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Abstract. — Following the equivalence between logarithmic Sobolev
inequalities and hypercontractivity showed by L. Gross, we prove that
logarithmic Sobolev inequalities are related similarly to hypercontrac-
tivity of solutions of Hamailton-Jacobi equations. By the infimum-
convolution description of the Hamilton-Jacobs solutions, this approach
provides a clear view of the connection between logarithmic Sobolev in-
equalities and transportation cost inequalities investigated recently by F.
Otto and C. Villans. In particular, we recover in this way transportation
from Brunn-Minkowk: inequalities and for the exponential measure.
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1. Introduction

The fundamental work by L. Gross [Gr] put forward the equivalence between loga-
rithmic Sobolev inequalities and hypercontractivity of the associated heat semigroup.
Let us consider for example a probability measure u on the Borel sets of R" satisfying
the logarithmic Sobolev inequality

pBut, (%) <2 [ V£ (1.1)

for some p > 0 and all smooth enough functions f on R" where
Buty () = [ *1og P~ [ faulog [ £au

and where |V f] is the Euclidean length of the gradient V f of f. The canonical Gaussian
measure with density (277)_"/26_“5'2/2 with respect to the Lebesgue measure on R" is
the basic example of measure p satisfying (1.1) with p = 1.

For simplicity, assume furthermore that p has a strictly positive smooth density
which may be written e~V for some smooth function U on R". Denote by L the second
order diffusion operator L = A — (VU, V) with invariant measure p. Integration by
parts for L is described by

[ Lo = [(v5.V g

for every smooth functions f, g. Under mild growth conditions on U (that will always
be satisfied in applications throughout this work), one may consider the time reversible
(with respect to p1) semigroup (F;),-, with generator L. Given f (in the domain of L),
u = u(z,t) = Pif(z) is the fundamental solution of the initial value problem

0
a_qz_Lu:O il’anx(O;OO)7

u=f onR" x{t=0}.

One of the main results of the contribution [Gr]| by L. Gross is that the logarithmic
Sobolev inequality (1.1) for ¢ holds if and only if the associated heat semigroup (P¢),,
is hypercontractive in the sense that, for every (or some) 1 < p < ¢ < oo, and every f

(in LP),

1P fllg < 111 (1.2)
for every t > 0 large enough so that
2ot > 471 (1.3)
p—1
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In (1.2), the LP-norms are understood with respect to the measure . The key idea
of the proof is to consider a function ¢(t) of ¢ > 0 such that ¢(0) = p and to take
the derivative in time of F(t) = HPfqu(t) (for a non-negative smooth function f on
]R ). Since the derivative of LP-norms gives rise to entropy, due to the heat equation
5 8 P,f = LP,f and integration by parts, one gets that

¢*(t) F(t)1 O~ F'(t)

' q(1) q2(t) 2 q(t)—2 (1.4)
= () Bnty (PH) ~2(alt) - 1) [ T (PP (RO 2
By the logarithmic Sobolev inequality applied to (P;f)?"/2 it follows that F'(t) < 0
as soon as ¢'(t) = 2p(q(t) — 1), that is q(t) = 1 + (p — 1)e***, t > 0, which yields the
claim. It is classical and easy to see that (1.1) is also equivalent to

le? flezpe < llefIly (1.5)

for every t > 0 and f (cf. [B-E]). For further comparison, observe that by linearity

Ptf”

[P || ozpe < (resp. =) ||ef]],

according as a > 0 (resp. a < 0).

Whenever —oo < ¢ < p < 1 satisfy (1.3), the logarithmic Sobolev inequality is
similarly equivalent to the so-called reverse hypercontractivity

1Pl = 1A, (1.6)

for every f taking non-negative values.

The main result of this work is to establish a similar relationship for the solutions
of Hamilton-Jacobi partial differential equations. Consider the Hamilton-Jacobi initial
value problem

av

8t |Vv|2 =0 inR" x(0,00),

(1.7)
v=7Ff onR" x {t =0}.

Solutions of (1.7) are described by the Hopf-Lax representation formula as infimum-
convolutions. Namely, given a (Lipschitz continuous) function f on R", define the
infimum-convolution of f with the quadratic cost as

e ]‘ 2 n

The family (Qt)t>0 defines a semigroup with infinitesimal (non-linear) generator
-5 LIVf]2. That is, v = v(z,t) = Q¢f(z) is a solution of the Hamilton-Jacobi initial
value problem (1. 7) (at least almost everywhere). Actually, if in addition f is bounded,
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the Hopf-Lax formula @Q;f is the pertinent mathematical solution of (1.7), that is its
unique viscosity solution (cf. e.g. [Bar], [Ev]).

Once this has been recognized, it is not difficult to try to follow Gross’s idea for
the Hamilton-Jacobi equation. Namely, letting now F(t) = || thfHA(t), t > 0, for some
function A(t) with A\(0) = a, a € R, the analogue of (1.4) reads as

2 MO=1pr 4y — N nary _ [A®)? 2ANQuf

N () F(t) F'(t) = N(t)Ent, (e ) / 5 |VQif| e dp. (1.9)
By the logarithmic Sobolev inequality (1.1) applied to e}P@:f F'(t) < 0 as soon as
N(t) = p,t > 0. As a result (and in complete analogy with (1.5) for example), the
logarithmic Sobolev inequality (1.1) shows that, for every ¢t > 0, every a € R and every
(say bounded) function f,

1@ N < e, (110
Conversely, if (1.10) holds for every ¢ > 0 and some a # 0, then the logarithmic
Sobolev inequality (1.1) holds. With respect to classical hypercontractivity, it is
worthwhile noting that @ is defined independently of the underlying measure p.
Actually, hypercontractivity of Hamilton-Jacobi solutions may also be shown to follow
from heta kernel hypercontractivity through the so-called vanishing viscosity method.
Namely, if u® is solution of the heat equation %L: = eLu® (with initial value e_f/k),
then v® = —2eclogu® approaches as ¢ — 0 the Hopf-Lax solution (1.8). Transferring
hypercontractivity of the heat solution u® to v® yields another approach to our main
result. In this Laplace-Varadhan large deviation asymptotic, the second order term in
L = A —(VU,V) is the leading term that gives rise to the Gaussian kernel and the
quadratic cost in (1.8) (and an expression for @; independent of U and thus of p).

Due to the homogeneity property Q¢(sf) = sQs¢f, s,t > 0, and setting @ for Qq,
(1.10) may be rewritten equivalently as

e 1]y, <Nl (1.11)

for r € R. If (1.11) holds for either every r > 0 (or only large enough) or every r < 0
(or only large enough), then the logarithmic Sobolev inequality (1.1) holds. The value
r = 0 is however critical.

