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• Page 30, line 8: instead of
∫

(LPt)
2dµ read

∫
(LPtf)2dµ, thanks to Kevin Tanguy.

• Page 35, line 10: instead of ∑
y∈E

µ(x)L(x, y) = 0

read ∑
x∈E

µ(x)L(x, y) = 0,

thanks to Micha l Strzelecki.

• Page 36, line 4: instead of L̂ read K, thanks again to Micha l Strzelecki.

• Page 39, line -1: instead of F (x, T ) read F (T, x), thanks to Micha l Strzelecki.

• Page 42, line -4: the matrix g is supposed to be also definite-positive, thanks to Micha l Strz-
elecki.

• Page 49, line -13: instead of g = ψ′(f) read g = ψ(f), thanks to Micha l Strzelecki.

• Page 79, line -5: instead of
n∑

i,j=1

(∂ijf)2 >
1

n
(
n∑
i=1

∂2i f)2

read
n∑

i,j=1

(∂2ijf)2 >
1

n
(
n∑
i=1

∂2iif)2,

thanks to Micha l Strzelecki.
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• Page 90, line 11: instead of

k3(t, d) =
1

4πt)3/2
d

sinh(d)
exp

(
− t− d2

4t

)
read (add a ()

k3(t, d) =
1

(4πt)3/2
d

sinh(d)
exp

(
− t− d2

4t

)
• Page 95, Proposition 2.4.1. The proposition schould be replace by the following with its proof.

Proposition 2.4.1 Let Lf = f ′′+a(x)f ′ be defined on C∞c (0,∞), where a is a smooth function
on (0,∞). Then the operator L is symmetric with respect to the measure dµ = eAdx where
A′ = a. Moreover, as soon as there exist two constants C > 0 and c > 3/4 such that

a′(x) +
a2(x)

2
>

c

x2
− C, x > 0,

then L is essentially self-adjoint.

Proof
C We briefly outline the arguments. The fact that L is symmetric with respect to dµ = eAdx
is immediate (see Section 2.6). Remove then the gradient in L according to the technique
described in Sect. 1.15.7, p. 65. The problem is reduced to proving that the operator L1f =
f ′′ −Kf where K = a′

2
+ a2

4
is essentially self-adjoint on (0,∞) with respect to the Lebesgue

measure. To this task, according to Proposition A.5.3, p. 482, it is enough to show that for some
λ ∈ R, the equation f ′′ = (λ+K)f (understood in the distributional sense) has no solution in
L2(dx) = L2((0,∞), dx) except 0. By the hypothesis, λ may be chosen so that λ+K > K0(x)
where K0(x) = c

x2
. Any solution f on (0,∞) of f ′′ = (K + λ)f is as smooth as K. Assuming

that f is not identically 0, up to a sign change, let f(x0) > 0 for some x0 > 0. Now, if
f ′(x0) > 0, it is easy to see from f ′′ > K0(x)f that f increases on (x0,∞), and is therefore
convex on this interval. Being convex it grows at least linearly at infinity and therefore is not
in L2(dx).

On the other hand, if f ′(x0) < 0, from standard arguments, f is bounded from below by the
solution f0 of f ′′0 = K0f0 which has the same value and same derivative at x0. To check that f
is not in L2(dx), it is therefore enough to see that f 2

0 may not be integrable near 0. But the
solutions of f ′′0 = K0f0 are linear combinations of xα1 and xα2 where α1 and α2 are solutions
of α(α − 1) = c. Since f ′0(x0) < 0, f0 behaves near the origin like βxα1 , with β ∈ R and
α1 = (1 −

√
1 + 4c)/2. Then, f0 /∈ L2(dx) iff 2α1 ≤ −1 that is c > 3

4
Then the proposition is

established. B

• Page 102. Proposition 2.6.1 should be replaced by the following.

Proposition 2.6.1 Let Lf = f ′′ + cf ′ be a Sturm-Liouville operator on (−1,+1). Assume
that c is smooth in (−1,+1) and that there exist C1, C2 > 0 such that for every x ∈ (−1,+1),

c′(x) +
c2(x)

2
>

3

4
max

(
(1 + x)−2, (1− x)−2

)
− C2.

