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1 Ornstein-Uhlenbeck semigroup.
We start investigating a particular Markov semigroup: the Ornstein-Uhlenbeck
semigroup. First we recall the definition of Markov semigroup.

Definition 1.0.1. A Markov semigroup is a family of linear operators (P;);>o
defined on a Banach space (B,]|-||) and such that

1. Py=Id,

2. t— P,f is continuous, V f € B,

w

. Pof = P(P.), VfeB, Vts>0,
4. P1=1, Vi >0,

5. f>0=Pf>0, VYfe€B, Vt>0,

=)

MELN <N VfeB, Vit>0.

Note that properties (1) — (3) define a semigroup while properties (4) and (5) tell
the Markov property. Moreover we assume property (6) (which in general is not
required), which means the contractivity of the semigroup.

The Banach space under our consideration will be in general B = L>*(R™) with
the usual norm || - || _.

Definition 1.0.2. For any f € L>(R") and ¢t > 0, we define
Rfta) = [ £ (e VI y) dr(o), (1.1)

where dv(y) is the standard Gaussian measure in R", i.e.

The semigroup (F;);>o is called the Ornstein-Uhlenbeck semigroup.



Remark 1.0.1. The Ornstein-Uhlenbeck semigroup is related to the Ornstein-
Uhlenbeck process. More precisely, let us consider the Markov semigroup (X;)¢>o
given by the solution of the following stochastic defferential equation:

dX, = V2dB, — X,dt,
Xo =X.

where by B; we indicate the standard Brownian motion in R™.
Then, by explicit computations, it is possible to show that, for

Qtf(ﬁ) = Er[f(Xt>]a

one has Q.f(z) = P.f(x), where {P;};>0 is the Ornstein-Uhlenbeck semigroup
defined by (1.1).

Proposition 1.0.1. The Ornstein-Uhlenbeck semigroup given by (1.1) is a Markov
semigroup in B = (L>*(R"), |- ||, )-

Proof. First we note that property (1) of Definition 1.0.1 holds. In fact

Pof = / f(x 1 0)dy(y) = f(x) / () = 12,

since dy(y) is a probability measure.
We want to check property (3) of Definition 1.0.1. For sake of simplicity we set
¢ = e tand d; ;== /1 — e~2?!. By Remark 1.0.1 the Ornstein-Uhlenbeck semigroup
can be written as

P f(z) = E[f(cx + diY)],

where Y is a normally distributed random variable with mean zero and variance
I, ie. Y ~ N(0,1). (Note that by ~ we denote that two random variables have
the same law.) Hence

Bi(Pof)(x) =
E[(P:f)(cix + di 2)] = E[f (cs(crx + di Z) + dY)| = E[f (cspix + csdi Z + dY)].

Let T := cydy Z + dsY, since Y and Z are two independent random variables, then
T ~ N(0,c2d? + d?). Since

P+ d*=e (1 —e ) tl1—e>=1—e2) =g

t+s
we get T ~ N(0,d7,,) ~ dis N (0,1) ~ dpss Y.
Hence we can conclude

P(Psf)(x) = Elf (csrew + digs y)] = Prys ().

We omit to verify the other properties: the reader can check the remaining prop-
erties as an exercise. L]



1 Ornstein-Uhlenbeck semigroup.

1.1 The infinitesimal generator for the Ornstein-Uhlenbeck
semigroup.

The infinitesimal generator associated to a Markov semigroup is defined as the
derivative in time of the semigroup itself.

Let us recall the following notation: f € CZ(R™) means f € C?(R™) bounded with
bounded first-order and second-order derivatives.

Proposition 1.1.1. Let (P,)¢>0 be the Ornstein-Uhlenbeck semigroup, then for
any f € CZ(R") and ¢t > 0

0
aptf = L(Ptf) = Pt(Lf)7

where Lf :=Af —x-Vf.
L is the infinitesimal generator of the Ornstein-Uhlenbeck semigroup.

Proof. By definition
= /f (e*tx +V1—e 2 y) dy(y)
which implies

%Ptf( ) = / <—e_t$+\/%;_2ty> -Vf(e_t:r+\/1—e—2ty)d7(y). (1.2)

Since dv(y) is a Gaussian measure, so V f € C}(R™),

/ uif (0 (y) = / ofW)dy),  i=1,....m

Therefore, by integration by parts, we can write

/ \/7 y-Vf(ez+vV1—e2y)dy(y /e_ZtA fle'z+v1 —e 2 y)dy(y)

Using that AP, f(z) = e 2 P(Af(x)), the previous identity yields

/\/71/ Vf(e x+v1—e—2ty)d7() AP, f(x).

To conclude we need just to remark that

VP f(z) =e"P(Vf) = e (P0if)) iz, -



1.1 The infinitesimal/generator for the Ornstein-Uhlenbeck semigroup.

Hence the identity (1.2) gives
0
aptf( x) =—x-VEf(z)+ AR f(z) = L(Pf)(z).

To prove that £ P, f(z) = P,(Lf) one can proceed similarly. O

Remark 1.1.1. Let (P;);>¢ be a linear semigroup with generator L defined on a
domain D = D(L), then the semigroup always commutes with the generator, i.e.

B(Lf) = L(P.f),
for any f € D.

