# Errata of the book <br> Analysis and Geometry of Markov Diffusion Operators Springer, Grundlehren der mathematischen Wissenschaften Vol. 348 (2013) 

Dominique Bakry, Ivan Gentil and Michel Ledoux

February 13, 2024

- Page 30, line 8: instead of $\int\left(L P_{t}\right)^{2} d \mu$ read $\int\left(L P_{t} f\right)^{2} d \mu$, thanks to Kevin Tanguy.
- Page 35, line 10: instead of

$$
\sum_{y \in E} \mu(x) \mathrm{L}(x, y)=0
$$

read

$$
\sum_{x \in E} \mu(x) \mathrm{L}(x, y)=0
$$

thanks to Michał Strzelecki.

- Page 36, line 4: instead of $\hat{L}$ read $K$, thanks again to Michał Strzelecki.
- Page 39, line -1: instead of $F(x, T)$ read $F(T, x)$, thanks to Michał Strzelecki.
- Page 42, line -4: the matrix $\mathfrak{g}$ is supposed to be also definite-positive, thanks to Michał Strzelecki.
- Page 49, line -13: instead of $g=\psi^{\prime}(f)$ read $g=\psi(f)$, thanks to Michał Strzelecki.
- Page 79, line -5: instead of

$$
\sum_{i, j=1}^{n}\left(\partial_{i j} f\right)^{2} \geqslant \frac{1}{n}\left(\sum_{i=1}^{n} \partial_{i}^{2} f\right)^{2}
$$

read

$$
\sum_{i, j=1}^{n}\left(\partial_{i j}^{2} f\right)^{2} \geqslant \frac{1}{n}\left(\sum_{i=1}^{n} \partial_{i i}^{2} f\right)^{2}
$$

thanks to Michał Strzelecki.

- Page 90, line 11: instead of

$$
k_{3}(t, d)=\frac{1}{4 \pi t)^{3 / 2}} \frac{d}{\sinh (d)} \exp \left(-t-\frac{d^{2}}{4 t}\right)
$$

read (add a ()

$$
k_{3}(t, d)=\frac{1}{(4 \pi t)^{3 / 2}} \frac{d}{\sinh (d)} \exp \left(-t-\frac{d^{2}}{4 t}\right)
$$

- Page 95, Proposition 2.4.1. The proposition schould be replace by the following with its proof.

Proposition 2.4.1 Let $\mathbf{L} f=f^{\prime \prime}+a(x) f^{\prime}$ be defined on $\mathcal{C}_{c}^{\infty}(0, \infty)$, where $a$ is a smooth function on $(0, \infty)$. Then the operator $\mathbf{L}$ is symmetric with respect to the measure $d \mu=e^{A} d x$ where $A^{\prime}=a$. Moreover, as soon as there exist two constants $C>0$ and $c \geqslant 3 / 4$ such that

$$
a^{\prime}(x)+\frac{a^{2}(x)}{2} \geqslant \frac{c}{x^{2}}-C, x>0
$$

then $\mathbf{L}$ is essentially self-adjoint.