Then L is essentially self-adjoint.
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• Page 102, line 7, instead of min(α−, α+) > 2 read

min(α−, α+) >
2 +
√

10

2
.

• Page 108, line 7, the sentence should be replaced by the folowing :

that is L = ∆− 2x · ∇, the Ornstein-Uhlenbeck operator, up to a scaling.

• Page 129, line -1: instead of

Γ(f)(x) = lim
k→∞

( 1

2tk
Ptk(f 2)(x)− Ptk(f)(x)2

)
read

Γ(f)(x) = lim
k→∞

1

2tk

(
Ptk(f 2)(x)− Ptk(f)2(x)

)
thanks to Micha l Strzelecki.

• Page 152, line -7: Item (iii) has to be understood as follows, for any functions f1, · · · , fk ∈ A
and Ψ : Rk → R a smooth function (C∞), then Ψ(f1, · · · , fk) ∈ A.

• Page 156, line 17: instead of f − g read f + g (three times), thanks to Micha l Strzelecki.

• Page 158, line 13: instead of

H(f)(g, h) =
1

2

[
Γ
(
g,Γ(f, h)

)
+ Γ

(
h,Γ(f, g)

)
− Γ

(
f,Γ(g, h

)]
.

read (add a ))

H(f)(g, h) =
1

2

[
Γ
(
g,Γ(f, h)

)
+ Γ

(
h,Γ(f, g)

)
− Γ

(
f,Γ(g, h

))]
.

• Page 170, line -6: remove L∗(f) at the beginning of the formula.

• Page 200, line -8 to the end of the page. Replace the paragraph by the following:

The second set (ii) of inequalities, without any boundary condition, appears as a consequence
of (iii) by symmetrization and periodization (for f : [0, 1]→ R arbitrary, define g : [−1,+1]→
R by g(x) = f(x) for x ∈ [0,+1], g(x) = f(−x) for x ∈ [−1, 0], and apply (iii) to g on the
interval [−1,+1] after re-scaling).

Finally (i) is a consequence of (iii) by anti-symmetrization and periodization. For f : [0, 1]→ R
such that f(0) = f(1) = 0, define g : [−1,+1] → R by g(x) = f(x) for x ∈ [0,+1], g(x) =
−f(−x) for x ∈ [−1, 0]. Then∫

[0,1]

f 2dx =

∫
[−1,1]

g2
dx

2
−
(∫

[−1,1]
g
dx

2

)2

≤ 1

π2

∫
[−1,1]

g′2
dx

2
=

1

π2

∫
[0,1]

f ′2dx,

where (iii) has been applied to the probability measure 1[−1,1]
dx
2

with the optimal constant
1/π2. The function f(x) = sin(πx) is an optimal function from a direct computation.
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• Page 201, line -7: instead of ∫
K

(f 2
` −

1

µ(K)

∫
K

f`dµ)2dµ,

read ∫
K

(f` −
1

µ(K)

∫
K

f`dµ)2dµ,

(thanks to Arnak Dalalyan).

• Page 205, Proposition 4.6.4: instead of

CK∪L ≤
µ(K ∩ L)

µ(K ∪ L)
max(CK , CL),

read

CK∪L ≤ 2
µ(K ∩ L)

µ(K ∪ L)
max(CK , CL),

(thanks to Micha l Strzeleck).

• Page 211, line 5: instead of Γ(Ptf) = O(t−1/2) read
√

Γ(Ptf) = O(t−1/2).

• Page 240, line -1: instead of s =
∫
E
fdµ read s = f , thanks to Micha l Strzelecki.

• Page 249, Proposition 5.2.7: instead of E1,E2 read E1, E2.

• Page 251, formula (5.3.2), read (q − 1)k/2 instead of (q − 1)k, thanks to Max Fathi.