Proof. Let f € D and recall that the infinitesimal generator is defined as L(P, f) :=
%Pt f, which in particular implies for ¢ =
0

L(Ptof) = aptf

t=to

By the semigroup property we know that P, f = P, (FP:f). Using the linearity
and the continuity of the semigroup, we can conclude

0 0
§Pt+tof =5

t=0

0

L(Ptof) = Pto(Ptf) Ptoatptf :Pto(Lf)'

t=0

t=0

O

Remark 1.1.2 (Properties of the Ornstein-Uhlenbeck semigroup). Let (P;):>o be
the Ornstein-Uhlenbeck semigroup and ~ the standard Gaussian measure, then

(1) P is y-ergodic, that is
lim P, f( / fd.

t—-+o0

(1) The Gaussian measure 7y is invariant under P;, that means for any ¢ > 0

| Ry = | ga

which is equivalent to say that for any f € D(L)

/Lfdy—O;

(iii) L is a self-adjoint operator in L*(dy), i.e

/ngd7= /gLfdvz —/Vgidv-



1 Ornstein-Uhlenbeck semigroup.

1.2 The Poincaré inequality.

As we have already remarked in the proof of Proposition 1.1.1, that for the
Ornstein-Uhlenbeck semigroup the following identity holds

VP, f(x) =e 'P(Vf)(x), VzeR" Vt>0. (1.3)
From the identity above and by the Jensen’s inequality, we can deduce
VAFI() < e PV A1) @), (1.4)
where | - | is the standard norm in R". Inequality (1.4) is called local inequality.

Proposition 1.2.1 (The Poincaré inequality). Let f be smooth enough. Then

Var, (/) < / VP, (1.5)

Var,(f) ¢=/f2d7— (/fdv)Q-

Proof. Note that, by ergodicity and using the Fubini theorem and the definition
of infinitesimal generator, we have

Var(f) = - [ ( / - %(Bf)?dt) o= - ( / %(Ptfﬁdfy) it
- —2/O+OO (/ L(Ptf)Ptfd'y) dt.

We apply now the property (iii) given in Remark 1.1.2. Then

Var, (f) = —2 /O+OO (/ L(P.f) Ptfdfy) dt = 2/0+OO (/ |VPtf|2d7> dt

By the local inequality (1.4) and Jensen’s inequality, we can conclude that in fact

Var, (f) = 2/O+OO (/ |VPtf|2dv) it < 2/0+°o (/ e—Zf(Pt(WfD)Qdy) "
<2 g ( / PtuwF)dv) a=2 [ e ( / IVfIQd'y) it
= [1vspar 2 | et = [ Vit

where we used 2 f0+°° e 2dt = 1. O

where



1.3 The Logarithmic-Sobolev inequality.

Remark 1.2.1. The constant 1 is the optimal constant in the inequality (1.5).

An interesting application of the Poincaré inequality is given by the following
corollary. In fact, we already know that the Ornstein-Uhlenbeck semigroup is
ergodic (see Remark 1.1.2, property (¢)). So a natural question is to understand
the exponential rate of convergence to the mean, which is answered by the following
corollary.

Corollary 1.2.1. Under the assumption of the Poincaré inequality
Var., (P f) < e *Var, (f).

Proof. Since 7 is an invariant measure under P;, we have

U(t) := Vary(P.f) = /(Ptf)zdv— </ fdv)z,

and

U'(t) = —Q/WPtf]Qdy.

The Poincaré inequality tells U'(t) < —2U(t). Therefore, by the Gronwall’s
Lemma, we can conclude

Var, (P, f) < e_QtVarW(f).

1.3 The Logarithmic-Sobolev inequality.

We are now going to prove the following result.

Proposition 1.3.1 (The Logarithmic-Sobolev inequality). For f smooth enough,

2
'V];f "y, (1.6)

where Ent, (f) is called entropy of f and it is defined for any f > 0 as

1
Ent, (Pf) < /

Eut, () i= [ flog fdy — [ faviog [ fan



1 Ornstein-Uhlenbeck semigroup.

Proof. To get (1.6), we apply the previous calculation to the entropy instead of to
the variance. Note that

pu (= [ ([ o) a—— [ [urnosrnn )a

(1.7)
where we have used that 7 is invariant under P;, which means [ L(P;f)dy = 0.
Using that L is self-adjoint, we get

IVEST

[ uronrin = = [ VRs v (oxrp)ir = [

Hence, (1.7) becomes

Enty(f):/o (/ IV]?;“P )dt:/0+ooe—2t (/%}{mm) dt. (1.8)

The Cauchy-Schwartz inequality tells that

PV 1P) ('Vf'f) <'ij'2) P,

which implies

ROSI)  p (1941)
Pf ' f '

Applying this inequality to (1.8), we get

i [ o ([ () )a- [ oo [ oo
7 @dv

Remark 1.3.1. The constant % is the optimal constant in the inequality (1.6).

As an application of the Logarithmic-Sobolev inequality, we show that the Lya-
punov function given by the relative entropy is exponentially decreasing.

Corollary 1.3.1. For any ¢ > 0 and f smooth enough,

Ent., (P.f) < e Ent, (f).