## Proof

$\triangleleft$ We briefly outline the arguments. The fact that $\mathbf{L}$ is symmetric with respect to $d \mu=e^{A} d x$ is immediate (see Section 2.6). Remove then the gradient in $\mathbf{L}$ according to the technique described in Sect. 1.15.7, p. 65. The problem is reduced to proving that the operator $\mathbf{L}_{1} f=$ $f^{\prime \prime}-K f$ where $K=\frac{a^{\prime}}{2}+\frac{a^{2}}{4}$ is essentially self-adjoint on $(0, \infty)$ with respect to the Lebesgue measure. To this task, according to Proposition A.5.3, p. 482, it is enough to show that for some $\lambda \in \mathbf{R}$, the equation $f^{\prime \prime}=(\lambda+K) f$ (understood in the distributional sense) has no solution in $\mathcal{L}^{2}(d x)=\mathcal{L}^{2}((0, \infty), d x)$ except 0 . By the hypothesis, $\lambda$ may be chosen so that $\lambda+K \geqslant K_{0}(x)$ where $K_{0}(x)=\frac{c}{x^{2}}$. Any solution $f$ on $(0, \infty)$ of $f^{\prime \prime}=(K+\lambda) f$ is as smooth as $K$. Assuming that $f$ is not identically 0 , up to a sign change, let $f\left(x_{0}\right)>0$ for some $x_{0}>0$. Now, if $f^{\prime}\left(x_{0}\right)>0$, it is easy to see from $f^{\prime \prime} \geqslant K_{0}(x) f$ that $f$ increases on $\left(x_{0}, \infty\right)$, and is therefore convex on this interval. Being convex it grows at least linearly at infinity and therefore is not in $\mathcal{L}^{2}(d x)$.
On the other hand, if $f^{\prime}\left(x_{0}\right)<0$, from standard arguments, $f$ is bounded from below by the solution $f_{0}$ of $f_{0}^{\prime \prime}=K_{0} f_{0}$ which has the same value and same derivative at $x_{0}$. To check that $f$ is not in $\mathcal{L}^{2}(d x)$, it is therefore enough to see that $f_{0}^{2}$ may not be integrable near 0 . But the solutions of $f_{0}^{\prime \prime}=K_{0} f_{0}$ are linear combinations of $x^{\alpha_{1}}$ and $x^{\alpha_{2}}$ where $\alpha_{1}$ and $\alpha_{2}$ are solutions of $\alpha(\alpha-1)=c$. Since $f_{0}^{\prime}\left(x_{0}\right)<0, f_{0}$ behaves near the origin like $\beta x^{\alpha_{1}}$, with $\beta \in \mathbf{R}$ and $\alpha_{1}=(1-\sqrt{1+4 c}) / 2$. Then, $f_{0} \notin \mathcal{L}^{2}(d x)$ iff $2 \alpha_{1} \leq-1$ that is $c \geqslant \frac{3}{4}$ Then the proposition is established. $\triangleright$

- Page 102. Proposition 2.6 .1 should be replaced by the following.

Proposition 2.6.1 Let $\mathbf{L} f=f^{\prime \prime}+c f^{\prime}$ be a Sturm-Liouville operator on $(-1,+1)$. Assume that $c$ is smooth in $(-1,+1)$ and that there exist $C_{1}, C_{2}>0$ such that for every $x \in(-1,+1)$,

$$
c^{\prime}(x)+\frac{c^{2}(x)}{2} \geqslant \frac{3}{4} \max \left((1+x)^{-2},(1-x)^{-2}\right)-C_{2} .
$$

Then $\mathbf{L}$ is essentially self-adjoint.

- Page 102, line 7, instead of $\min \left(\alpha_{-}, \alpha_{+}\right)>2$ read

$$
\min \left(\alpha_{-}, \alpha_{+}\right) \geqslant \frac{2+\sqrt{10}}{2}
$$

- Page 108, line 7, the sentence should be replaced by the folowing :
that is $L=\Delta-2 x \cdot \nabla$, the Ornstein-Uhlenbeck operator, up to a scaling.
- Page 129, line -1: instead of

$$
\Gamma(f)(x)=\lim _{k \rightarrow \infty}\left(\frac{1}{2 t_{k}} P_{t_{k}}\left(f^{2}\right)(x)-P_{t_{k}}(f)(x)^{2}\right)
$$

read

$$
\Gamma(f)(x)=\lim _{k \rightarrow \infty} \frac{1}{2 t_{k}}\left(P_{t_{k}}\left(f^{2}\right)(x)-P_{t_{k}}(f)^{2}(x)\right)
$$

thanks to Michał Strzelecki.

- Page 152, line -7: Item (iii) has to be understood as follows, for any functions $f_{1}, \cdots, f_{k} \in \mathcal{A}$ and $\Psi: \mathbf{R}^{k} \rightarrow \mathbf{R}$ a smooth function $\left(\mathcal{C}^{\infty}\right)$, then $\Psi\left(f_{1}, \cdots, f_{k}\right) \in \mathcal{A}$.
- Page 156, line 17: instead of $f-g$ read $f+g$ (three times), thanks to Michał Strzelecki.
- Page 158, line 13: instead of

$$
H(f)(g, h)=\frac{1}{2}[\Gamma(g, \Gamma(f, h))+\Gamma(h, \Gamma(f, g))-\Gamma(f, \Gamma(g, h)]
$$

