Let q ∈ [1/2, 1) and CP the best constant of

(

∫

f 2qdµ −

(
∫

f qdµ

)2
)1/q

6 CP

∫

|∇f |2dν,

implies that βP 6 CP .

◮ Let q ∈ (0, 1) and assume that βP < +∞. Then (µ, ν)
satisfies a Lq-Poincaré inequality with constant C which
satisfies C 6 C2βP where C2 is a constant which depend on q.

Conclusion:
βP ∼ CP ,

The goal now is to compute βP !
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Theorem (Maz’ja)

Let q ∈ [1/2, 1). Then for all Ω ∈ M and (Ωk)k∈Z
such that

Ωk ⊂ Ωk+1 ⊂ Ω one get

∑

k∈Z

µ(Ωk)1/(1−q)

Capν(Ωk ,Ωk+1)q/(1−q)
6

1

1 − q

∫ µ(Ω)

0

(

t

Φ(t)

)q/(1−q)

dt,

where

Φ(t) = inf {Capν(A,Ω); A ⊂ Ω, µ(A) > t} i.e. Φ(µ(A)) 6 Capν(A,Ω).

Then
◮ Tools as Hardy inequalities or weak Poincaré inequality give

the result in dimension 1.
◮ Tensorization property gives the result in dimension n.
◮ Perturbation property extend the result.
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Example

Let ϕ(x) =
∑n

i=1 log(1 + |xi |
1+α) + W (x1, · · · , xn) and with W

bounded

dµϕ(x1, · · · , xn) =

(

n
∏

i=1

1

1 + |xi |
1+α

)

eW (x1,··· ,xn)dx1 · · · dxn,

The measure µϕ satisfies a Lq-Poincaré inequality with q ∈ [1/2, 1)
if α > 2q/(1 − q).
Then the weighted porous medium

d

dt
u(t, x) = ∆um−∇ϕ(x)·∇um = L(um), i.c. u(0, x) = u0(x) > 0.

associated converge in L2 if m > (α + 4)/α.
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