When a = 0 in (1.10), or r = 0 in (1.11), these two inequalities actually amount to
the infimum-convolution inequality

/eprd,ugepffd“ (1.12)

holding for every bounded (or integrable) function f. Inequality (1.12) is known to be
the Monge-Kantorovitch dual version of the transportation cost inequality (see [B-G]

and below)

dv

pWE(n,v) < H(v| ) = Enty () (1.13)
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holding for all probability measures v absolutely continuous with respect to p with
Radon-Nikodym derivative g—:. Here W, is the Wasserstein distance with quadratic

cost
) . 1 2
Wi (p,v) =inf [ [ = o=y dr(z,y)

where the infimum is running over all probability measures 7 on R" x R" with re-
spective marginals ¢ and v and H(v | ) is the relative entropy, or informational diver-
gence, of v with respect to . (The infimum in W is finite as soon as g and v have
finite second moment which we shall always assume.) That the transportation cost
inequality (1.13) follows from the logarithmic Sobolev inequality (1.1) was established
recently by F. Otto and C. Villani [O-V] and motivated the present work. While the
arguments developed in [O-V] do involve PDE’s methods (further inspired by nice ge-
ometric interpretations described in [Ot]), the approach presented here only relies on
the basic Hamilton-Jacobi equation (together with the dual formulation (1.12) of the
transportation cost inequality (1.13)) and presents a clear view of the connection be-
tween logarithmic Sobolev inequalities and transportation cost inequalities. One feature
of our approach is the systematic use of the Monge-Kantorovitch dual version of the
transportation cost inequality involving infimum-convolution rather than Wasserstein
distances.

It is an open problem (although probably with negative answer) to know whether
the critical case (1.12) is also equivalent to the logarithmic Sobolev inequality (1.1).
When the potential U is convex, it was shown in [O-V] that the transportation cost
inequality (1.13) implies conversely the logarithmic Sobolev inequality (1.1) up to a
numerical constant (the precise statement of [O-V] is somewhat more general and allows
small non-convex wells of U). The proof relies on a general HWI inequality involving
the entropy H, the Wasserstein distance W5 and the Fisher information I which may be
established in a rather simple way by the Brenier-McCann “optimal transference plan”
(see [O-V], [CE] and the references therein). The hypercontractive tools developed in
the present paper do not seem to be of help in providing an alternate description of this
converse statement. However, we present in Section 4 a semigroup proof of these results
relying the Bakry-Emery method and Wang’s Harnack inequalities [Wa]. In particular,
this approach interpolates between the HWI inequality of [O-V] and the logarithmic
Sobolev inequality under exponential integrability of [Wa].

In Section 2 of this work, we give a detailed proof of the main result (1.10). While
the general principle outlined above is straightforward, some regularity questions have
to be addressed. We also discuss the approach through the vanishing viscosity technique
that shows a formal direct equivalence of hypercontractivity for the heat equation
and for the Hamilton-Jacobi equation. The principle of proof extends to Riemannian
manifolds (with the Riemannian metric as transportation cost). In the next section, we
present an alternate deduction of the transportation cost inequalities via the analogue
of the Herbst argument. To this task, we first recall the usual Herbst argument,
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and then adapt it to infimum convolutions. We introduce this section by the Monge-
Kantorovitch dual description of transportation cost inequalities. In Section 4, we first
mention that quadratic transportation cost inequalities are stronger than the related
Poincaré inequalities. We then investigate how to reach HWI and logarithmic Sobolev
inequalities families of log-concave measures following the Bakry-Emery semigroup
method. In the fifth section, we show how the Herbst method for infimum convolutions
of Section 3 may be used to recover similarly the transportation inequality of M.
Talagrand [Ta] for the exponential measure from the logarithmic Sobolev inequality
of [B-L1] (and more generally for measures satisfying a Poincaré inequality). In the
final part, we present further applications and discuss possible extensions of the
basic principle. In particular, we investigate, following [Mau]| and [B-L2], how Brunn-
Minkowski inequalities are related to the infimum-convolution inequalities (1.12) for
strictly convex potential. We also discuss the L!-transportation cost and its relation to
some (logarithmic) isoperimetric inequalities.

2. Hamilton-Jacobi equations and logarithmic Sobolev inequalities

This section is devoted to the main result of this work. We first present the direct
proof as outlined in the introduction, and then the alternate vanishing viscosity method.
We briefly discuss extension to a Riemannian setting.

2.1 Hypercontractivity of Hamilton-Jacobi solutions

In this section, we present our main result connecting logarithmic Sobolev inequal-
ities to hypercontractivity of solutions of Hamilton-Jacobi equations. While the subse-
quent arguments extend to Riemannian manifolds, we however present, for clarity, the
analysis in the more classical Euclidean case. The general principle will apply similarly
in the Riemannian setting (Section 2.3).

Let (Q¢),>o be the semigroup of operators

Qi f(x) :yienlé)" {f(y)—l—%kt—yﬂ, t>0,z€eR", (2.1)
and Qo f(z) = f(x). These operators may be applied to arbitrary functions on R" with
values in [—oo, +00]. As is well-known (see e.g. [Bar|, [Ev]), for any f and ¢t > 0, Q¢f is
upper semicontinuous. If f is bounded (resp. Lipschitz), Q¢ f is bounded and Lipschitz
(resp. Lipschitz). Given a bounded function f, Q¢f(x) — f(x) as t — 0 if and only if
f 1s lower semicontinuous at x.

The infimum convolution (¢ is known as the Hopf-Lax solution of the Hamilton-
Jacobi equation

9 1 )
2 Quf(@) = =5 |VQuf(x) (2.2)
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with initial value f. More precisely (cf. [Ev]), given f Lipschitz continuous, the Hopf-
Lax fsolution is Lipschitz continuous and solves (2.2) almost everywhere in R" x (0, co).
Standard variants of the classical theory further show that if f is, say bounded,
t — Q¢f(x) is differentiable at every ¢t > 0 for almost every + € R", and (2.2) holds
true (at t > 0, almost everywhere in z).

Let ¢ be a probability measure on the Borel sets of R". We denote below by || - Hp,
p € R, the LP-norms (functionals when p < 1) with respect to u. As is usual, we agree

that || f|l, = eflOg 1714k whenever log | f| is p-integrable. The main result of this work is
the following theorem.

Theorem 2.1. Assume that p is absolutely continuous with respect to Lebesgue
measure and that for some p > 0 and all smooth enough functions f on R",

pEu () <2 [ [V fPdn (2.3)
Then, for every bounded measurable function f on R", every t > 0 and every a € R,

€@ s pe < Nl (2.4)

Conversely, if (2.4) holds for all t > 0 and some a # 0, then the logarithmic Sobolev
inequality (2.3) holds.

In Theorem 2.1, inequalities (2.4) are stated for bounded functions for simplicity:
they readily extend to larger classes of functions under the proper integrability
conditions.

We may define similarly the supremum-convolution semigroup (@t>t>0 by

~ 1
Qif(z) = sup |fly) — =z —y|*|, t>0,z€R"
yER™ 2t

(éof(;z;) = f(z)). The operators @; and @t are related by the property that for any
two functions f and ¢, g > @tf if and only if f < ()49 so that @tQtf <f< Qt@tf.
We also have that @1(—]() = —Q¢f. In particular, the conclusion (2.4) of Theorem 2.1
may be reformulated equivalently on (@t>t>0 by

e Mo pe < N1l - (2.3)

Note that the families of inequalities (2.4) and (2.5) are stable under the respective
semigroups.

