A Lévy-Fokker-Planck equation: entropies and convergence to equilibrium

I. Gentil

CEREMADE, Université Paris-Dauphine

Banff

Work written in collaboration with C. Imbert

Outline

(9) Introduction

- Ornstein-Uhlenbeck and Fokker-Planck equations
- Tools for the asymptotic behaviour
(2) The Lévy-Fokker-Planck equation
- The Lévy-Fokker-Planck equation
(3) Results
- The equilibrium
- Entropies
- Convergence towards the equilibrium

Outline

(9) Introduction

- Ornstein-Uhlenbeck and Fokker-Planck equations
- Tools for the asymptotic behaviour
(2) The Lévy-Fokker-Planck equation
- The Lévy-Fokker-Planck equation
(3) Results
- The equilibrium
- Entropies
- Convergence towards the equilibrium

Ornstein-Uhlenbeck and Fokker-Planck equations

$$
\left\{\begin{array}{l}
d X_{t}=\sqrt{2} d B_{t}-\nabla V\left(X_{t}\right) d t \\
X_{0}=x
\end{array}\right.
$$

where B_{t} is a standard Brownian Motion in \mathbb{R}^{n}.
Ito formula implies : the Semigroup $P_{t} f(x)=E_{x}\left(f\left(X_{t}\right)\right)$ satisfies the PDE

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial \partial_{t}} P_{t} f(x)=L P_{t} f(x) \\
P_{0} f=f,
\end{array}\right.
$$

where $L f=\Delta f-\nabla V \cdot \nabla f$ is the IG of P_{t}. This is the Ornstein-Uhlenbeck equation.
Consider L^{*} or P_{t}^{*}, the dual with respect to $d x$,

$$
\int L f g d x=\int f L^{*} g d x, \text { or } \int \mathrm{P}_{\mathrm{t}} \mathrm{fgdx}=\int \mathrm{fP}_{\mathrm{t}}^{*} \mathrm{gdx},
$$

then

$$
L^{*} g=\Delta g+\operatorname{div}(g \cdot \nabla V)
$$

The Semigroup $P_{t}^{*} f(x)$ satisfies the PDE

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial t} P_{t}^{*} f(x)=L^{*} P_{t}^{*} f(x) \\
P_{0}^{*} f=f
\end{array}\right.
$$

This is the Fokker-Planck equation.
Let $\mu_{V}=e^{-V} d x$ (assume that μ_{V} is a probability measure), $\left(P_{t}\right)_{t \geq 0}$ or L is self adjoint in $L^{2}\left(\mu_{V}\right)$ and the by integration by parts

$$
\int L f g d \mu V=-\int \nabla f \cdot \nabla g d \mu V
$$

Under smooth assumptions :

$$
\lim _{t \rightarrow \infty} P_{t} f(x)=\int f d \mu v
$$

or equivalently

$$
\lim _{t \rightarrow \infty} e^{V(x)} P_{t}^{*} g(x)=\int g d x
$$

The good question is HOW FAST?

Outline

(9) Introduction

- Ornstein-Uhlenbeck and Fokker-Planck equations
- Tools for the asymptotic behaviour

2 The Lévy-Fokker-Planck equation

- The Lévy-Fokker-Planck equation
(3) Results
- The equilibrium
- Entropies
- Convergence towards the equilibrium

Tools for the asymptotic behaviour

- Poincaré inequality : a L^{2} convergence.

$$
\frac{d}{d t} \operatorname{var}_{\mu_{V}}\left(P_{t} f\right)=2 \int P_{t} f L P_{t} f d \mu_{V}-0=-2 \int\left|\nabla P_{t} f\right|^{2} d \mu_{V}
$$

If Poincaré inequality holds

$$
\begin{gathered}
\operatorname{var}_{\mu_{V}}(f) \leq C \int|\nabla f|^{2} d \mu_{V} \\
\operatorname{var}_{\mu_{V}}\left(P_{t} f\right) \leq e^{-2 t / C^{v a r_{\mu_{V}}}(f)}
\end{gathered}
$$

- Logarithmic Sobolev inequality a $L \log L$ convergence

$$
\frac{d}{d t} E n t_{\mu_{V}}\left(P_{t} f\right):=\frac{d}{d t} \int P_{t} f \log \frac{P_{t} f}{\int P_{t} f d \mu_{V}} d \mu_{V}=-4 \int\left|\nabla \sqrt{P_{t} f}\right|^{2} d \mu_{V}
$$

If Logarithmic Sobolev inequality holds

$$
\begin{aligned}
E n \mu_{\mu_{V}}\left(f^{2}\right) & \leq C \int|\nabla f|^{2} d \mu_{V} \\
E^{n} t_{\mu_{V}}\left(P_{t} f\right) & \leq e^{-4 t / C} E_{\mu_{\nu V}}(f)
\end{aligned}
$$

When do we have a Poincaré or a logarithmic Sobolev inequality?