10



1.4 The Ornstein-Uhlenbeck semigroup and the Fokker-Planck equation.

1.4 The Ornstein-Uhlenbeck semigroup and the
Fokker-Planck equation.

The Fokker-Planck equation is the linear PDE defined by

%u(t7 z) =V - (Vu+ zu) = div(Vu) + div(zu) = Au+ div(zu) =: G(u). (1.9)
For this equation in general there exists a unique solution. So one can define an
associated semigroup, that we indicate by (G¢)>0, which is a linear semigroup but
it is not a Markov semigroup. In fact G(1) # 0.

To look at a steady state means to study the behavior of u(t,z) as t — +oo.

The corresponding equation is

VU(x) + zU(z) =0,

which holds if and only if U(x) = C e’$ for some constant C.

The equation conserves the mass so, if we consider an initial datum u(0, z) = ug(x)
such that [wug(z)dz =1, then [w(t,z)dz =1 for any ¢ > 0.

We assume that u(t,z) — uw(z) = U(x), as t — +o00, then the constant C' has to
satisfy [ uoo(x)dz = 1. This implies

Uso(T) = e 2,

i.e. the steady state is given by u..(x)dx = y(dx).
We would like to prove that a solution u of (1.9) converges to u., as t — +o0.

Lemma 1.4.1. L* = G in L*(dx).

Proof. Integrating by parts

/fG(g)d:z::/ngd1’+/fV-(1:g)d:L’:/gAfdx—/g(x-Vf)dx:/gL(f)d:L’.
0

Proposition 1.4.1. Let u(¢, x) be the solution of (1.9), then u(t,z) — ux(x) in

L*(dz) as t — +o0.

Proof. We define

U(t) = /

u(t, x)

Uoo ()

11



1 Ornstein-Uhlenbeck semigroup.

since [Uoo(z)dr =1 = [u(t,z)dz.
Using that u(t, z) is a solution of (1.9), that means Zu(t,z) = Gu(t,z) = L*u(t, z),
we can deduce

U'() = 2 / UL ot 2) ) = 2 / L (“(’5’”“")) uh:2) 4 ),

Uoo(2) Uoo(2) ) Uoo(2)

where we have used dr = 2 ( )

. To conclude, we have just to observe that

o[ ()|

dry(z) < =2U(t).

This implies

/ w2 ) < o / 9@ [ gy )
ulw) | ulw) | T
which converges to 0 whenever ¢ — 400. ]

A last remark about the connections between the Fokker-Planck equation and the
Ornstein-Uhlenbeck semigroup (FP;);>o is the following. First we need to recall
Remark 1.0.1, that tells

P f(z) = E[f(X0)],
where X; solves the SODE

dX, = V2dB, — X,dt.

By an explicit calculation, one can show that

[ Pr@vte) = [ o) = [ fpvin),

where v is an absolutely continuous probability measure, £(X;)(dz) = u(t,z)dx
and u(t, x) is a solution of the Fokker-Planck equation (1.9) with initial condition

u(0,t) = uo(z) = %.

12



2 The CD(p,0) criterion.

We now study operators of the form:

n

Lf(z)= Z D;j(2)0;;f(x) — Zai(ff)aif(I)» r e R” (2.1)

ij=1 i=1
where 9; and 9;; denote 5 and 7.5, respectively, while D(z) = (D;;(x)), <ij<n
is a symmetric, non-negative, n X n matrix and a(x) = (a,—(x))1<ij<n is a vector

in R".
We assume the following conditions:

1. L1 = 0, which is equivalent to requirement that P,1 = 1, where P, is the
semigroup that has the operator L as infinitesimal generator.
This assumption implies that (P;);>o is a Markov semigroup.

2. There exists p;(x,dy) (Markov kernel) such that

Pf(x) = / £ ()i, dy).

Remark 2.0.1. Let (X});>0 be solution of the SODE
dX; = o(Xy)dB; — a(Xy)dt,
where $o(z)o” () = D(x). Then
Fif(z) = B, [f(Xo)];
in fact by the [t6’s formula
OE, [f(Xy)] = LE[f(X0)],

where L is given by (2.1), and this shows that they have the same generator.
This remark generalizes what we have already observed in the case of the Ornstein-
Uhlenbeck semigroup.

13



2 ThelCD(p,00) criterion.

Definition 2.0.1 (Carré du Champ). The Carré du Champ form is a quadratic
form, which we denote by I', defined as follows

D(f) = T(f, ) i= 5 L0%) — JL.

The associated bilinear form is given by

L(f.9) = %(L(fg) — fLg—gLf).
Proposition 2.0.2. For any f, T'(f) > 0.
Proof. By the definition (2.1) of the operator L, we have
L(f*) =) _Di;0i(2f0; )= ai2fOif =2 Di;(0if0if+f0:;£) -2 aifoif.
On the other hand,
—2fLf=-2 Di;jfoi;f +2)  aifoif,

hence
L(f*) = 2fLf =2 _D;;0,f0;f =2V f-DVf >0,

since by definition D is assumed to be non-negative. ]

Remark 2.0.2. Since L is the infinitesimal generator for the Markov semigroup
(Pt)t207 then

. B = (RS
') = tlg(g 2t '

In fact by assumption (2) P, can be given using a Markov kernel, this remark gives
an alternative proof of Proposition 2.0.2 (i.e. I'(f) > 0).