$\operatorname{read}(\operatorname{add} a))$

$$
H(f)(g, h)=\frac{1}{2}[\Gamma(g, \Gamma(f, h))+\Gamma(h, \Gamma(f, g))-\Gamma(f, \Gamma(g, h))]
$$

- Page 170, line -6: remove $L^{*}(f)$ at the beginning of the formula.
- Page 200, line -8 to the end of the page. Replace the paragraph by the following:

The second set (ii) of inequalities, without any boundary condition, appears as a consequence of (iii) by symmetrization and periodization (for $f:[0,1] \rightarrow \mathbf{R}$ arbitrary, define $g:[-1,+1] \rightarrow$ $\mathbf{R}$ by $g(x)=f(x)$ for $x \in[0,+1], g(x)=f(-x)$ for $x \in[-1,0]$, and apply (iii) to $g$ on the interval $[-1,+1]$ after re-scaling).
Finally (i) is a consequence of (iii) by anti-symmetrization and periodization. For $f:[0,1] \rightarrow \mathbf{R}$ such that $f(0)=f(1)=0$, define $g:[-1,+1] \rightarrow \mathbf{R}$ by $g(x)=f(x)$ for $x \in[0,+1], g(x)=$ $-f(-x)$ for $x \in[-1,0]$. Then

$$
\int_{[0,1]} f^{2} d x=\int_{[-1,1]} g^{2} \frac{d x}{2}-\left(\int_{[-1,1]} g \frac{d x}{2}\right)^{2} \leq \frac{1}{\pi^{2}} \int_{[-1,1]} g^{\prime 2} \frac{d x}{2}=\frac{1}{\pi^{2}} \int_{[0,1]} f^{\prime 2} d x
$$

where (iii) has been applied to the probability measure $1_{[-1,1]} \frac{d x}{2}$ with the optimal constant $1 / \pi^{2}$. The function $f(x)=\sin (\pi x)$ is an optimal function from a direct computation.

- Page 201, line -7: instead of

$$
\int_{K}\left(f_{\ell}^{2}-\frac{1}{\mu(K)} \int_{K} f_{\ell} d \mu\right)^{2} d \mu
$$

read

$$
\int_{K}\left(f_{\ell}-\frac{1}{\mu(K)} \int_{K} f_{\ell} d \mu\right)^{2} d \mu
$$

(thanks to Arnak Dalalyan).

- Page 205, Proposition 4.6.4: instead of

$$
C_{K \cup L} \leq \frac{\mu(K \cap L)}{\mu(K \cup L)} \max \left(C_{K}, C_{L}\right)
$$

read

$$
C_{K \cup L} \leq 2 \frac{\mu(K \cap L)}{\mu(K \cup L)} \max \left(C_{K}, C_{L}\right)
$$

(thanks to Michał Strzeleck).

- Page 211, line 5: instead of $\Gamma\left(P_{t} f\right)=O\left(t^{-1 / 2}\right) \operatorname{read} \sqrt{\Gamma\left(P_{t} f\right)}=O\left(t^{-1 / 2}\right)$.
- Page 240, line -1: instead of $s=\int_{E} f d \mu$ read $s=f$, thanks to Michał Strzelecki.
- Page 249, Proposition 5.2.7: instead of $\mathbb{E}_{1}, \mathbb{E}_{2}$ read $E_{1}, E_{2}$.
- Page 251, formula (5.3.2), read $(q-1)^{k / 2}$ instead of $(q-1)^{k}$, thanks to Max Fathi.
- Page 263, line 11: instead of $\Lambda^{q-1}(s)$ in the LHS, read

$$
\frac{q^{2}}{q^{\prime}} \Lambda^{q-1}(s) \Lambda^{\prime}(s)
$$

moreover the function $q$ is decreasing, thanks to Michał Strzelecki.

- Page 267, line -7: instead of

$$
\frac{d(x, y)}{2 t}
$$

in the RHS, read

$$
\frac{d(x, y)}{2 \sqrt{t}}
$$

thanks to Michał Strzelecki.