* The Gaussian measure, $V(x)=x^{2} / 2$ (Inequality proved by Gross).
* The Bakry-Emery Γ_{2}-criterion implies that if

$$
\operatorname{Hess}(\mathrm{V}) \geq \lambda \mathrm{Id},
$$

with $\lambda>0$ then logarithmic Sobolev inequality holds with $C=2 / \lambda$ and Poincaré inequality holds with $C=1 / \lambda$.

* There are also many technical methods to prove Poincaré or Log-Sobolev: Hardy, transportation...

Outline

Introduction

- Ornstein-Uhlenbeck and Fokker-Planck equations - Tools for the asymptotic behaviour
(2) The Lévy-Fokker-Planck equation
- The Lévy-Fokker-Planck equation
(3) Results
- The equilibrium
- Entropies
- Convergence towards the equilibrium

Definition of Lévy process

Lévy process $L_{t}=$ process with stationary \& indep increments
Fourier transform $\left(L_{t}\right)=e^{t \psi(\xi)}$ where ψ is characterized by the Lévy-Khinchine formula.

$$
\psi(\xi)=-\sigma \xi \cdot \xi+i b \cdot \xi+\int\left(e^{i z \cdot \xi}-1-i z \cdot \xi \mathbf{1}_{B}(\xi)\right) \nu(d z)
$$

where ν is a singular measure satisfying

$$
\int_{B}|z|^{2} \nu(d z)<+\infty \quad \int_{\mathbb{R}^{d} \backslash B} \nu(d z)<+\infty,
$$

σ is a positive definite matrix and b is a vector.
Parameters (σ, b, ν) characterize the Lévy process (or a inifinite divisible law).

- For all $t>0$ the law of L_{t} is an infinite divisible law :
$\mu=\underbrace{\mu_{n} \star \cdots \star \mu_{n}}_{n \text { times }}$.
- Associated infinitesimal generators as for the Brownian Motion.

$$
\begin{aligned}
I(u)= & \operatorname{div}(\sigma \nabla u)+b \cdot \nabla u \\
& +\int\left(u(x+z)-u(x)-\nabla u(x) \cdot z \mathbf{1}_{B}(z)\right) \nu(d z)
\end{aligned}
$$

These operators appear everywhere

- Laws with heavy tails (decrease as power laws)
- Example : $(\sigma, b, \nu)=\left(0,0, \frac{1}{|z|^{\alpha+d}} d z\right)$, the $\alpha \in(0,2)$ stable process. In that case $\psi(\xi)=|\xi|^{\alpha}$.
- The case $\alpha=2$ is the Brownian motion, $I=\Delta$.

The Lévy-Fokker-Planck equation

Replace Δ by I a IG of a Lévy process in the Fokker-Planck equation :

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial t} u=I(u)+\operatorname{div}(\mathrm{ux}) \tag{LFP}\\
u(0, x)=f(x)
\end{array}\right.
$$

The goal is to understand the asymptotic behaviour of the semigroup.

Remark: We fix now (σ, b, ν) and assume that $V=x^{2} / 2$.
Starting point of this work : Biler and Karch (2001)
Questions:

- Find a steady state as e^{-V} as for the classical case Δ.
- Find the asymptotic behaviour of the Lévy-Fokker-Planck equation (LFP).
- Find conditions to get an asymptotic behaviour using inequalities as Poincaré or logarithmic Sobolev.

Outline

(1) Introduction

- Ornstein-Uhlenbeck and Fokker-Planck equations
- Tools for the asymptotic behaviour
(2) The Lévy-Fokker-Planck equation
- The Lévy-Fokker-Planck equation
(3) Results
- The equilibrium
- Entropies
- Convergence towards the equilibrium

An equilibrium $u_{\infty} \stackrel{\text { def }}{=}$ a stationary solution of the LFP u_{∞} can be seen as an invariant measure μv in the case of the Laplacian.

Proposition (Existence of an equilibrium)

Assume that

$$
\begin{equation*}
\int_{\mathbb{R}^{d} \backslash B} \ln |z| \nu(d z)<+\infty \tag{Con1}
\end{equation*}
$$

There then exists an positive equilibrium u_{∞} :

$$
I\left(u_{\infty}\right)+\operatorname{div}\left(u_{\infty} x\right)=0
$$

Moreover, $u_{\infty} d x$ is an infinite divisible law whose characteristic exponent A is

$$
A(\xi)=\int_{0}^{1} \psi(s \xi) \frac{d s}{s}
$$

The condition

$$
\begin{equation*}
\int_{\mathbb{R}^{d} \backslash B} \ln |z| \nu(d z)<+\infty \tag{Con1}
\end{equation*}
$$

is satisfied for the α-stable Lévy process. In that case u_{∞} is the infinite divisible law of the Lévy process, $\boldsymbol{A}=\psi / \lambda$.