Definition 2.0.2. We define
Lo(f) 1= L) = 207 L),

Analogously we can define T, for any n > 0, setting T'og(f) := f* and

Lait(f) = 3E0wa(7) = TulF L)

14



Example 2.0.1.

1. Let Lf = Af —x - Vf be the infinitesimal generator associated to the
Ornstein-Uhlenbeck semigroup, then

Lo(f) = 10: 175 + IV £
where [|0;, f||5,_g = 3(9;;f)? is the Hilbert-Schmidt norm.
2. Let Lf = Af — VU .Vf, where ¥ : R" — R is a C?-function, then
La(f) = 10i3fllsr_s + Vf - Hess(¥)V £,

where Hess indicates the Hessian matrix of ¥ (i.e. the matrix of the second-
derivatives of the scalar function ¥).

3. Let L be given by (2.1), in this case the Carré du Champ form is easy to
calculate, in fact

I'(f)=Vf DV
4. If D(z) = Id and a € C*(R"™), then
To(f) = 10i;fIl3_s + VI - J(@)V [,

where J(a) is the Jacobian-matrix of the vector a = a(x), i.e.

J(a) = (aiaj)lgingn‘

5. Let D(x) = D be a constant matrix, then
Iy(f) = %Tr((D Hess(f))?) + Vf - J(a)V .

6. Let D = b(z)Id with b : R® — R. Then a formula for I'y exists, but it is
very complicated to write down, so we omit this.

Definition 2.0.3 (CD(p, o) criterion). We say that the operator L (or equiva-
lently the semigroup (P;):>o) satisfies the CD(p, 0o) criterion if

Dao(f) = pT(f), VY f eD(L).

15



2 ThelCD(p,00) criterion.

Example 2.0.2.
1. Let L be given by (2.1) with D(z) = Id and a(x) = V¥ for some
¥ € C2(R"). Then
La(f) = [[Hess(f)l[_s + (V £, Hess(®)V f).
which implies that L satisfies CD(p, o0) if and only if Hess(V) > p Id.

2. If D(z) = Id and a € C'(R") is a general vector field, then L satisfies
CD(p, o) if and only if

ORI

3. Let D(z) = D be constant and a(z) € C*(R") be a vector field, then L
satisfies CD(p, o0) if and only if

T

DJ(a) + (DJ(a))
2

> pld.

2.1 P-entropy and linear inequalities.

Given a probability measure u, we define the ®-entropy as

Enty, (f) i=/<1>(f)du—¢> (/fdu>-

E.g. if ®(z) = 22, Ent? (f) = Var,(f), while if ®(z) = xlogz, Ent}} (f) = Ent,(f).
Note that the ®-entropy is well-defined under suitable assumptions on the function
® which we specify in the following definition.

Definition 2.1.1. Let I be a real interval, then ® : I — R is admissible if and

only if ® € C?(I) is strictly convex and the function — g is convex.

We define the ®-entropy only for admissible functions.

16



2i1" ®-entropy and linear inequalities.

Example 2.1.1.

1. If we assume ® € C*(I), then

1 1 "
3 1S convex <— 3 > 0.

This means that ® € C*(I) is admissible for ®(z) = 2% or ®(x) = x log .

2. Let ®(x) = 2P, then ® is admissible in R for p € (1, 2).
Ifp=1 (i.e. ®(z) = z), then ® it is admissible but only in R* := (0, +00).

3. Let ®(z) = (z + a)*log(z + a)’ with a € (1,2) and 3 € R.
Then for any a >> 1, ® is admissible in R*.

Remark 2.1.1. The set of admissible functions is a cone, that means

VA, u>0Vand & and ¥V admissible = A® + pW is admissible.

Theorem 2.1.1 (Chafai 2004). Let ® € C?*(I), then @ is admissible in [ if and
only if one of the following properties holds:

(i) Definition 2.1.1;

(ii) (z,y) — % is convex in [ x R;

(iii) Entyy e, (f) < Ey, (Enty, () + By, (Enty;, ().

Remark 2.1.2. By using property (i7) in the theorem above, Remark 2.1.1 fol-
lows immediately: in fact a linear combination with positive coefficients of convex
functions is always convex.

Theorem 2.1.2 (Bakry-Emery 1985, Chafai 2004, Bakry 2006, and others).
Let p € R and let us assume that ® is admissible in I, then the following statments
are equivalent:

(i) L satisfies CD(p, 00) criterion;

(i) Entd,(f) := P(2(f)) — ®(Pf) < =577 Ri("(fL(f)), for all I-valued func-
tions f and t > 0;

(iii) Ent?, (f) > %@”(Bf)f‘(ﬂf), for all f I-valued functions and ¢ > 0;

(iv) T(P.f) <e?'P,(y/T(f))? for all I-valued functions f and ¢t > 0;

17



2 ThelCD(p,00) criterion.

(v) T(P.f) < e ?'P,(T(f)), for all I-valued functions f and t > 0;
(where we have assumed p > 0).

Remark 2.1.3. We can note that

1 —e 20t
lim —— =1t,
p—0t 2,0

so Theorem 2.1.2 is still true for p = 0 and it can be proved as in the case p > 0.
Example 2.1.2. Let L = A, then Ty(f) = ||Hess(f)||5. In this case p = 0.
Before proving the theorem we need to state some lemmas.