If 1 is not absolutely continuous, an easy convolution argument leads to (2.4) at
least for all bounded continuous functions. Namely, the stability by products of the
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logarithmic Sobolev inequality shows that if ~, is the Gaussian measure on R" with
covariance o2 Id, for every smooth function f on R™ x R”",

min(p,0 ") Entueq, () < 2/ V1P dp @ 7o

Applied to f(z,y) = f(z +y), x,y € R", for some smooth function f on R", we get

min(p, 0" ) Ent e, (£7) < 2/ IV FI2dp * e

Theorem 2.1 then applies to p#v,. Letting 0 — 0 yields (2.4) for all bounded continuous
functions.

Proof of Theorem 2.1. In the first part of the argument, we assume that the
logarithmic Sobolev inequality (2.3) holds and show that (2.4) is satisfied for any
bounded f, and any ¢t > 0, a € R. By a simple density argument, the logarithmic
Sobolev inequality (2.3) holds for all (locally) Lipschitz functions. Let thus f be a
bounded function on R". (By regularization, it may be assumed that f is compactly
supported with bounded derivatives of any orders: however, besides the final step,
regularity does not make life easier here.) Let F(t) = || lefHA(t), with A(¢) = a + pt,
t > 0. For all ¢ > 0 and almost every z, the partial derivatives %Qtf(x) exist. Thus F'
is differentiable at every point ¢t > 0 where A(¢) # 0. For such points, we get that

A2 (t) F() D1 F'(t) = pEnt, (eMV9]) /)\Q(t) %Qtfew)c?tfdg. (2.6)

Since 5 )
2
a Qtf(l’) = ) ‘VQtf(l’)‘
almost everywhere in z, and since p is absolutely continuous,

2

N (t) F() D=1 F () = pEnt, (XD9F) — / % IVQif| X027 dy.
Now, since Q¢f(z) is Lipschitz in z for every ¢ > 0, we may apply the logarithmic
Sobolev inequality (2.3) to e*D@:f to deduce that F'(t) < 0 for all + > 0 except
possibly one point (in case a < 0). Since F' is continuous, it must be non-increasing.
Continuity of @, f(x) at t = 0 however requires f be lower semicontinuous at the point
x. Apply then the result to the maximal lower semicontinuous function majorized by
f to conclude. (Alternatively, as mentioned previously, we may regularize f to start
with and assume f bounded and Lipschitz for example.) The first part of the theorem
is established.

Turning to the converse, let f be a bounded C! function satisfying (2.4) for every
t > 0 and some a # 0. Under (2.4), it thus must be that F’(0) < 0. Since f is
differentiable, lim; 0 Q¢ f(z) = f(x) and
‘2
t

%Qtf(m)‘tzo - h_l}%% [Qtf(x) - f(l')] = —% ‘Vf(:z:)
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at every point = so that (2.6) as ¢t — 0 yields
af 1 2 af
pEnt,(e?) < 5 |aV f|*e dp.

Since a # 0, this amounts to (2.3) by setting g = e®f. The proof of Theorem 2.1 is
complete. O

Remark 2.2. As in the classical case, the proof of Theorem 2.1 similarly shows that
a defective logarithmic Sobolev inequality of the type

pEu () <2 [ [VfPda+C [ 1y

for some C' > 0 is equivalent to the hypercontractive bounds (¢ > 0, a € R)

19|,y e < MO,
where ot
M) = ——.
ala + pt)

2.2 Hypercontractivity and vanishing viscosity

An alternate proof of Theorem 2.1 may be provided by the tool of vanishing
viscosity (cf. [Ev]). We only briefly outline the principle that requires some further
technical arguments. The idea is to add a small noise to the Hamilton-Jacobi equation
to turn it after an exponential change of functions into the heat equation. Given a
smooth function f, and £ > 0, denote namely by v® = v®(xz,t) the solution of the initial
value partial differential equation

ov®
ot

1
+ 3 |Voe|? —elo® =0 in R™ x (0, 00),
v: =f on R" x {t =0}.

As e — 0, it is expected that v® approaches in a reasonable sense the solution v of (1.7).

—v® [2e du*

is a solution of the heat equation < = eLu®

It is easy to check that u® = e S

(with initial value e~//2¢). Therefore,
ut = Pet(e_f/%).

It must be emphasized that the perturbation argument by a small noise has a clear
picture in the probabilistic language of large deviations. Namely, the asymptotic of

v® = —2¢clog Py (e_f/%)
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as ¢ — 01s a Laplace-Varadhan asymptotic with rate described precisely by the infimum
convolution of f with the quadratic large deviation rate function for the heat semigroup
(cf. e.g. [Bar]). In this limit, the second order Laplace operator is the leading term in
the definition of L = A —(V, VU) so that the limiting solution u given by the infimum-
convolution @) f is independent of the potential U and thus of .

Apply now classical hypercontractivity to u®. More precisely, for b > a > 0 fixed,
apply the reverse hypercontractivity inequality (1.6) with 0 > p = —2ca > ¢ = —2¢b

and
2ept 14 2eb

142’
It follows that
le” 1y < lle”1l..
Now, as ¢ — 0, ¢t > 0 is such that b = a + pt. We thus recover in this way
the main Theorem 2.1. Note however that it was necessary to go through reverse
hypercontractivity of the heat semigroup to reach the conclusion.

2.3 Extension to Riemannian manifolds

As announced, Theorem 2.1 and its proof extend to the setting of logarithmic
Sobolev inequalities on Riemannian manifolds and infimum-convolutions with the
Riemannian metric as in [O-V]. We briefly outline in this sub-section the corresponding
result. Let M be a smooth complete Riemannian manifold of dimension n and
Riemannian metric d. Let p be a probability measure absolutely continuous with respect
to the standard volume element on M satisfying, for some p > 0 and all smooth enough
functions f on M, the logarithmic Sobolev inequality

pEu () <2 [ [V dn

Here |V f| now stands for the Riemannian length of the gradient of f. Let, for ¢ > 0,
r € M,

Quf(e) = inf [£(u) + 5 dw.v)?].

Following the argument in the classical Euclidean case (cf. [Vi]), one shows similarly
that v = v(z,t) = @Qf(x) is again a solution of the initial-value Hamilton-Jacobi
problem on M,
2—7; + % Vo> =0 in M x (0,00),
v=f on M x{t=0}
Theorem 2.1 and its proof thus readily extend to this case. It might be easier to
develop the extension of Hamilton-Jacobi equations to Riemannian manifolds in the
compact case first. Regularizing f into a compactly supported function as in the proof

of Theorem 2.1 allows us to reduce to this case if necessary.
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3. Herbst’s argument and transportation inequalities

There i1s yet another way from logarithmic Sobolev inequalities to infimum-
convolution inequalities that goes through the so-called Herbst method (cf. [Lel]).
To introduce it, we first summarize the Monge-Kantorovitch dual versions of the
transportation cost inequalities. We then recall the classical Herbst argument and apply
it in the infimum-convolution context.