• Page 263, line 11: instead of Λq−1(s) in the LHS, read

q2

q′
Λq−1(s)Λ′(s),

moreover the function q is decreasing, thanks to Micha l Strzelecki.

• Page 267, line -7: instead of
d(x, y)

2t

in the RHS, read
d(x, y)

2
√
t
,

thanks to Micha l Strzelecki.

• Page 298, line -8: instead of

Pt(f log f)− Ptf logPtf ≤ t∆Ptf +
n

2
log(1− 2t

n

Pt(f∆(log f))

Ptf
),

read

Pt(f log f)− Ptf logPtf ≤ t∆Ptf +
n

2
Ptf log(1− 2t

n

Pt(f∆(log f))

Ptf
).
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• Page 298. The proof of Theorem 6.7.3 can be simplified as follows.

Let f be a nonnegative function and let, as usual, for s ∈ [0, t]

Λ(s) = Ps(Pt−sf logPt−sf).

As already observed,
Λ′(s) = Ps(Pt−sfΓ(logPt−sf)),

Λ′′(s) = 2Ps(Pt−sfΓ2(logPt−sf))

and the CD(0, n) condition yields the inequality (6.7.6) page 300,

Λ′′(s) >
2

nPtf
[LPtf − Λ′(s)]2.

Now, letting ϕ(s) = Λ(s)− sLPtf , the previous inequality can be reformulated as,

ϕ′′(s) >
2

nPtf
(ϕ′(s))2, s ∈ [0, t].

In other words, the map

[0, t] 3 s 7→ exp

(
− 2

nPtf
ϕ(s)

)
is concave.

Then the two inequalities hold true:

− 2

nPtf
ϕ′(t) exp

(
− 2

nPtf
ϕ(t)

)
≤

exp
(
− 2
nPtf

ϕ(t)
)
− exp

(
− 2
nPtf

ϕ(0)
)

t
≤

− 2

nPtf
ϕ′(0) exp

(
− 2

nPtf
ϕ(0)

)
.

The first inequality can be written as

Pt

(
Γ(f)

f

)
− LPtf +

n

2t
Ptf >

n

2t
Ptf exp

(
− 2

nPtf
(ϕ(0)− ϕ(t)

)
,

which is a reformulation of inequality (6.7.4), and the second one can be written as

−Γ(Ptf)

Ptf
+ LPtf +

n

2t
Ptf >

n

2t
Ptf exp

(
− 2

nPtf
(ϕ(t)− ϕ(0)

)
,

which is a reformulation of inequality (6.7.5). We recover the Li-Yau inequality since the
exponential is positive.

• Page 301, line 11: instead of

Λ′′(s) >
2[LPtf − Λ′(s)]2

nPtf
+ ρΛ′(s),

read

Λ′′(s) >
2[LPtf − Λ′(s)]2

nPtf
+ 2ρΛ′(s).
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• Page 308, additional information on Theorem 6.8.3. For all the computations explained on
page 309, the extremal function f has to satisfy some properties.

First, from the indentity ∫
(f q−1 − (1 + ε)f)udµ = CE(f, u),

we get ∫
f q−1udµ = C

∫
f
(1 + ε

C
u− Lu

)
dµ.

That is, if Rλ(u) = g with λ = 1+ε
C

, the equality becomes∫
(Rλ(f

q−1)− Cf)gdµ = 0.

This equalition implies back that

f =
1

C
Rλ(f

q−1)

and then, f ∈ D(L).

It is proved that f is bounded from above and below (by a strictly positive constant). From
the equation satisfied by f , we know that Lf is also bounded. To apply the various integration
by parts formula, we need to prove that for any constant a ∈ R, fa ∈ D(L). One way to prove
it is to show that Γ(f) is a bounded function.

From the first formula page 312, we have

f =
1

C
Rλ(f

q−1),

which implies that √
Γ(f) ≤ 1

C

∫ ∞
0

e−λt
√

Γ(Pt(f q−1)))dt.