Proof : The Fourier transform \hat{u}_{∞} satisfies

$$
\psi(\xi) \hat{u}_{\infty}+\xi \cdot \nabla \hat{u}_{\infty}=0
$$

so that $\hat{u}_{\infty}=\exp (-A)$ with A such that:

$$
\nabla A(\xi) \cdot \xi=\psi(\xi)
$$

then

$$
A(\xi)=\int_{0}^{1} \psi(s \xi) \frac{d s}{s}
$$

Con1 proves that A is well defined and is the characteristic exponent of a Lévy process.

Outline

(1) Introduction

- Ornstein-Uhlenbeck and Fokker-Planck equations
- Tools for the asymptotic behaviour
(2) The Lévy-Fokker-Planck equation
- The Lévy-Fokker-Planck equation
(3) Results
- The equilibrium
- Entropies
- Convergence towards the equilibrium

For $\phi: \mathbb{R}^{+} \rightarrow \mathbb{R}$ convex and smooth and μ a probability measure, consider the ϕ-entropy

$$
E_{\mu}^{\phi}(f)=\int \phi(f) d \mu-\phi\left(\int f d \mu\right)
$$

- Examples

For $\phi(x)=\frac{1}{2} x^{2}\left(E_{\mu}^{\phi}=\right.$ the variance $), D_{\phi}(a, b)=\frac{1}{2}(a-b)^{2}$

$$
F_{\mu}^{\phi}(v)=\frac{1}{2} \iint(v(x+z)-v(x))^{2} \nu(d z) \mu(d x)
$$

For $\phi(x)=x \ln x-x-1$ ($E_{\mu}^{\phi}=$ entropy $), D_{\phi}(a, b)=a \ln \frac{a}{b}+b-a$
This is a natural interpolation between the variance and the Entropy.

Define also a Bregman distance

$$
D_{\phi}(a, b)=\phi(a)-\phi(b)-\phi^{\prime}(b)(a-b) \geq 0
$$

Theorem
Let $\mu(d x)=u_{\infty}(x) d x$, ν the Lévy measure associated to I and consider $v(t, x)=\frac{u(t, x)}{u_{\infty}(x)}$, then

$$
\frac{d}{d t} E_{\mu}^{\phi}(v(t, \cdot))=-\iint D_{\phi}(v(x+z), v(x)) \nu(d z) \mu(d x) .
$$

- Fisher information

$$
F_{\mu}^{\phi}(v)=\iint D_{\phi}(v(x+z), v(x)) \nu(d z) \mu(d x)
$$

Can be seen as a Dirichlet form with respect to the measure $u_{\infty}(x) d x$

The proof is related to :

- A related equation : the Lévy-Ornstein-Ulenbeck equation (LOU)

The function $v=u / u_{\infty}$ satisfies

$$
\partial_{t} v=\frac{1}{u_{\infty}}\left(I\left(u_{\infty} v\right)-I\left(u_{\infty}\right) v\right)+x \cdot \nabla v \stackrel{\text { def }}{=} L v
$$

Dual operator of L wrt $\mu=u_{\infty}(x) d x$

$$
\int w_{1}\left(L w_{2}\right) d \mu=\int\left(\check{l}\left(w_{1}\right)-x \cdot \nabla w_{1}\right) w_{2} d \mu
$$

where \check{I} is I with $\check{\nu}(d x)=\nu(-d x)$.
Recall that in the classical case L is a self-adjoint operator with respect to μ.

Outline

(1) Introduction

- Ornstein-Uhlenbeck and Fokker-Planck equations
- Tools for the asymptotic behaviour
(2) The Lévy-Fokker-Planck equation
- The Lévy-Fokker-Planck equation
(3) Results
- The equilibrium
- Entropies
- Convergence towards the equilibrium

Convergence towards the equilibrium

Theorem

We assume that ν_{l} has a density N with respect to $d x$ and satisfies

$$
\begin{equation*}
\int_{\mathbb{R}^{d} \backslash B} \ln |z| N(z) d z<+\infty . \tag{Con1}
\end{equation*}
$$

If N is even and satisfies,

$$
\begin{equation*}
\forall z, \quad \int_{1}^{+\infty} N(s z) s^{d-1} d s \leq C N(z) \tag{Con2}
\end{equation*}
$$

then for any smooth convex function Φ one gets :

$$
\forall t \geq 0, \quad \operatorname{Ent}_{u_{\infty}}^{\dagger}\left(\frac{u(t)}{u_{\infty}}\right) \leq e^{-\frac{t}{c} \operatorname{Ent}_{u_{\infty}}^{\phi}}\left(\frac{u_{0}}{u_{\infty}}\right) .
$$

Proof

$$
\frac{d}{d t} E_{\mu}^{\phi}(v(t))=-F_{\mu}^{\phi}(t)
$$

it is enough to compare F_{μ}^{ϕ} with E_{μ}^{ϕ}.