- Page 298, line -8: instead of

$$
P_{t}(f \log f)-P_{t} f \log P_{t} f \leq t \Delta P_{t} f+\frac{n}{2} \log \left(1-\frac{2 t}{n} \frac{P_{t}(f \Delta(\log f))}{P_{t} f}\right)
$$

read

$$
P_{t}(f \log f)-P_{t} f \log P_{t} f \leq t \Delta P_{t} f+\frac{n}{2} P_{t} f \log \left(1-\frac{2 t}{n} \frac{P_{t}(f \Delta(\log f))}{P_{t} f}\right) .
$$

- Page 298. The proof of Theorem 6.7.3 can be simplified as follows.

Let $f$ be a nonnegative function and let, as usual, for $s \in[0, t]$

$$
\Lambda(s)=P_{s}\left(P_{t-s} f \log P_{t-s} f\right) .
$$

As already observed,

$$
\begin{aligned}
\Lambda^{\prime}(s) & =P_{s}\left(P_{t-s} f \Gamma\left(\log P_{t-s} f\right)\right) \\
\Lambda^{\prime \prime}(s) & =2 P_{s}\left(P_{t-s} f \Gamma_{2}\left(\log P_{t-s} f\right)\right)
\end{aligned}
$$

and the $C D(0, n)$ condition yields the inequality (6.7.6) page 300 ,

$$
\Lambda^{\prime \prime}(s) \geqslant \frac{2}{n P_{t} f}\left[L P_{t} f-\Lambda^{\prime}(s)\right]^{2} .
$$

Now, letting $\varphi(s)=\Lambda(s)-s L P_{t} f$, the previous inequality can be reformulated as,

$$
\varphi^{\prime \prime}(s) \geqslant \frac{2}{n P_{t} f}\left(\varphi^{\prime}(s)\right)^{2}, \quad s \in[0, t]
$$

In other words, the map

$$
[0, t] \ni s \mapsto \exp \left(-\frac{2}{n P_{t} f} \varphi(s)\right)
$$

is concave.
Then the two inequalities hold true:

$$
\begin{aligned}
-\frac{2}{n P_{t} f} \varphi^{\prime}(t) \exp \left(-\frac{2}{n P_{t} f} \varphi(t)\right) \leq \frac{\exp \left(-\frac{2}{n P_{t} f} \varphi(t)\right)-\exp \left(-\frac{2}{n P_{t} f} \varphi(0)\right)}{t} & \leq \\
& -\frac{2}{n P_{t} f} \varphi^{\prime}(0) \exp \left(-\frac{2}{n P_{t} f} \varphi(0)\right)
\end{aligned}
$$

The first inequality can be written as

$$
P_{t}\left(\frac{\Gamma(f)}{f}\right)-L P_{t} f+\frac{n}{2 t} P_{t} f \geqslant \frac{n}{2 t} P_{t} f \exp \left(-\frac{2}{n P_{t} f}(\varphi(0)-\varphi(t)),\right.
$$

which is a reformulation of inequality (6.7.4), and the second one can be written as

$$
-\frac{\Gamma\left(P_{t} f\right)}{P_{t} f}+L P_{t} f+\frac{n}{2 t} P_{t} f \geqslant \frac{n}{2 t} P_{t} f \exp \left(-\frac{2}{n P_{t} f}(\varphi(t)-\varphi(0)),\right.
$$

which is a reformulation of inequality (6.7.5). We recover the Li-Yau inequality since the exponential is positive.

- Page 301, line 11: instead of

$$
\Lambda^{\prime \prime}(s) \geqslant \frac{2\left[L P_{t} f-\Lambda^{\prime}(s)\right]^{2}}{n P_{t} f}+\rho \Lambda^{\prime}(s)
$$

read

$$
\Lambda^{\prime \prime}(s) \geqslant \frac{2\left[L P_{t} f-\Lambda^{\prime}(s)\right]^{2}}{n P_{t} f}+2 \rho \Lambda^{\prime}(s)
$$

