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INTRODUCTION

This book is devoted to the analysis of semigroups of Markov operators in
their interplay between analysis, probability theory and geometry.

Semigroups of operators on a Banach space are very general models and
tools in the analysis of time evolution phenomena and dynamical systems.
They have a long history in mathematics and have been studied in a number
of settings, from functional analysis and mathematical physics to probability
theory, Riemannian geometry, Lie groups, analysis of algorithms etc.

The part of semigroup theory investigated in this book deals with Markov
diffusion semigroups and their infinitesimal generators which naturally arise
as solutions of stochastic differential equations and partial differential equa-
tions. As such, the topic covers a large body of mathematics ranging from
probability theory and partial differential equations to functional analysis and
differential geometry for operators or processes on manifolds. Within these
frameworks, research and interest have developed over the years with a wide
variety of questions such as regularity and smoothing properties of differ-
ential operators, Sobolev-type estimates, heat kernel bounds, non-explosion
properties, convergence to equilibrium, existence and regularity of solutions
of stochastic differential equations, martingale problems, stochastic calculus
of variations and so on.

This book is more precisely focused on the concrete interplay between the
analytic, probabilistic and geometric aspects of Markov diffusion semigroups
and generators involved in convergence to equilibrium, spectral bounds, func-
tional inequalities and various bounds on solutions of evolution equations
linked to geometric properties of the underlying structure.

One prototype example at this interface is simply the standard heat semi-
group (Pt)t≥0 on the Euclidean space Rn whose Gaussian kernel

u = u(t, x) = pt(x) =
1

(4πt)n/2
e
−|x|2/4t

, t > 0, x ∈ Rn
,
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is a fundamental solution of the heat equation

∂tu = ∆u, u(0, x) = δ0,

for the standard Laplace operator ∆, thus characterized as the infinitesimal
generator of the semigroup (Pt)t≥0.

From the probabilistic viewpoint, the family of kernels pt(x), t > 0,
x ∈ Rn, represents the transition probabilities of a standard Brownian motion
(Bt)t≥0 as

E
�
f(x+B2t)

�
=

�

Rn

f(y) pt(x− y)dy = Ptf(x), t > 0, x ∈ Rn
,

for all bounded measurable functions f : Rn → R.
The third aspect investigated in this work is geometric, and perhaps less

immediately apparent than the analytic and probabilistic aspects. It aims
to interpret, in some sense, the commutation of derivation and action of
the semigroup as a curvature condition. For the standard Euclidean semi-
group example above, the commutation ∇Ptf = Pt(∇f) will express a zero
curvature, although this is not only the curvature of Euclidean space as a
Riemannian manifold but rather as the Euclidean space equipped with the
Lebesgue measure, invariant under the heat flow (Pt)t≥0, and the bilinear
operator Γ(f, g) = ∇f ·∇g.

In order to develop the investigation along these lines, the exposition em-
phasizes the basic structure of Markov Triple (1) (E, µ,Γ) consisting of a
(measurable) state space E, a carré du champ operator Γ and a measure µ

invariant under the dynamics induced by Γ. The notion of carré du champ
operator Γ associated to a Markov semigroup (Pt)t≥0 with infinitesimal gen-
erator L given (on a suitable algebra A of functions on E) by

Γ(f, g) =
1

2

�
L(fg)− f Lg − g Lf

�
,

will namely be a central tool of investigation, the associated Γ-calculus pro-
viding, at least at a formal level, a kind of algebraic framework to encircle
the relevant properties and results.

These analytic, stochastic and geometric features form the basis for the
investigation undertaken in this book, describing Markov semigroups through
their infinitesimal generators as solutions of second order differential opera-
tors and their probabilistic representations as Markov processes, and analyz-
ing them with respect to curvature properties. The investigation is limited to
symmetric (reversible in the Markovian terminology) semigroups, although
various ideas and techniques go beyond this framework. We also restrict our
attention to the diffusion setting, that is when the carré du champ operator
is a derivation operator in its two arguments, even when many results could

1. The terminology “Markov triple” has of course not to be confused with solutions of
the Markov Diophantine equation x2 + y2 + z2 = 3xyz !
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be developed in a more general setting. These restrictions rule out many in-
teresting fields of applications (discrete Markov chains, statistical mechanics
models, most of the analysis of algorithms of interest in optimization the-
ory or approximations of partial differential equations e.g.), but allow us to
concentrate on central features in the analysis of semigroups, in the same
way that ordinary differential equations are in general easier to handle than
discrete sequences. Even within the field of symmetric diffusion semigroups,
we do not try to cover all the possible interesting cases and have to omit (in
order to keep this monograph within a reasonable size) the specific analysis
related to hypoelliptic diffusions, as well as the special features of diffusions
on Lie groups, together with many interesting developments arising from
infinite interacting particle systems among others.