3.1 Monge-Kantorovitch duality

Let us start with the Wassertein distance with linear cost between two probability
measures on R" defined by

Wa(p,v) = inf//lx — yldn(z,y)

where the infimum is running over all probability measures 7 on R” x R" with respective
marginals ¢ and v (having a finite first moment). Bythe Monge-Kantorovitch dual
characterization (cf. [Ra], [Du]),

Wi(p,v) = sup {/gdv— /fdu} (3.1)

where the supremum is running over all bounded measurable functions f and ¢ such
that

g(x) < fly) + |z —yl

for every z,y € R". Perhaps more classicaly, we have equivalently that

Wi (1, ) = sup {/gd,u,—/gdl/] (3.2)

where the supremum is running over all Lipschitz functions g with HgHLip <1.

The general form of the dual Monge-Kantorovitch representation of some metric
space (E,d) for example indicates that (cf. [Ra])

inf// T(z,y)dr(z,y) = sup {/gdu— /fd,u] (3.3)

where the infimum is running over all probability measures = with marginals ¢ and v
such that T is integrable with respect to m and where the supremum is over all pairs
(g, f) of bounded measurable functions (or respectively v and p-integrable) such that
for all z, vy,

9(z) < fly) + T(z,y).

Here T is upper semicontinuous, n-integrable and such that T'(z,y) < a(x) + b(y) for
some measurable functions a et b. On R", the supremum on the right-hand side of (3.3)
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may be taken over smaller classes of smooth functions, such as bounded Lipschitz or so
on. (This provides an alternate regularization procedure for the arguments developed
in the next sections.)

For the quadratic cost in particular, we thus have that

WE(ji,v) = sup { Joar— [ fdu] (3.4)

where the supremum is running over all bounded functions f and g such that

o(x) < F(w) + 5 e P

for every z,y € R". In the infimum-convolution notation, g = Q f achieves the optimal
choice.

3.2 Linear transportation cost

In this section, we recall the Herbst argument and its interpretation as a trans-
portation result with linear cost. Assume the logarithmic Sobolev inequality

pBut, (1) <2 [ V£ (3.5)

holds for some p > 0 and all smooth enough (locally Lipschitz) functions f on R".
For simplicity, assume below that p is absolutely continuous with respect to Lebesgue

measure.

Now, let g be a (bounded) Lipschitz function on R" with Lipschitz coefficient
HgHLip. Let us then apply (3.5) to f? = I~ MNalTin /20 where A € R. Set G(\) =

fe)‘g_)‘2||g”iip/2pdp. Since |Vyg| < HgHLip almost everywhere, we get from (3.5) that, for
every A € R,

1 a2)02 1
/ [/\g — % /\ZHgHiip}eAg A ||9||L1p/2pd,u — G(/\) log G(/\) < % /\2H9HiipG(/\)'

In other words,

AG(A) < G(\)log G(N), A€ER. (3.6)

This differential inequality is easily integrated to yield, since G'(0) = [gdpu, that for
every Lipschitz (integrable) function g on R",

/egdlu < efgle‘”gHiip/Qﬂ‘ (3.7)

By Chebychev’s inequality, this inequality describes the concentration properties of a
measure u satisfying a logarithmic Sobolev inequality (cf. [Lel]).
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The inequality (3.6) has been recognized in [B-G] as a transportation inequality
for the W; Wasserstein distance in the form of

pWHi) < 2B (v | ) = 2Ent, (57) (3.5)

holding for all probability measures v absolutely continuous with respect to p with
Radon-Nikodym derivative Z—:. Namely by (3.8) and (3.1) (one could use completely
simarly (3.2)), for every bounded measurable functions f and ¢ such that g(z) <
fly) + |z —y| for all x,y € R",

/gdu—/fd,u< 1/3Em (Z:)

or, equivalently, for every A > 0,

A 1 dv
_ <2
/gdl/ /fd,u % + — ;) Ent (du)

Set ¢ = g—:. The preceding indicates that

/ﬁwngmaw

where 1 = A\g — A\*/2p — X [ fdu. Since this inequality holds for every choice of ¢ (i.e.
v), applying it to ¢ = e¥/ fe¢du yields logfed’d,u < 0. In other words,

/ekgdu < MmNz

When f is Lipschitz with HfHLip < 1, one may choose g = f so that the latter exactly
amounts to (3.7). Since

Ent,(¢) = sup/apgbdlu,

where the supremum is running over all #’s such that fed’d,u < 1, the preceding
argument clearly indicates that (3.7) is actually equivalent to (3.8). This result easily
extends to arbitraty metric spaces.

3.3 Quadratic transportation cost

The aim of this section is to describe how the preceding Herbst argument may be
applied completely similarly to infimum-convolutions. In particular, we recover in this
case the conclusion of Theorem 2.1 at the critical value a = 0.
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Given a (bounded Lipschitz) function g on R", apply now the logarithmic Sobolev
inequality (3.5) to f* = ePR(A9) (where we recall that @ = @1). Since Q(Ag) = AQxg,
A > 0, we see from the Hamilton-Jacobi equation that, almost everywhere in space,

0 1 2
Q) =2 Q) + 5 Q)

We thus immediately deduce from the logarithmic Sobolev inequality (3.5) the differ-
ential inequality (3.6) on G(\) = [ eP@A9) . Since G'(0) = p [gdp, it follows similarly
that

/epdi,u < epfgdu’ (3.9)

that is the infimum-convolution inequality (1.12).

Inequality (3.9) amounts, as announced in the introduction, to the transportation
cost inequality for the quadratic cost

P W) < H(v ) = Bty (57) (3.10)

for every v absolutely continuous with respect to p. Exactly as for the equivalence

between (3.7) and (3.8), by the dual description of W3,

/gdl/— /fd,u, < %Entu<;l—:>

for all bounded functions f and g such that

o) < fly) + 5 o =P

for every z,y € R". Since ¢ = Qf achieves the optimal choice, setting ¢ = g—:, the

preceding amounts to

/ﬁwngmAw

where ¢ = Qf — [ fdu. Since the inequality holds for every choice of ¢, it is equivalent
to say that [ef¥ <1, that is exactly (3.9).

As a consequence of either Theorem 2.1 or the preceding, we may state the following
corollary first established in [O-V].

Corollary 3.1. Assume that p is absolutely continuous and that for some p > 0
and all smooth enough functions f on R",

pEnt,(f*) < 2/ IV F*dp.
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Then, for every probability measure v absolutely continuous with respect to p,

pW3(p,v) < H(v|p).

Replacing |z — y| by the Riemannian distance d(z,y) yields the same conclusion on
a smooth manifold M.

It might be worthwhile mentioning that whenever g is Lipschitz,
-
Qg >g— B 1911ip-

So clearly, (3.9) represents an improvement upon (3.7). Actually, Theorem 2.1 (cf.
(1.11)) then indicates that for every r € R,

H eg Hp—|—r § H eg ”T‘ e”g”ilp/2

a much stronger property.