Lemma 2.1.1. For any ® € C?(R"), we have

L(®(g)) = ®'(g)Lg + @"(9)T(9), T(®(9),f) = @' (9)T(g, f). (2.2)

Moreover

2

To(®(g)) = (¥'(9)) Talg) + ¥'(9)®"(9)T (9, T(g)) + (¢"(9))°T(9).  (2.3)

Lemma 2.1.2. Let & € C*(R") be a function with nonvanishing second deriva-
tives, set
U(s) = Py(®(Fi-s]))

then the function ¥(s) is twice differentiable in [0, ¢].
Moreover setting g = P,_,f, the first and second derivatives can be written as

V(o) = P (T (0 ) = A0 ), (2.4)

and

V(5) = 2P, (s Tal@a) ) + P ((—q),,l(g))" ((D,,l(g)r(@'(g)))z) - @5)

Note that, by definition of W, U(0) = ®(P;(f)) and V(t) = P(P(f)).

Proof. A simple calculation shows that

/ . (@) B
V'(s) = Ps(®"(g)l'(g9)) = Ps (CD,,—@F(Q)) =P, (

18



2i1" ®-entropy and linear inequalities.

where we have used the second identity in (2.2) i.e.I'(®'(g), ®'(g)) = ((ID”(g))2

and our assumption g = P,_,f.

I'(g)

To get (2.5), we differentiate (2.6) w.r.t. s € [0,4], to get
() = P.(L(®"(9)T(9)) — Lg®"(9)T(9) — 22"(9)T (g, Lg)).-
Recalling that 2T'(f, g) = L(fg) — fLg— gLf. Thus the previous identity becomes
U(s) =
= P,(2T(2"(g),T(9))+®"(9)L(T(g))+T(9)L(®"(9))+Lg®" (9)T(9)—22"(9)T (g, Lg))-

Using (2.3), we get

V(s) = P.(20"(g)Ta(g) + 20" (9)0(9,T(g)) + (T(9))*®" (9))

=22 (o [Ta(@ @) + (~(070) + D) (r0)?))

1 _2(0"(g)) N q),,,(g)] (F<g))2)’

= 2P (@H—@FQ(CID’(g))) + P <

which gives (2.5). O

o (g)

Proof of Theorem 2.1.2. We do not prove property (iv) since the way to prove this
is by using a method very different from the one we are going to use to show all
the others characterizations.

Let ¥ be as in Lemma 2.1.2 and let us assume property (i), i.e. I'a(f) > pI'(f).
Then
V(s) < 2pW(s),

" (F(s)e ) > 0 = W(s)e 2 > V(0). (2.7)

Let ®(z) = %2 so that ®”(z) = 1. Using (2.2) with g = P.f, we can write
U'(t)e™" = P(T(f))e " = ¥'(0) = T(P.f),

which gives property (v).
Integrating (2.7) over [0, t], we get

t t
/ U'(s) > \IJ'(O)/ eds,
0 0
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2 ThelCD(p,00) criterion.

which using that ®” = 1 implies
et — 1

W)~ ¥(0) = P(2(1)) ~ B(Rf) = Enth () >

F<Ptf)7
which proves property (7it).

Analogously we can deduce property (7). In fact if s € [0, ¢] we can apply (2.7) to
two points ¢ and s such that ¢t > s > 0 and integrate the corresponding inequality
over [0,¢]. This gives

t t
U (t)e 2 > U'(s)e " = / '(s) < W'(t) / e 2Pt=9) s,
0 0

The previous inequality implies (i7) by using (2.4): in fact
1 — e?rt

W(t) — W(0) = Ent} () <

(" (f)T(f))-
We rest to prove the reverse implications, i.e. we have to deduce CD(p, co) criterion

by the properties (i), (i), (i7¢) and (v). This is indeed the most difficult part of
the theorem. First we show that
2
Ent;f(l +eg) ~ EVarM(g)CD”(g),

as e — 07, In fact
Ent;) (1 +¢eg) = /@(1 +eg)du — P (/(1 + 5)du> = d(1) — ed'(1) /gdu
+ %2<I>”(1) /deu — (1) — ed'(1) /gdu - %2@/’(1) </ gd,u>2 + o(?)

- ?@” (/ g2dy — (/ gd,u>2> +o(e?) = %zVaru(g)‘P”(g) +o(e?).

For sake of simplicity let us assume that ®”(1) # 0.
Property (i7) with f = 1+ eg implies

" 62 2 1- 672pt " 2
P (1)5\/31"3(9) +o(e”) < TB((I) (1)e F(g))7
that gives
1 —e 2t
Varp,(9) < ———P:(T'(9))-

2p
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2i1" ®-entropy and linear inequalities.

Property (ii7) instead implies

ot q

Varp(g) = “

['(Py(g))-

Now we show that property (v) implies CD(p, o).
To get the other implications, one can proceed in a similar way.

If we write property (v) with ¢ = 0, we get a trivial identity since P, f = f for any
function f. Then

0

aF(Ptf)

< g (era)

)
t=0

Q>

which implies

2U0(f, Lf) < =2pT(f) + L(L(f)) = pT(f) < Ta(f).