Besides, although partly, and even mainly, motivated by the analysis of
the behavior of diffusion processes (that is solutions of time homogeneous
stochastic differential equations), we do not either concentrate on the proba-
bilistic aspects of the subject, such as almost sure convergence of functionals
of the trajectories of the underlying Markov processes, recurrence or tran-
sience, and chose to translate most of the features of interest into functional
analytic properties of the Markov structure (E, µ,Γ) under investigation.

Heat kernel bounds, functional inequalities and their applications towards
convergence to equilibrium and geometric features of Markov operators are
parts of the main topics of interest developed in this monograph. A partic-
ular emphasis is put on family of inequalities relating, on a Markov Triple
(E, µ,Γ), functionals of functions f : E → R to the energy induced by the
invariant measure µ and the carré du champ operator Γ,

E(f, f) =
�

E

Γ(f, f)dµ.

Typical functionals are the variance, entropy or Lp-norms leading to the main
functional inequalities of interest, the Poincaré or spectral gap inequality, the
logarithmic Sobolev inequality and the Sobolev inequality. The goal will be
in particular to establish such families of inequalities under suitable curvature
conditions which may be described by the carré du champ operator Γ and its
iterated Γ2 operator.

Similar inequalities are investigated at the level of the underlying semi-
group (Pt)t≥0 for the heat kernel measures, comparing Pt(ϕ(f)) (for some
ϕ : R → R) to Pt(Γ(f, f)) or Γ(Ptf, Ptf), and giving rise to heat kernel
bounds. To this task, proofs will develop the main powerful tool of heat flow
monotonicity, or semigroup interpolation, with numerous illustrative appli-
cations and strong intuitive content. To illustrate, as a wink, the principle,
let us briefly present here a heat flow proof of the classical Hölder inequality
much in the spirit of this book. In particular, the reduction to a quadratic
bound is typical of the arguments developed in this work. Let f, g be suitable
(strictly) positive functions on Rn and θ ∈ (0, 1). For fixed t > 0, consider,
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at any point (omitted), the interpolation

Λ(s) = Ps

�
e
θ logPt−sf+(1−θ) logPt−sg

�
, s ∈ [0, t],

where (Pt)t≥0 is the standard heat semigroup on Rn as recalled above. To-
gether with the heat equation ∂sPs = ∆Ps = Ps ∆, the derivative in s of Λ
is given by

Λ�(s) = Ps

�
∆(eH)− e

H
�
θ e

−F∆(eF ) + (1− θ)e−G∆(eG)
��

where F = logPt−sf , G = logPt−sg and H = θF + (1 − θ)G. Now by
standard calculus,

e
−H∆(eH)−

�
θ e

−F∆(eF ) + (1− θ)e−G∆(eG)
�

= |∇H|2 − θ|∇F |2 − (1− θ)|∇G|2

which is negative by convexity of the square function. Hence Λ(s), s ∈ [0, t],
is decreasing, and thus

Λ(t) = Pt

�
f
θ
g
1−θ

�
≤ (Ptf)

θ(Ptg)
1−θ = Λ(0).

Normalizing by t
n/2 and letting t tend to infinity yields Hölder’s inequality

for the Lebesgue measure. Actually, the same argument may be performed
at the level of a Markov semigroup with invariant finite discrete measure,
yielding thus Hölder’s inequality for arbitrary measures.

While functional inequalities and their related applications are an impor-
tant focal point, they are actually also the opportunity to discuss a number
of issues related to examples and properties of Markov semigroups and op-
erators. One objective of this work is thus also to present basic tools and
ideas revolving around Markov semigroups and to illustrate their usefulness
in different contexts.