- A functional inequality [Ane-Ledoux'00,Wu'00,Chafaï'04]

If μ is an infinite divisible law (without gaussian part) ϕ satisfies $\phi^{\prime \prime}>0$ and \ldots
Then $\quad E_{\mu}^{\phi}(f) \leq 1 \int D_{\phi}(v(x+z), v(x)) \nu_{\mu}(d z) \mu(d x)$
ν_{μ} is the derivation associated to the probability measure μ.
Example : If $\phi(x)=\ln x-x-1$ and for the Gaussian measure this is exactly the Log-Sobolev inequality
\rightarrow Generalization of Log-Sobolev inequality to the infinite divisible law.

Proof

$$
\frac{d}{d t} E_{\mu}^{\phi}(v(t))=-F_{\mu}^{\phi}(t)
$$

it is enough to compare F_{μ}^{ϕ} with E_{μ}^{ϕ}.

- A functional inequality [Ane-Ledoux'00,Wu'00,Chafaï'04]

If μ is an infinite divisible law (without gaussian part) ϕ satisfies $\phi^{\prime \prime}>0$ and...

Then

$$
E_{\mu}^{\phi}(f) \leq \int D_{\phi}(v(x+z), v(x)) \nu_{\mu}(d z) \mu(d x)
$$

If

$$
\nu_{\mu} \leq C \nu_{l},
$$

This is true for fractional Laplacians and for Lévy process near α-stable process.

Proof

$$
\frac{d}{d t} E_{\mu}^{\phi}(v(t))=-F_{\mu}^{\phi}(t)
$$

it is enough to compare F_{μ}^{ϕ} with E_{μ}^{ϕ}.

- A functional inequality [Ane-Ledoux'00,Wu'00,Chafaï'04]

If μ is an infinite divisible law (without gaussian part) ϕ satisfies $\phi^{\prime \prime}>0$ and \ldots

Then

$$
E_{\mu}^{\phi}(f) \leq C \int D_{\phi}(v(x+z), v(x)) \nu(d z) \mu(d x)
$$

If

$$
\nu_{\mu} \leq C \nu_{l},
$$

This is true for fractional Laplacians and for Lévy process near α-stable process.

Proof

$$
\frac{d}{d t} E_{\mu}^{\phi}(v(t))=-F_{\mu}^{\phi}(t)
$$

it is enough to compare F_{μ}^{ϕ} with E_{μ}^{ϕ}.

- A functional inequality [Ane-Ledoux'00,Wu'00,Chafaï'04]

If μ is an infinite divisible law (without gaussian part) ϕ satisfies $\phi^{\prime \prime}>0$ and...

Then

$$
E_{\mu}^{\phi}(f) \leq C F_{\mu}^{\phi}(f)
$$

If

$$
\nu_{\mu} \leq C \nu_{l},
$$

This is true for fractional Laplacians and for Lévy process near α-stable process.

Proof

$$
\frac{d}{d t} E_{\mu}^{\phi}(v(t))=-F_{\mu}^{\phi}(t)
$$

it is enough to compare F_{μ}^{ϕ} with E_{μ}^{ϕ}.

- A functional inequality [Ane-Ledoux'00,Wu'00,Chafaï'04]

If μ is an infinite divisible law (without gaussian part) ϕ satisfies $\phi^{\prime \prime}>0$ and...

Then

$$
E_{\mu}^{\phi}(f) \leq C F_{\mu}^{\phi}(f)
$$

If

$$
\nu_{\mu} \leq C_{\nu_{l}}
$$

then

$$
E_{\mu}^{\phi}\left(u / u_{\infty}\right) \leq E_{\mu}^{\phi}\left(\frac{u_{0}}{u_{\infty}}\right) e^{-\frac{t}{c}}
$$

This is true for fractional Laplacians and for Lévy process near α-stable process.

- Conclusion
- Family of Entropies \rightarrow Associated Fisher information
- Sufficient condition for exponential decay to the equilibrium
- Perspectives
- $V(x)=x^{2} / 2 \rightarrow$ General potential ?
- What appens if the Lévy measure ν has atoms ?