Example 2.1.3 (The Laplacian case). If L = A then
lle—yl®

=

is a solution of d,u = Aw with initial condition u(0,z) = f(x).
Note that for ¢ = 1 we have
_ly

0= [ 1) gdy—/f )i (y

where dv(y) is the standard Gaussian measure.
Recall that if L = A then CD(p, 00) holds with p = 0. By Remark 2.1.3 in the
case p = 0 property (ii) of Theorem 2.1.2 becomes

Entf, <t B(®"(/)T())).

Writing the previous inequality at ¢ = %, we find

Eued(f) < 5 [ /(0 (28)

Now we want to introduce in a general setting some definitions already introduced
in the particular case of the Ornstein-Uhlenbeck semigroup (see Remark 1.1.2).
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2 ThelCD(p,00) criterion.

Definition 2.1.2.

1. Given a probability measure p, (P;)i>o is p-ergodic if and only if

lim_Fof(«) = ()= [ Fin

t——+o0
in L?(du).

2. A probability measure p is invariant under P, if and only if

/Ptfd,u: /fd,u, for any t > 0,

or equivalently
/Lfdu =0, VfeD(L).

3. A probability measure y is reversible if and only if

[ frodu= [ gLsan

Note that p ergodic implies p invariant. In fact the semigroup property f P,(Psf)dp =
[ Piis(f)dp and ergodicity imply that the first quantity converges to p(Pi(f)) as

s — 400, while the second one converges to p(f): hence the invariance comes.
Moreover also reversibility implies invariance simply by taking g = Id in the prop-
erty (3) of Definition 2.1.2.

Remark 2.1.4. If x4 is a reversible probability measure, then

[ trodn=3 [ (tLa+ oLs - 1(fa))dn = - [ T(f.g)an

which gives an integration by parts.
Corollary 2.1.1. If (P;);>0 is p-ergodic and L satisfies CD(p, o0) with p > 0, then
1
Ent](f) < — [ ®"(/)T(f)dp.
w () < 5o [ BT

Example 2.1.4. Let du(z) = e¥®@dr with ¢ € C?(R") and L = A — V¢ - V.
If we assume Hess(f) > pId with p > 0, then

Ent?(f) < i [ e

for any admissible function ®.
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2.2 Applications.

2.2 Applications.

Let (P)¢>0 be satisfying CD(p, 0o) for some p > 0 and let us assume that p is an
invariant measure for (P;);>0. We define U(t) := Entfj (P.f) then

v = 4 (mute)) = G [owrna-e ([ rra) ) = [e@pirna

(2.9)

Lemma 2.2.1. Let ¢ be a bijective differentiable function. Then

[ stetrysan =~ [ttt etman = [ S (rian

Proof. Let us denote g := o(f) and ¢ = ¢!, since p is invariant, u(Lf) = 0 for
any function f € D(L), which implies

/ng(g)duz/(ng(g)—L(‘P(g)))du,

where V¥ is a primitive of ¢). Therefore

/ Lip(f) fdp = / Lgw(g)dp = / (Lgw(g) — ¥(g)Lg — ¥/ (9)T(g)) dp
1 /
-/ ST TRl = - [ewro.
by definition of g and . O

By using Lemma 2.2.1 in (2.9), we can conclude

V(0 == | Gt @ P == [ ST

Theorem 2.2.1. If (P;);>0 is p-ergodic and CD(p, oo) holds for some p > 0, then
EntS(Ptf) < e_QPtEntf(f).

Remark 2.2.1. If u is ergodic but not reversible, in general we do not have an
integration by parts, so Lemma 2.2.1 plays the role of the reversibility property.
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2 ThelCD(p,00) criterion.

2.3 The linear case: the Fokker-Planck equation.

The aim of this section is to study

0
S Pf = L(Pf), (2.10)

in the particular linear case of the Fokker-Planck equation.
Therefore let us consider the following problem:

%u(i, z) =V - (D(z)(Vu + ua(z))),
(2.11)
u(0,z) = up(z) > 0 such that /uo(x) dr =1,

with D(z) = (D;;(z))

a vector in R".

\<i j<n SYmmetric n X n-matrix such that D > 0 and a(z) is

We have already remarked that the equation conserves the mass, which means

that for any ¢t > 0
/u(t,x)dx = /uo(x) dx = 1.

L*(u) = V- (D(z)(Vu + ua(z)), L*(u) #0.

Moreover

We may assume that there exists a steady state ue with s (x)de = fio(dz) and

/ Uso () dz = 1.
Note that

£ () 4[4 (2) e (] 200)
_ /@’ (%) L;S)umdx - /<I>’ (i) L*(w)dz. (2.12)

Lemma 2.3.1. If L is the operator associated to the Fokker-Planck equation then

/fL*gd:i;:/g(V-(DVf)—(Da,Vf>).
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2.3 The linear case: the Fokker-Planck equation.