4. Semigroup tools and HWI inequalities

In this section, we examine some converse results from transportation cost inequali-
ties to logarithmic Sobolev inequalities. We first describe how quadratic transportation
cost inequalities imply spectral inequalities. Then, under appropriate log-concavity as-
sumptions on the underlying measure, we review the Bakry-Emery criterion and put

in parallel the HWT inequalities of [O-V] and the results of [Wal].

4.1 Transportation cost inequalities and spectral gap

Using again the dual Monge-Kantorovitch description (1.12) of the quadratic
transportation inequality (1.13), it is not difficult to see that (1.12) implies the spectral
gap, or Poincaré inequality, for i, in the sense that for all smooth functions f on R",

pVer,(F) < [ 1P (4.1)
where Var,(f) = [f*du — (ffd,u)2. Indeed, homogeneity in (1.12) yields
/etQt/pfdM < ot S,

Ast =0, Qupf ~ f— %|Vf|2 so that

2 2 2 2
1+t/fdu—;—p/lvﬂzdwr%/ﬂduﬂ1+t/fdu+%</fdu> +o(t?)
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and thus (4.1). A different derivation of this result is given in [O-V].

It 1s well-known and classical that, applying the logarithmic Sobolev inequality
(1.1) to 1 + tf and letting ¢t — 0 also yields (4.1). Furthermore, both the logarithmic
Sobolev inequality (1.1) and the transportation cost inequality (1.12) (or (1.13))
entail concentration properties. In particular, logarithmic Sobolev inequality and the
transportation inequality for the quadratic cost are stable by products and therefore
lead to dimension free concentration inequalities (cf. [Mar], [Ta], [B-G], [Lel]...).

4.2 The Bakry-Emery criterion

Before turning to our main question in the next sub-section, it is worthwhile to
briefly review the Bakry-Emery criterion [B-E|, [Bak], [Lel], for logarithmic Sobolev
inequalities under strict log-concavity of the measure.

Let thus du = e~Ydz be a probability measure on the Borel sets of R™ where U is

a smooth potential.

Theorem 4.1. Assume that for some ¢ > 0, Hess (U)(z) > c¢Id in the sense of
symmetric matrices uniformly in x € R". Then p satisfies the logarithmic Sobolev

inequality )
Buty(7) < - [ IVf]dy

for every smooth function f on R".

The proof by D. Bakry and M. Emery of this result relies on the commutation
properties of the gradient with the semigroup (P),-, with generator L = A—(VU, V).
Namely, the condition Hess (U)(z) > cId uniformly in # € R" for some ¢ € R (non
necessarily strictly positive) is actually equivalent to saying that for every smooth

function f,

VP f| < e P (IVf]) (4.2)
(cf. [Bak], [Le2]). Then, given a smooth stritly positive bounded function f, we may
write o g

Ent,(f) = — —/PtflogPtfd,udt
0

where VP

I(Pf)= | —55—d

(Ptf) By

is the Fisher information of P;f. By (4.2) and the Cauchy-Schwarz inequality,

V£

VPP < PS5 ) Rif,

16



so that, by invariance of Py,

I(Pf) < e 1(f). (4.3)

When ¢ > 0, it immediately follows that

Enty(f) < 5 1(/)

[

which amounts to Theorem 4.1 by changing f into f2.
4.3 HWI inequalities

We examine here what happens to the Bakry-Emery argument when the lower
bound ¢ on the Hessian of U is not strictly positive. While the argument clearly breaks
down, it may efficiently be complemented by transportation cost inequalities. We reach
in this way the HWI inequalities of [O-V].

Namely, for any T' > 0, we may still apply the Bakry-Emery criterion up to time 7.
That is, for any smooth positive and bounded function f on R" such that [fdu =1,
we may write

T
Ent,(f) :/0 I(P,f)dt + Ent,(Prf).

Assuming that Hess (U) > ¢Id for some ¢ € R, and using (4.3) shows that

Ent, (f) < a(T)I(f) + Ent, (Prf) (4.4)
where et
a(T):% (=Tifc=0)

The idea is now to control Ent,(Prf) by some transportation bound. We will prove
the following lemma that describes a kind of reverse transportation cost inequality for

Prf.

Lemma 4.2. Assume Hess (U) > cId, ¢ € R, and denote by (P;),-, the semigroup

with generator L = A—(VU, V). Let f on R" be non-negative and such that [ fdu = 1.
Then, for any T > 0,

Eut (Pr) < (5207 — <) Wi (m0)

where dv = fdu.

Optimizing in T > 0 in (4.4) together with Lemma 4.2, we obtain the following
result that describes the so-called HWT inequalities connecting entropy H, Wassertein
distance W5 and Fisher information I.
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Theorem 4.3. Let du = e~Ydz and assume that Hess (U) > cId for some ¢ € R.
Then, for every smooth non-negative function f such that [fdu =1,

H(v | 1) = Eut, (f) < V() Walpr,v) — ¢ Wi (. v)

(where we recall that dv = fdu).
Theorem 4.3 has been obtained by F. Otto and C. Villani [O-V] using the Brenier-
McCann mass transport [Br], [MC] together with further PDE arguments. A simple

proof, relying on the same tool, was recently given by D. Cordero-Erausquin [CE].
Theorem 4.3 admits the following corollary that complements Theorem 4.1.

Corollary 4.4. Let du = e~ Ydz and assume that Hess (U) > cId for some ¢ < 0.
Assume that for some C' > 0 and every v,

pW3 (p,v) < H(v | ).

Then, provided that 1 + % > 0, p satisfies the logarithmic Sobolev inequality

p'Ent,(f?) < 2/|Vf|2d,u

for every smooth f with

r_ P c\?
pz—(l—l——).
4 P

To complete our proof of Theorem 4.3, we have to establish Lemma 4.2. To this
task, we make use of the Harnack type result of F.-Y. Wang in [Wa], that actually
bridges the result of [O-V] with the logarithmic Sobolev inequalities under exponential
integrability of [Wa] (see also [Ai], [Lel]).

Proof of Lemma 4.2. Rewrite first Ent,(Pr f) by time reversibility as
Entu(PTf) = /fPT(log PTf)d,LL.

Fix z,y in R". Let z(t) = %"c + 4y, 0 <t <T.Let further 1 : [0,7] = [0,T] be a
C'! speed function such that h(0) = 0 and h(T) = T. Set ~(t) = x o h(t) and

T (t,y(t)) = Plog Par—of)((t)), 0<t<T.

We have
A VPyr_f|? h(t
— =D (%) (v(1) + j(j )<VPt(1Og Pyr—if),y — x)
IV Pyr i f|? h'(t)]

< —Pt< @ — y||V Py(log Par—+f)).