- Page 308, additional information on Theorem 6.8.3. For all the computations explained on page 309, the extremal function $f$ has to satisfy some properties.
First, from the indentity

$$
\int\left(f^{q-1}-(1+\epsilon) f\right) u d \mu=C \mathcal{E}(f, u)
$$

we get

$$
\int f^{q-1} u d \mu=C \int f\left(\frac{1+\epsilon}{C} u-L u\right) d \mu
$$

That is, if $R_{\lambda}(u)=g$ with $\lambda=\frac{1+\epsilon}{C}$, the equality becomes

$$
\int\left(R_{\lambda}\left(f^{q-1}\right)-C f\right) g d \mu=0 .
$$

This equalition implies back that

$$
f=\frac{1}{C} R_{\lambda}\left(f^{q-1}\right)
$$

and then, $f \in \mathcal{D}(L)$.
It is proved that $f$ is bounded from above and below (by a strictly positive constant). From the equation satisfied by $f$, we know that $L f$ is also bounded. To apply the various integration by parts formula, we need to prove that for any constant $a \in \mathbf{R}, f^{a} \in \mathcal{D}(L)$. One way to prove it is to show that $\Gamma(f)$ is a bounded function.
From the first formula page 312, we have

$$
f=\frac{1}{C} R_{\lambda}\left(f^{q-1}\right),
$$

which implies that

$$
\sqrt{\Gamma(f)} \leq \frac{1}{C} \int_{0}^{\infty} e^{-\lambda t} \sqrt{\left.\Gamma\left(P_{t}\left(f^{q-1}\right)\right)\right) d t}
$$

Now, since the model satisfies the $C D(0, \infty)$ condition and $f^{q-1}$ is a bounded function, Inequality 4.7.7 page 211 implies that

$$
\sqrt{\left.\Gamma\left(P_{t}\left(f^{q-1}\right)\right)\right)} \leq \frac{\left\|f^{q-1}\right\|_{\infty}}{\sqrt{t}}, t>0 .
$$

The two previous inequalities imply that $\Gamma(f)$ is a bounded function.

- Page 315, formula (6.9.2): instead of $\hat{L}$, read $\hat{L}(f)$.
- Page 317, line 12: instead of $\nabla W(f), \operatorname{read} \Gamma(W, f)$.
- Page 318, line 13: instead of $\mu$, read $\mu_{\mathfrak{g}}$.
- Page 321, Proposition 6.9.6 and its proof have to be replaced by the following (see also [1] for a more developed proof).

Proposition 6.9.6 Let $d \mu=e^{-W} d \mu_{\mathfrak{g}}$ and $\alpha \in \mathbf{R}$, then

$$
S_{\alpha}(\mu, \Gamma)=\gamma_{n}(\alpha)\left[s c_{\mathfrak{g}}-\alpha \Delta_{\mathfrak{g}} W+\beta_{n}(\alpha) \Gamma(W)\right]
$$

is $n$-conformal invariant where

$$
\beta_{n}(\alpha)=\frac{\alpha\left(n-2 n_{0}+2\right)-2\left(n_{0}-1\right)}{2\left(n-n_{0}\right)}
$$

and

$$
\gamma_{n}(\alpha)=\frac{n-2}{4\left(n_{0}-1\right)-2 \alpha\left(n-n_{0}\right)} .
$$

## Proof

$\triangleleft$ It is enough to check that $S_{\alpha}(\mu, \Gamma)$ satisfies the condition (6.9.1). The measure $\mu$ is transformed to $\hat{\mu}=c^{-n} \mu$, and $\Gamma$ to $\hat{\Gamma}=c^{2} \Gamma$. From the previous computations, $s c_{\mathfrak{g}}$ becomes

$$
\hat{s c_{\mathfrak{g}}}=c^{2}\left[s c_{\mathfrak{g}}+\left(n_{0}-1\right)\left(2 \Delta_{\mathfrak{g}} \tau-\left(n_{0}-2\right) \Gamma(\tau)\right)\right],
$$

$W=-\log \frac{d \mu}{d \mu_{\mathfrak{g}}}$ becomes

$$
\hat{W}=-\log \frac{d \hat{\mu}}{d \hat{\mu}_{\mathfrak{g}}}=-\log \frac{c^{-n} d \mu}{c^{-n_{0}} d \mu_{\mathfrak{g}}}=-\log c^{n_{0}-n} \frac{d \mu}{d \mu_{\mathfrak{g}}}=W+\left(n-n_{0}\right) \tau
$$

and finally, $\Delta_{\mathfrak{g}}$ becomes

$$
\hat{\Delta}_{\mathfrak{g}}=c^{2}\left[\Delta_{\mathfrak{g}}-\left(n_{0}-2\right) \Gamma(\tau, \cdot)\right] .
$$