The monograph is structured into four main parts.
The first part, covering Chapters 1 to 3, presents some of the main fea-

tures, properties and examples of Markov diffusion semigroups and opera-
tors as considered in this work. In a somewhat informal but intuitive way,
Chapter 1 introduces Markov semigroups, their infinitesimal generators and
associated Markov processes, stochastic differential equations and diffusion
semigroups. It also describes a few standard operations and techniques while
working with semigroups. Chapter 2 develops in detail the main geometric
model examples which will serve as references for many developments, namely
the heat semigroups and Laplacians on the flat Euclidean space, the sphere
and the hyperbolic space. Sturm-Liouville operators on the line, and some of
the most relevant examples (Ornstein-Uhlenbeck, Laguerre and Jacobi), are
also presented therein. On the basis of these preliminary observations and
examples, Chapter 3 then tries to describe a general framework of investiga-
tion. While it would not be appropriate to try to cover in a unique formal
mould all the cases of interest, it is nevertheless useful to emphasize basic
properties and tools in order to easily and suitably develop the Γ-calculus.
In particular, it is necessary to describe with some care the various classes
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and algebras of functions to deal with and to show their relevance in the
classical smooth settings. Note that while infinite-dimensional models would
require further care in this abstract formalism, the methods and principles
emphasized throughout this work are similarly relevant for them. Taking the
more classical picture as granted, Chapter 3 may be skipped at first reading
(or limited to the summary Section 3.4).

Part II, forming the core of the text, includes Chapters 4 to 6 and covers
the three main functional inequalities of interest, Poincaré or spectral gap
inequalities, logarithmic Sobolev inequalities and Sobolev inequalities. For
each family, basic properties and tools are detailed, in tight connection with
the reference examples of Chapter 2 and their geometric properties. Stability,
perturbation and comparison properties, characterization in dimension one,
concentration bounds and convergence to equilibrium are thus addressed for
each family. The discussion then distinguishes between inequalities for the
heat kernel measures (local) and for the invariant measure (global) which
are analyzed and established under curvature hypotheses. Chapter 4 is thus
devoted to Poincaré or spectral gap inequalities, closely related to spectral
decompositions. Chapter 5 deals with logarithmic Sobolev inequalities, em-
phasized as the natural substitute for classical Sobolev-type inequalities in
infinite dimension, and their equivalent hypercontractive smoothing proper-
ties. Sobolev inequalities form a main family of interest for which Chap-
ter 6 provides a number of equivalent descriptions (entropy-energy, Nash or
Gagliardo-Nirenberg inequalities) and associated heat kernel bounds. A sig-
nificant account of this chapter is devoted to the rich geometric content of
Sobolev inequalities, their conformal invariance, and the curvature-dimension
conditions.

On the basis of the main functional inequalities of Part II, Part III con-
sisting of Chapters 7 to 9 address several variations, extensions and related
topics of interest. Chapter 7 deals with general families of functional inequal-
ities, each of them having their own interest and usefulness. The exposition
mainly emphasizes entropy-energy (on the model of logarithmic Sobolev in-
equalities) and Nash-type inequalities. Besides, tightness of functional in-
equalities is studied with the tool of weak Poincaré inequalities. Chapter 8 is
an equivalent description of the various families of inequalities for functions
presented so far in terms of sets and capacities for which co-area formulas
provide the suitable link. The second part of this chapter is concerned with
isoperimetric-type inequalities for which semigroup tools again prove most
useful. The last Chapter 9 briefly presents some of the recent important de-
velopments in optimal transportation in connection with the semigroup and
Γ-calculus, including in particular a discussion on the relationships between
functional and transportation cost inequalities (in a smooth Riemannian set-
ting).

The last part of the monograph consists of three appendices, on semigroups
of operators on a Banach space, elements of stochastic calculus and basics
of differential and Riemannian geometry. At the interface between analysis,
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probability and geometry, these appendices aim to possibly supplement the
reader’s knowledge depending on his own background. They are not strictly
necessary to the comprehension of the core of the text, but may serve as a
support for the more specialized parts. It should be mentioned however that
the last two sections of the third appendix on basics of Riemannian geometry
actually contain material on the Γ-calculus (in a Riemannian context) which
will be used in a critical way in some parts of the book.