< W)(’V@)) + | T
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Using (4.2), E—
27—t )

[V Plog Par—of)| < = P (224

Hence, with

|V Pyr_i f|? R (1)) -
X=—"——"" and Y = r—yle ",
(Prr—if)? o 1Y
we have that
dU 9
— < P(—X* 4+ 2XY)
dt
and thus p ; /( )|2
N 2 v (t 2 —2ct
%gpt(y): AT? |z —yl“e :

It follows that

2 T
x—y 2 _o9,
Prlog Prf)a) ~log Parf () < 20 [ ofear

For the optimal choice of the speed h, this leads to

1
Pr(log Prf)(x) < log Pyrf(y) + g v — (1)
where
r__ 1t
S~ 2a(1) ©

For z fixed, take then the infimum in y in (4.5) to get

Pr(log Prf)(z) < Qsp(z)

where ¢ = log Py f. Since by Jensen’s inequality

/god,u = /longde,u <log (/Pngd,u> =0,

we actually have that
Prllog Prf) < Qsp — [

Therefore,

Ent,(Prf) = /fPT(log Prf)du < sup [/Qggodl/ - /c,od,u}

where the supremum is over all bounded measurable functions . By the dual Monge-
Kantorovitch description (3.4) of Wy together with the scaling property of infimum-
convolutions, the lemma is established. O
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Theorem 4.3 and its proof hold similarly in a Riemannian context.

Remark 4.4. Lemma 4.2 provides a bridge between the logarithmic Sobolev in-
equalities of Theorem 4.3 under the quadratic transportation cost and the result of
[Wa| under exponential integrability of the square distance, immediate consequence of
linear transportation cost. Indeed, if we integrate inequality (4.5) in du(y) rather than
to take the infimum in y, we get that

Entu(PTf) = /PT log PdeILL

< [ [ ftarios Perstyantoautn + [ [ i) 5 duterdnty
< [ [0 552 duoranty)

By Young’s inequality ab < aloga +€®, a > 0, b € R,

[0 5 duwranty) < SEn) + [ [ duteriny)

Together with (4.4), we thus get

Ent,(f) < 2a(T +2//

Assume now that for some ¢ > 0,

/ / eI () dp(y) < oo (4.7)

where ¢ = min(¢,0). We may then choose T' > 0 so that the integral in (4.6) is finite.
We thus conclude that for some C' > 0 (depending on the value of the latter),

Eat, (f) < C(I(f) +1) (48)

z)dp(y). (4.6)

This i1s a defective logarithmic Sobolev inequality. One way to switch it to a true
logarithmic Sobolev inequality is to establish first the Poincaré inequality for ¢ under
the same condition (4.7). This can be achieved similarly (cf. [Ai], [Lel]). (With respect
to Corollary 4.4, it should be emphasized for applications that the constant in (4.8),
that depends on the value of the integral in (4.7), is highly dimensional.)

5. Transportation cost for the exponential measure

In this section, we apply the method of Section 3 to investigate the transportation
cost inequality for the exponential measure first explored in [Ta]. To this task, we need
to work with non-quadratic Hamilton-Jacobi equations.
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5.1 Non-quadratic Hamilton-Jacobi equations

The general principle based on Hamilton-Jacobi equations can be extended to other
cost functions than the square function. Let namely H be smooth and convex on R"
with lim|,| o0 H(7)/|2| = 400. For a smooth (Lipschitz e.g.) function f, the (unique
viscosity) solution u = u(x,t) of the minimization problem (cf. [Bar|, [Ev])

0
a—j + H(Vu) =0 inR" x (0,00),
u=f onR" x {t =0},

is given by the Hopf-Lax formula

o) QF f(x) = inf, [f(y) + tL(:”%y)} t>0,zcR", 52)

flz), t=0,z€R",

where L is the convex conjugate of H defined by

L(y) = sup [(z,y) — H(z)].

For arbitrary cost, Q! f is not continuous in general at ¢+ = 0 even for smooth f.

Following the proof of Theorem 2.1, the derivative of F(t) = || thLfH)\(t) then leads
to

N (#) P()M O P (#) = p Bt (XO90T) - 22(2) / H(VQ[ f) M09 Ldy.

Useful applications of this principle however seem to require some homogeneity
properties of H.

A first set of applications is obtained by replacing the Euclidean norm by arbitrary

norms || - || on R". Setting namely L(y) = %HyHQ, y € R", then, since H and L are

self-dual, H(z) = 1 ||z||2, = € R", where || - ||« is the dual norm of || - ||. Therefore,

under the logarithmic Sobolev inequality

pEut,(12) <2 [ IV |Edy (5.3)

holding for some p > 0 and all smooth enough functions f on R", we may conclude as
in Theorem 2.1 to the hypercontractive estimates
L
H th fHa—l—pt g H efHa

for every, say bounded f, ¢t > 0 and a € R. In particular,
/epQLfd,u < epffd“
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and, in its equivalent transportation cost form,

pWilp,v) < H(v|p).

Here
W) =it [ [ Slle = yldn(e.y)

where the infimum is running over all probability measures © on the product space

R"™ x R" with marginals ¢ and v. One may also consider more generally p-convex,
p > 2, potentials (cf. [B-L2]).

5.2 Modified logarithmic Sobolev inequalities

Another important example in the setting of Section 5.1 is the logarithmic Sobolev
inequality for the exponential measure [B-L1] that will lead, via this principle, to the
transportation cost inequality of M. Talagrand [Ta] for the exponential measure. Recall
from [B-L1] that whenever y is the measure on the real line with density ;e ~l#l with
respect to Lebesgue measure, for every Lipschitz function f on R such that |f’| <e<l1
almost everywhere,

Ent, 2 eldp. (5.4)

Fix for simplicity ¢ = % Set now

422 if |z| < 1,
H(z) = ?
+oo if |z > 3
Its dual function is given by
v if [y| <4,
Ly) =4
5~ 1 if |y| > 4.
One may rewrite (5.4) as
Ent, /H efdpu. (5.5)

Note that H(Az) < A?H(z) whenever |\ < 1.

Although H does not exactly fit all the hypotheses of the classical Hamilton-Jacobi
theory, one may however check that (QFf)" is (almost everywhere) in the domain
of H (i.e. || < 7). We may then argue as in Section 2. Since we cannot expect
however for a characterization through some kind of hypercontractivity (due to the

lack of homogeneity of H), it is actually more simple to adapt the Herbst argument of
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Section 3. Namely, given a bounded (Lipschitz) function f, one first shows that QF f
is differentiable in ¢ > 0 and almost every * € R"™ and that

0
O QFF+H((QF)) =0,
Set F(t) = fetQthd,u which is differentiable in ¢ > 0. By (5.5),
tF'(t) < F(t)log F(t), 0<t<1,

While QF f is not continuous at ¢t = 0, it is easy to check however that tQFf — 0 as
t — 0. Therefore F'(0) < [ fdp, and integrating the preceding differential inequality
as in the previous section, one concludes that

/eQLfd,LL < effd” (5.6)

where QY = Q. The latter inequality (5.6) actually corresponds exactly to the
transportation cost inequality for the exponential measure put forward in [Ta]. Namely,
by the dual Monge-Kantorovitch principle (cf. [Ral), (5.6) is equivalent to saying that,
for every probability measure v on the real line absolutely continuous with respect to

7
Wr(p,v) < H(v|p) (5.7)

with

Wr(p,v) = inf//L(x — y)dr(z,y)

where the infimum is running over all probability measures on R x R with respective
(integrable) marginals p and v. It is then easy to check that the cost L is equivalent,
up to numerical constants, to the cost used in [Ta).