Now, since the model satisfies the CD(0,∞) condition and f q−1 is a bounded function, In-
equality 4.7.7 page 211 implies that

√
Γ(Pt(f q−1))) ≤

||f q−1||∞√
t

, t > 0.

The two previous inequalities imply that Γ(f) is a bounded function.

• Page 315, formula (6.9.2): instead of L̂, read L̂(f).

• Page 317, line 12: instead of ∇W (f), read Γ(W, f).

• Page 318, line 13: instead of µ, read µg.

• Page 321, Proposition 6.9.6 and its proof have to be replaced by the following (see also [1] for
a more developed proof).
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Proposition 6.9.6 Let dµ = e−Wdµg and α ∈ R, then

Sα(µ,Γ) = γn(α)[scg − α∆gW + βn(α)Γ(W )]

is n-conformal invariant where

βn(α) =
α(n− 2n0 + 2)− 2(n0 − 1)

2(n− n0)

and

γn(α) =
n− 2

4(n0 − 1)− 2α(n− n0)
.

Proof
C It is enough to check that Sα(µ,Γ) satisfies the condition (6.9.1). The measure µ is trans-
formed to µ̂ = c−nµ, and Γ to Γ̂ = c2Γ. From the previous computations, scg becomes

ŝcg = c2[scg + (n0 − 1)(2∆gτ − (n0 − 2)Γ(τ))],

W = − log dµ
dµg

becomes

Ŵ = − log
dµ̂

dµ̂g

= − log
c−ndµ

c−n0dµg

= − log cn0−n dµ

dµg

= W + (n− n0)τ,

and finally, ∆g becomes

∆̂g = c2[∆g − (n0 − 2)Γ(τ, ·)].
So,

Sα(c−nµ, c2Γ) = c2γn(α)
[
scg + [2(n0 − 1)− α(n− n0)]∆g(τ)

+ [βn(α)(n− n0)
2 − (n0 − 1)(n0 − 2) + α(n0 − 2)(n− n0)]Γ(τ)

− α∆g(W ) + [α(n0 − 2) + 2βn(α)(n− n0)]Γ(τ,W ) + βn(α)Γ(W )
]
.

It has to be equal to

c2
[
γn(α)[scg − α∆g(W ) + βn(α)Γ(W )] +

n− 2

2

(
∆g(τ)− Γ(W, τ)− n− 2

2
Γ(τ)

)]
.

On can check the values of γn(α) and αn(α) proposed do the job. B

• Page 322, line -18: instead ∇∇U = −UId read ∇∇U = −UgSn0 where gS is the spherical
metric.

• Page 338, line -1: instead of I(u), read Iµ,F (u).

• Page 364, line -6: The sentence starting by In the finite measure case... is not correct. It has to
be replaced by the following one: In the finite measure case, the tight Nash inequality (3.2.3),
p. 281, corresponds to a function Φ which is the inverse function of (1,+∞) 3 x 7→ (x1+2/n −
x)/C.
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• Page 372, line -5: instead of e−C/t, read e−t/C .

• Page 373, line -13: instead of w(x) = p(x)1/2(1+x2)−β, read w(x) = p(x)−1/2(1+x2)−β (thanks
to Persi Diaconis).

• Page 425, Theorem 8.6.3: the set Adt should be here the dt-closed neighborhood of A instead
of the open one (Adt = {x ∈ E ; d(x,A) ≤ dt} instead of Adt = {x ∈ E ; d(x,A) < dt}).

• Page 448, line -7: (the line before formula (9.3.5)) the integration is w.r.t. the measure u1−1/ndx
instead of udx (thanks to Emanuel Milman).

• Page 464, formula (9.7.4) should be

W 2
2 (Ptfµ, Ptgµ) ≤ W 2

2 (fµ, gµ) + 2n(
√
t−
√
s)2,

thanks to Luigia Ripani.

• Page 516, in the formula (C.6.5) the last term should be

H(fi)(fj, fl)

instead of
H(fi)(fi, fl)

thanks to François Bolley.

• Page 514, line -2: instead of wrapped product, read, of course, warped products !
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