This book is designed as to be at the same time an introduction to the
subject intended to be accessible to non-specialists as well as an exposition
of both basic and more advanced results of the theory of Markov diffusion
semigroups and operators. We indeed chose to concentrate on those points
where we feel that the techniques and ideas are central and may be used in
a wider context, even though we never try to reach the widest generality.
Every chapter starts at an elementary level for the notions developed in it,
but may evolve to more specialized topics which in general may be skipped
at first reading. It should actually be underlined that the level of exposi-
tion throughout the book is pretty much non-uniform, putting sometimes
emphasis on facts or results which may appear as obvious or classical for
some of the readers while developing at the same time more sophisticated
issues. This choice is motivated by the wish to be accessible to readers with
different backgrounds, and also by the aim of providing tools and methods to
access more difficult parts of the theory or to be applied in different contexts.
This delicate balance is not always reached but we hope that nevertheless
the chosen style of exposition could be helpful.

The monograph is intended to students and researchers interested in the
modern aspects of Markov diffusion semigroups and operators and their con-
nections with analytic functional inequalities, probabilistic convergence to
equilibrium and geometric curvature. Selected chapters may be used for ad-
vanced courses on the topic. Part I (at the exception of Chapter 3) and Part
II are the main parts of the book on which readers who aim to get a flavor
of Markov semigroups and their applications may concentrate. Part III tries
to synthetize developments of the last decade, with selected choices in the
topics put forward. The book requires from the reader only a reasonable
knowledge of basic functional analysis, measure theory and probability the-
ory. It is also expected that it may be read in a non-linear way, although the
various chapters are not completely independent. For the reader not familiar
with the main themes (analysis, probability and geometry), the appendices
collect some basic material.

Each Chapter is divided into Sections, often themselves divided in Sub-
Sections. Section 1.8 is the eighth section in Chapter 1. Theorem 4.6.2 in-
dicates a theorem in Chapter 4, Section 6, that is in Section 4.6, and (3.2.2)
is a formula in Section 3.2. An item of a given chapter is also referred to in
the other chapters by the page at which it appears. There are no references
to articles or books within the exposition of a given chapter. The Sections
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“Notes and References” at the end of each chapter shortly describe some his-
torical developments with pointers to the literature. References are far from
exhaustive and rather limited actually. There is no claim for completeness
and we apologize for omissions and errors. For books and monographs, we
tried to indicate the references in historical order with respect to original
editions (although links point towards the latest editions).

This book started at the occasion of lectures by the first author at Saint-
Louis du Sénégal in April 2009. He thanks the organizers of this school for
the opportunity to give this course and the participants for their interest.
This work presents results and developments which have emerged during the
last three decades. Over the years, we benefited from the vision, expertise
and help of a number of friends and colleagues, among them M. Arnaudon,
F. Barthe, W. Beckner, S. Bobkov, F. Bolley, C. Borell, E. Carlen, G. Carron,
P. Cattiaux, D. Chafaï, D. Cordero-Erausquin, T. Coulhon, J. Demange,
J. Dolbeault, K. D. Elworthy, M. Émery, A. Farina, P. Fougères, N. Gozlan,
L. Gross, A. Guillin, E. Hebey, B. Helffer, A. Joulin, C. Léonard, X. D. Li,
P. Maheux, F. Malrieu, L. Miclo, E. Milman, B. Nazaret, V. H. Nguyen,
Z.-M. Qian, M.-K. von Renesse, C. Roberto, M. de la Salle, L. Saloff-Coste,
K.-T. Sturm, C. Villani, F.-Y. Wang, L. Wu, B. Zegarlinski. We wish to thank
them for their helpful remarks and constant support. F. Bolley, S. Campese
and C. Léonard went through parts of the manuscript at several stages of
the preparation, and we warmly thank them for all their corrections and
comments that help in improving the exposition.

We sincerely thank the Springer Editors C. Byrne and M. Reizakis and
the production staff for a great editing process.

We apologize for all the errors, and invite the readers to report remarks,
mistakes and misprints. A list of errata and comments will be maintained
online.

Lyon, Toulouse
June 2013
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