So,

$$
\begin{aligned}
S_{\alpha}\left(c^{-n} \mu, c^{2} \Gamma\right)= & c^{2} \gamma_{n}(\alpha)\left[s c_{\mathfrak{g}}+\left[2\left(n_{0}-1\right)-\alpha\left(n-n_{0}\right)\right] \Delta_{\mathfrak{g}}(\tau)\right. \\
+ & {\left[\beta_{n}(\alpha)\left(n-n_{0}\right)^{2}-\left(n_{0}-1\right)\left(n_{0}-2\right)+\alpha\left(n_{0}-2\right)\left(n-n_{0}\right)\right] \Gamma(\tau) } \\
& \left.\quad-\alpha \Delta_{\mathfrak{g}}(W)+\left[\alpha\left(n_{0}-2\right)+2 \beta_{n}(\alpha)\left(n-n_{0}\right)\right] \Gamma(\tau, W)+\beta_{n}(\alpha) \Gamma(W)\right] .
\end{aligned}
$$

It has to be equal to

$$
c^{2}\left[\gamma_{n}(\alpha)\left[s c_{\mathfrak{g}}-\alpha \Delta_{\mathfrak{g}}(W)+\beta_{n}(\alpha) \Gamma(W)\right]+\frac{n-2}{2}\left(\Delta_{\mathfrak{g}}(\tau)-\Gamma(W, \tau)-\frac{n-2}{2} \Gamma(\tau)\right)\right] .
$$

On can check the values of $\gamma_{n}(\alpha)$ and $\alpha_{n}(\alpha)$ proposed do the job. $\triangleright$

- Page 322, line -18: instead $\nabla \nabla U=-U I d$ read $\nabla \nabla U=-U g_{\mathbf{S}^{n} 0}$ where $g_{\mathbf{S}}$ is the spherical metric.
- Page 338, line -1: instead of $I(u)$, read $I_{\mu, F}(u)$.
- Page 364, line -6: The sentence starting by In the finite measure case... is not correct. It has to be replaced by the following one: In the finite measure case, the tight Nash inequality (3.2.3), p. 281, corresponds to a function $\Phi$ which is the inverse function of $(1,+\infty) \ni x \mapsto\left(x^{1+2 / n}-\right.$ $x) / C$.
- Page 372, line -5: instead of $e^{-C / t}$, read $e^{-t / C}$.
- Page 373, line -13: instead of $w(x)=p(x)^{1 / 2}\left(1+x^{2}\right)^{-\beta}$, read $w(x)=p(x)^{-1 / 2}\left(1+x^{2}\right)^{-\beta}$ (thanks to Persi Diaconis).
- Page 425, Theorem 8.6.3: the set $A_{d_{t}}$ should be here the $d_{t}$-closed neighborhood of $A$ instead of the open one $\left(A_{d_{t}}=\left\{x \in E ; d(x, A) \leq d_{t}\right\}\right.$ instead of $\left.A_{d_{t}}=\left\{x \in E ; d(x, A)<d_{t}\right\}\right)$.
- Page 448, line -7: (the line before formula (9.3.5)) the integration is w.r.t. the measure $u^{1-1 / n} d x$ instead of $u d x$ (thanks to Emanuel Milman).
- Page 464 , formula (9.7.4) should be

$$
W_{2}^{2}\left(P_{t} f \mu, P_{t} g \mu\right) \leq W_{2}^{2}(f \mu, g \mu)+2 n(\sqrt{t}-\sqrt{s})^{2},
$$

thanks to Luigia Ripani.

- Page 516, in the formula (C.6.5) the last term should be

$$
H\left(f_{i}\right)\left(f_{j}, f_{l}\right)
$$

instead of

$$
H\left(f_{i}\right)\left(f_{i}, f_{l}\right)
$$

thanks to François Bolley.

- Page 514, line -2: instead of wrapped product, read, of course, warped products !


## References

[1] L. Dupaigne, I. Gentil, S. Zugmeyer. A conformal geometric point of view on the Caffarelli-Kohn-Nirenberg inequality. Preprint 2021.