Proof. Integrating by parts
/fL*gd:c—/fV Vg+ga))d /<Vf,DVg>dx—/g<Da,Vf>dx
:/<Vf,DVg>dm—/g<Da,Vf>dx:/g(V-(DVf)—<Da,Vf>),

where we have omitted the dependence of f, g, D,a on x € R". ]

Recall that Lf(z) := V - (D(z)Vf(z)) — D(z)a(x)V f(z). Therefore by using
Lemma 2.3.1 in (2.12) we can deduce

A (5t (2) 2 (2 = (0 () 2t

Proposition 2.3.1. Assume that L satisfies CD(p, co) for some p > 0 and (P;):>0
is p-ergodic for some probability measure p then

Enti’ ( Y ) <e 2”tEntq’ (—) .
Uoo Uoo

1. Let n = 1 and let us assume that a(z) is a smooth vector field, so there exists
b(x) primitive of a(x) and we can write
0 0> 0 0? 0
au(t, x) = Wu(t x)— a(w)%u(t x) = @u(t x)—V(x )%u(t,x)
The previous computation implies pu(dz) = e~*@®dz, which means that u is
a reversible measure associated to u.

Example 2.3.1.

2. Let n =2 and D(x) = Id and

alz,y) = (“”E Z%y> .

In this case Lf(x) = Af(z) —a(x) - Vf(x) and T'(f) = |V f|.
Therefore T'y(f) > pI'(f) if and only if
1 0
(1)

1 1 L 10
_ 2
(1) ()=
to
1—p )
>0,
(% 1—p

ie. (1—p)* =1 >0, which can be easily solved (e.g. p =1 is a solution).

which is equivalent

| N |—
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3 Nonlinear case

Recall that ¥(s) := P; (CID(Pt_Sf)) and

v(o) =28 (@) + 2 ((-) 0 (goreor)).

where g = P,_,f.

__ _xP
- plp-1)°

The model to keep in mind is ®,(x)
Theorem 3.0.1. Let p € (1,2) then the following properties are equivalent:
(i) (P)>o satisfies CD(p, o0) criterion for some p > 0.

(ii) For all t >0

(iii) For all ¢t >0

(RN e (R L e
o1E | DU~ (B ((Bf)p> > — (W)p) (Pf)" T (Bf).

Passing to the limit as ¢ — +o0 in the property (i) in Theorem 3.0.1, one can get
the following corollary.

Corollary 3.0.1. Let us assume p > 0 and (F;);>¢ is p-ergodic. Then

2

5 | = () (%) <

() = 5 (5000

1
p p
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Writing g = f2 and dividing (3.1) by %, we get

p 2y _ 2\P 1(g%)
217 1(g®) = (p(g7) ((M(g %

We want to recall that a similar inequality was proved by Beckner.
More precisely, the Beckner’s inequality is:

u(g);_(ul(gp)) S%M(p(g)), pe(L,2). (3.3)

),, < Zur). (62

PP

hSRIN

Note that inequality (3.3) with p = 2 is the Poincaré inequality while if p = 1,
inequality (3.3) gives the Logarithmic-Sobolev inequality.
Moreover for any g > 0 and p € (1,2), it is possible to show that the function

u(g?) — (ulg?))”
p—1

is decreasing for p € (1,2).

That means, in some sense, that the Logarithmic-Sobolev inequality is the strongest
form of inequality (3.3), while the Poincaré inequality is the weakest form.

The same decreasing property holds for inequality (3.2).

Proposition 3.0.2. For any g > 0 and p € (1,2) the function

<

p 2\ 2\P 1(g*) +!
P50 |90 (n(g?) (—(M(gi))p>
is decreasing.

The proof of this proposition is not difficult but very involved, so we prefer to omit
it (see [6], Proposition 11).

Proof of Theorem 3.0.1. Let us start with assuming property (i), we consider

Vy(s) = Po(®p(Bisf)),

with ®,(x) 2’ Then

= p-1)
W(s) = 2P, (%@f))%@—p)@—m (Ff—((jm; G
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3 Nonlinear case

r(e)9)

—ng - and H := g, by CD(p, 00) identity (3.4)

with g = P,_f. Let us set G :=
becomes

W'(s) < 2P(G) + (2~ p)lp — VP, (%) |

Note that Py(G) =
Moreover P <%2>

" / 2 — P (\Iﬂ(g))Q
L (S) > 2p¥ (S) + TW

Dividing by ¥’(s), and applying the Gronwall’s Lemma to the function F(s) :=
'(s)

T(s) 0 Ve get

%(mg ('()e") ) > (2 . log“”) |

which is equivalent to
g’ —2pt
L 1og (t)—ez, > 0. (3.5)
dt U(t) 7

Integrating inequality (3.5) over [0, s] and using that the logarithm is an increasing
function, we get
V) W)

2—p — 2—p

U(s) s W(0) 7

which can be written also as

1 2 p \IJ/ 2ps
di (T‘P(S)’”H> =z di < (2);17 e2 ) '
t -5+ 1 t T(0) > p

Note that —22 4+ 1 = 2 ( 21 ). Therefore integrating over [0,#], we get
) P

et —1 U'(0)
2—p *

20 w(0)

2 ; (\If(t)ﬂTwa — W(O)ﬁ> > (36)

2(p—1

By recalling that ¥(t) = P, (%), the inequality (3.6) gives exactly property
().
To get property (ii), we proceed in the same way but integrating inequality (3.5)
over [s, ], i.e.
e V) )
e 2pt s ~ e 2p 7

T W)
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3.11Remarks on |the case of non-admissible fuinctions

that implies
'(s) < o—20(t=s) '(t)

2—p — 2—p
U(s) » U(t) »
or equivalently
2(p—1) ,
i \I/(S) P < i v (t) ie—Zp(t—s) '
ds % ~ ds \Ij(t)Q%” 2p

Integrating over [0, t], we get property (ii).