The preceding extends to products of the exponential distribution by considering
the functions on R" given by > | H(z;) and .., L(z;) for a vector (z1,...,2,) €
R™. To this task, one may either tensorize the logarithmic Sobolev inequality (5.4) or
the transportation inequality (5.7). As in [Ta], the main difficulty arises in dimension
one.

5.3 Poincaré inequalities and exponential transportation cost

As a main result of the work [B-L1], it was actually shown that every measure p
absolutely continuous say) satisfying the Poincaré inequali
bsolutely ti y) satisfying the Poi & inequality

Wan,() < [ 9P (5.8)

for some A > 0 and all smooth functions f actually satisfies a modified logarithmic
Sobolev inequality such as (5.4)

Ent,(ef) < K(c) / IV f2eldu (5.9)
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for every bounded Lipschitz function f such that [Vf| < ¢ < 2v/\ almost everywhere,

where K(c) > 0 only depends on ¢ and A. Setting
K(e)|z)? if |z| <e,
+ oo if |z| > ¢,

H(z) =H.(z) = {

with dual function

ly|? : (e
L(y) = Lu(y) = { 3K(0) i y] < 2eK(e). (5.10)

cly| — K(c) if ly] > 2¢K(c),

and arguing exactly as before, we may state the following corollary.

Corollary 5.1. Let pu be a measure on the Borel sets of R" satistying the Poincaré
inequality

Wan,(F) < [ [V F2d

for some A\ > 0 and all smooth functions f. Then, for every ¢ < 2v/\, u satisfy the
transportation cost inequality

Wi(p,v) < H(v|p) (5.11)

for every probability measure v << p where L = L, is the cost function (5.10). In
addition, all the inequalities (5.8), (5.9) and (5.11) are equivalent (up to constants).

The last assertion of Corollary 5.1 simply follows from the fact that the transporta-
tion inequality (5.11) implies back the Poincaré inequality. Namely, for f smooth with
compact support (say) and ¢t — 0, it is easy to see that the infimum infyepn[tf(y) +
L(z — y)] is attained at some yo = yo(t) — z as t — 0. It follows that

Q" (tf)(x) ~ tf(x) — K(c) 2|V f(x)|*.

Applying the transportation inequality (5.6) to tf and letting t — 0 then shows, as in
the introduction for the quadratic cost, that the Poincaré inequality (5.8) holds with
A= ﬁ It should be pointed out that sharp constants carry over this procedure.
Namely, it is shown in [B-L1] that K (¢) may be chosen to satisfy

K0 = o (2E) o

Asec— 0, K(c) — %
See also [B]] for an approach based on optimal transportation and the Brenier-
McCann theorem extending Talagrand’s method for the Gaussian and exponential

measures [Ta]. Applications to concentration properties are lengthly discussed in [B-

L1] and [Lel].
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6. Brunn-Minkowski inequalities and logarithmic isoperimetry

In this final section, we present some further applications of the preceding results.
We first describe exponential integrability of convex functions under a logarithmic
Sobolev inequality. We then present another approach to the Bakry-Emery criterion
through Brunn-Minkowski inequalities and our hypercontractivity result in Theorem
2.1. We finally discuss some analogues for L' logarithmic inequalities.

6.1 Exponential integrability of convex functionals

We start by elementary consequences of the transportation inequality
/ePQfdM < o f (6.1)

for every bounded measurable f (where we write () for (1) that corresponds to the
critical value @ = 0 in Theorem 2.1. Equivalently,

/epfdM < orJQrdn (6.2)

(where we write @ for @1) These inequalities can easily be extended from the class of
all bounded measurable functions to the class of all y-integrable functions f in (6.1)
and the class of all measurable functions f in (6.2) with p-integrable sup-convolution.

The operator Q; represents a bijection from the class of all concave functions on
R™ with values in [—o0, +00) onto itself. Respectively, @ is a bijection on the class of
all convex functions on R" with values in (—oo, +oc]. In particular, if we start with a

homogeneous convex function

f(z) =sup(f,z), zeR", TCR",
ocT

then

_ 1

Q" f(x) = sup [(6,2) — 5 [6]°].
ocT

The supremum-convolution inequality (6.2) then yields (after a simple approximation

argument)

/ ePuPel(82)—1617/2] gy < o [SuPo(Oa)dn (6.3)

For the canonical Gaussian measure on R", this inequality was discovered by B. S.
Tsirel’son [Ts] in connection with Gaussian mixed volumes. In the general setting
of logarithmic Sobolev inequalities and non-homogeneous convex functions it may be
formulated in the following way.
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Corollary 6.1. Under the logarithmic Sobolev inequality (2.3) of Theorem 2.1, for
any convex u-integrable function f on R",

/ep<f—%|w|2)du < orfan,

For the proof, since f is differentiable almost everywhere, for every point z € R"

at which f is differentiable, and all z € R", f(z + 2z) > f(z) + (Vf(2), z). Therefore,

Qf(a) > inf [F(a) +(Vf(2).) — 5 |P] = Fw) — 5 [VF()|

zER™

6.2 Brunn-Minskowski inequalities and hypercontractivity

Brunn-Minkowski inequalities may be used to prove the hypercontractive inequal-
ities of Theorem 2.1 for some classes of measures with logconcave densities. Assume
that dy = e~Ydz where U : R — R is smooth and such that for some ¢ > 0, uniformly
inz € R",

Hess (U)(x) > ¢ld (6.3)

in the sense of symmetric matrices. This condition is thus the Bakry-Emery criterion
[B-E] (cf. [Bak], [Lel]) under which the logarithmic Sobolev inequality for p holds with
p = ¢ as we have seen in Theorem 4.1. The classical Brunn-Minkowski inequality, in
its functional form (see [DG] for the historical developments of this result), may be
used to provide a simple proof of the hypercontractive estimates of Theorem 2.1 (with
a = 1), and thus of the logarithmic Sobolev inequality. Recall that, in its functional
formulation, the Brunn-Minkowski theorem indicates that whenever o, 3 > 0, a+3 = 1,
and u, v, w are non-negative measurable functions on R" such that for all z,y € R",

w(a:z: + By) > u(z)*v(y)?, (6.4)

fute= ( fuie)'( foar)’ 05

Given a (bounded) function f on R", apply then (6.5) to the functions

then

u(x) — G%Qﬁ/caf(‘r)_U(r)7 v(y) — e_U(y)’ w(Z) — ef(z)—U(z)

Due to the convexity condition Hess (U) > ¢Id, for every a,8 > 0, a + 3 = 1 and
z,y € R",

ca3
aU(z) + pU(y) = Ulax + By) > == v —y[* (6.6)
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so that condition (6.4) will be satisfied by the very definition of the infimum-convolution

Qp/caf- Therefore,
/efd,u > </eéQ5/“‘fd,u> .