It remains to prove the reverse implications, i.e. (ii) or (iii) = CD(p, c0).
Both the proofs are very similar to the corresponding proofs given in the linear
case, so we omit these. O

As for the Fokker-Planck case, we now state the following corollary.
Corollary 3.0.2. Let (P,);>o be p-ergodic and p > 0, then p satisfies (3.1).

In the next result we show that CD(p, c0) criterion is not necessary for (3.1).
In fact we can also get (3.1) assuming a weaker inequality.

Proposition 3.0.3. Let us assume that
I (9%21“2(9)) >pp (gf’%’fﬂ(g)) , Vg>0 and pe(1,2).

Let p be an invariant measure w.r.t. L and p > 0, then (3.1) holds.

Proof. The idea of the proof is to calculate the derivatives of the following function

(1) = p(®y(Pf))) = / &, (Pf))d,

and then to find a suitable bound for U (¢).
More details on the proof can be found in [6] (Proposition 14). O

3.1 Remarks on the case of non-admissible functions

We want now to understand what happens when p ¢ [1,2). In this case the func-
tion @,(z) = p(;—il) is not admissible. Nevertheless we can get some similar results.
In the positive case, i.e. p € (0,1) U [2,400), we can get almost the same charac-

terization that we have found for admissible ®,, i.e. for p € (1,2).
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3 Nonlinear case

Theorem 3.1.1. Let p € (0,1)U[2, +00) and p € R. Then the following properties
are equivalent:

(i) L satisfies CD(p, 00) criterion.
(ii) For all t > 0,

1 —e 20t

P 1 1-— e_2pt
By () < Sy BTN (F ) G

where
P(f1T(f)%)
P, (fpi?F(f)) ’

K =|2-p(-pl|B-1) (

1-8
with =253 €0) = 50250 g
(a € (0,p), S €]0,1], pe (0,1),

4—p
=1,8>—= pe(1,2
a=1p>5—"p (1,2),

A —
(p, v, B) € a=1, =2, p=2, (= Poincaré inequality),

4
a=1, 8¢ {max{p—,()},l),p>2.
\ p—2

Remark 3.1.1. If a =1, § > %, p € (1,2), we are in the admissible case. In

such a case (x) < 1, so we can get a better inequality. Instead the case a € (0,p) is
much worse since £(z) > 1 and so the inequality provides us with less information.

Remark 3.1.2 (Open question). The case p < 0 is still open.

Corollary 3.1.1. If p > 0 and (P;);>0 is p-ergodic, you can get the related in-
equality (3.7), simply by replacing P, by p.

Remark 3.1.3. Another interesting case to study is ®,(z) = z%' In this case

lim ®,(z) = —logz.

;8 p( ) g
Hence, one can do similar computations and get the same results that we have
showed for ®,,.
Moreover, passing then to the limit as p — 07, one can deduce

10g/fdﬂ—/10gfdu—Ent§’0(f) g%/%dth#

Ly
f4

o0

We refer to [6] for more detail on this case.
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3.11Remarks on |the case of non-admissible fuinctions

Sketch of proof of Theorem 8.1.1. The method of the proof is similar to the one
used in the previous proofs. We define U(s) = P;(®,(g)) and g = P,_,f and we
calculate

¥(s) =21, (@) ) + CP (LT

Then by the CD(p, o0o) criterion we deduce
W'(5) > 2pW(5)+C Py (6" 'T(9)%) = 20(s)+CPy((¢" 71 (9))" (9T (9))" ")
> 20W'(s) + Po(g"'T(9)) P (T (9)%) .
2
Using again CD(p, 00) criterion, we have T'(Pf) < e 2"t P, <\/F(f)> . We omit

the calculations necessary to conclude the proof since they are very similar to the
ones given in the case p € (1,2). O

To conclude this note, we would like to quote an important result proved by
F.Y. Wang in the case of the Ornstein-Uhlenbeck semigroup.

Theorem 3.1.2 (F.Y. Wang). Let Lf = Af — <V\I/,Vf> with D = Id and
a=VV¥ and
dX, = 2dB, — VU(X,)dt.

Assuming p € R, the following properties are equivalent:
(i) L satisfies CD(p, o), i.e. Hess(f) > pld.

(i) The Harnack inequality holds, i.e. V f > 0, Va,y € R", ¥p > 1,

(Ptf)p(f[) < Pt(fp)(y) exp (pf 1 |z — yH2 er?p_ 1) ‘

(iii) Let su consider the Wasserstein distance

W3 () = int [ o = o] dr(a,).
where 7 is any map on R” x R™ having the measures p and v as marginals,
then
W3 (P}, Pfv) < e W3 (p,v),

where Py = L(X;) with Xy = p.

(iv) Forallt >0
W3(P/0,, Pf,) < e W3 (8,,0,) = e ||z —y*.

An important consequence of Wang’s Theorem is that by property (iii) or prop-

erty (iv) it is possible to deduce the concentration property and this implies the
Logarithm-Sobolev inequality.
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