Setting i = 1+ ct, t > 0, immediately yields (2.4) with p = ¢ and @ = 1. In particular
the logarithmic Sobolev inequality for p holds with p = ¢. The same arguments holds
when considering an arbitrary norm in (6.6) to yield the logarithmic Sobolev inequality
(6.3). We thus recover with the Hamilton-Jacobi approach the Bakry-Emery result
(Theorem 4.1) as well as some of the main results of [B-L2].

It was shown similarly in [B-G| and [B-L2] how Brunn-Minkowski inequalities may
be used to deduce directly the transportation cost inequalities of Section 3. See also
[Bl] for further results.

It might be worthwhile mentioning that the alternate choice (used in particular in
[Mau], [B-G]|, [B-L2]) in the functional Brunn-Minkowski inequality of

u(z) = e~ AH@)=Ulz) v(y) = @@/ () =Uy) w(z) = e~V

1/ 1/8
</eaQ1/Cfd,u> (/e_ﬂfd,u> <1. (6.7)

As 3 — 0, (6.7) only yields (2.4) with a = 0, that is the infimum convolution inequality
(6.1) (with p = ¢). In the notation (1.11), (6.7) corresponds to the range —1 < r < 0.
While to reach the logarithmic Sobolev inequality itself would require all r (negative)

leads to

large enough, it is already interesting to point out that the value r = 0 (the infimum-
convolution inequality (6.1)) is actually equivalent to the whole interval —1 < r <0
(the inequalities (6.7)). To prove this claim, rewrite (6.7) as

1 1
— log/ean/Cfd,u + 3 log/e_ﬂfd,u <0 (6.8)
e!

/

for every a, 8 > 0, a + 3 = 1. Now,

log/egd,u = sup [/ghd,u — Entu(h)]

where the supremum is running over all bounded measurable functions 2 > 0 such that
[hdp = 1. Thus we may further rewrite (6.8) as

1 1
/Ql/cf ]’lelLL — /thd,u S EEntN(hl) —|— g Entu(hz),

a,3 >0, a+ 3 = 1, that should therefore hold for all hy, ks > 0 with fhld,u = thd,u =

1. Optimizing over o and [ we get

/Ql/cfhld,u - /thd,u < (\/Entu(lh) + \/Entu(h2)>27
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that is

Juetin — [ favs < (VAT + VT m))Q (6.9)

where dvy = hydu, dva = haodu are arbitrary probability measures on R" absolutely
continuous with respect to p. These measures may also be assumed to have finite
second moment. Now the supremum over all f’s on the left-hand side of (6.9) is equal
to %Wg(yl, v2) so that (6.9) becomes

VeWa(vi,v) < VH (v [ p) +VH(vz [ ). (6.10)

We thus reduced (6.7) to (6.10). But now the latter follows from (3.7) (with p = ¢) by
the triangle inequality for the metric W,. This proves the claim.

6.3 Logarithmic isoperimetry

In this last part, we turn some to L'-versions of our hypercontractivity results. Let
i be a probability measure on the Borel sets of a metric space (E,d) and assume it
satisfies the (logarithmic) isoperimetric inequality

() 2 (1= () o () (6.11)

for every Borel set A in E and some ¢ > 0. Recall that in general the y-perimeter ytA)
of a Borel set A C E is defined by

pF(4) = Timinf - [n(40) — p(A)]

t—0

where Ay, t > 0, is the open t-neighborhood of A in the metric d on E.

The isoperimetric inequality (6.11) is connected with hypercontractivity of the
convolution operators

= inf , t>0,z¢eFE.
Qif(x) yEE;Z?Wth(y) x

As we will see indeed, (6.11) holds if and only if

1Qcfll, < NI, (6.12)

for every non-negative measurable function f and all 0 < p < ¢ < o0 and ¢ > 0 such
that e? > ]%. To hint this connection, apply (6.12) to f = 1g\ 4. Since Q¢f = 1\ 4,,
(6.12) turns into

log (1 — p(Ay)) < e log (1 — pu(4)). (6.13)
As t — 0, this amounts to (6.11).
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It should be noted that in “regular” situations one has u(A) = u* (M \ A). This is
certainly the case for p absolutely continuous on E = R", as well as in a more general
Riemannian manifold setting. In the latter cases, it was shown by O. Rothaus [Ro] that
the isoperimetric inequality (6.11) is equivalent to the logarithmic Sobolev inequality

cEnt,(f) < /|Vf|d,u (6.14)

which should hold in the class of all non-negative locally Lipschitz function f on R" (or
on a manifold). Furthermore, the standard theory shows that (given a locally Lipschitz)
function f on R", the function v = v(z,t) = Q¢ f(z) provides a solution of the initial-
value partial differential equation

0
=y Vo =0 inR" x (0, 00),

ot (6.15)

v=Ff onR" x{t=0}

The equivalence between (6.11) and (6.12) may then be proved on the basis of the
partial differential equation (6.15) arguing as in the proof of our main result in Section
2. The particular structure of the L! case makes it however more general than equation
(6.15) and the result actually holds in the setting of abstract metric spaces, with a
purely “metric” proof.

Theorem 6.2. Let u be a probability measure on the Borel sets of a metric space
E.d). The probability measure i satisfies the isoperimetric inequalit
) p Y H p q Y

pt(A) > c(1—p(A))log (;W)

for some ¢ > 0 in the class of all Borel sets A in E if and only if

1Qcflly < I,

for every non-negative measurable function f on E and all 0 < p < g < o0 andt > 0
such that

ect 2

SR

Proof. We only need to show the sufficiency part. Since (Q;f)? = Q¢ f?, it is enough
to deal with the case p = 1, and thus ¢ = e“* > 1. The isoperimetric inequality (6.11)

can be iterated in ¢ > 0 so to yield (6.13) for every Borel A. Given a measurable
function f > 0 on E, and A > 0, set A = {f < A}. By definition of @y, for every ¢t > 0,

{Qtf < )\} = Ay,
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so that by (6.14), we get
(Qef = N) < u(f =N

Hence

@i = [ n(@ur = N < [T us = e

Now it is know that the right-hand side of the latter inequality defines the so-called
1 £1l4 , Lorentz norm of f, and that 1 £1l4 . < | f]l; (cf. [S-W]). This stronger conclusion
implies the result. O

A dual statement to Theorem 6.3 can be formulated with

Qvtf(l’) = sup fly), t>0,z€kE.
yeEEd(z,y)<t

Both inequalities (6.11) and (6.12) imply the logarithmic Sobolev inequality

pEu, (1) <2 [ [V fPdu

for some p = p(c) > 0 (cf. [Ro]).

It was shown in [Bo| that every log-concave measure p on R" supported by a ball
of radius r satisfies the isoperimetric inequality (6.11) with ¢ = 1/2r. In particular,
the uniform distribution on a convex compact body K C R" satisfies (6.11) with some
¢ > 0. It would be of interest to estimate this constant in some special situations. For
example, when K is the unit ball, the extremal sets in the isoperimetric problem are
known. Another important case is the unit cube K = [0,1]". One may also consider
the case of the sphere.
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