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Abstract

We present a new class of modified logarithmic Sobolev inequality, interpolating between
Poincaré and logarithmic Sobolev inequalities, suitable for measures of the type exp(—|z|*) or
exp(—|z|*log? (2+|z])) (a €]1,2[ and 8 € R) which lead to new concentration inequalities. These
modified inequalities share common properties with usual logarithmic Sobolev inequalities, as
tensorisation or perturbation, and imply as well Poincaré inequality. We also study the link
between these new modified logarithmic Sobolev inequalities and transportation inequalities.

1 Introduction

A probability measure p on R" satisfies a logarithmic Sobolev inequality if there exists C' < oo such
that, for every smooth enough functions f on R”,

Ent, (f2) < O / V£ 2dp, (1)

where
But,(12) = [ flog s dn— [ faulog [ fdu
and where |V f| is the Euclidean length of the gradient V f of f.

Gross in [Gro75] defines this inequality and shows that the canonical Gaussian measure with den-
sity (2m)~" 2¢~171°/2 with respect to the Lebesgue measure on R” is the basic example of measure
p satisfying (1) with the optimal constant C' = 2. Since then, many results have presented mea-
sures satisfying such an inequality, among them the famous Bakry-Emery I's criterion, we refer to
Bakry [Bak94] and Ledoux [Led99] for further references and details on various applications of these
inequalities.

Let a > 1 and define the probability measure u, on R by

1 a
fia(dz) = Z—ef'w' dz, (2)

[e%



where Z, = [ e~ 171dz. Tt is well-known that the probability measure u, satisfies a logarithmic
Sobolev inequality (1) if and only if @ > 2. But for a € [1,2[, even if the measure u, does not
satisfy (1), it satisfies a Poincaré inequality (or spectral gap inequality) which is for every smooth
enough function f,

Var, (f) < C / IV 2dta, 3)

where Var,, (f) = [ f*dpa — (ffdua)2 and C < oc.

Recall, see for example Section 1.2.6 of [ABC*00], that if a probability measure on R" satisfies a
logarithmic Sobolev inequality with constant C then it satisfies a Poincaré inequality with a constant
no greater than C/2.

The problem is then to interpolate between logarithmic Sobolev and Poincaré inequalities, which
will help us to study further properties, such as concentration, of measures p&" for « € [1,2] and
n € N*.

A first answer was brought by Latata-Oleszkiewicz in [LO00] and recently extended by Barthe-
Roberto in [BR03]. Let p be a probability measure on R", 4 satisfies inequality I,(a) (for a € [0,1])
with constant 0 < C' < oo if for all p € [1,2[ and f be a measurable, square integrable non-negative

function on R, )
2/p
[ an= ([ i) " <ce-pe [[9ifa @)

Inequality (4) was introduced by Beckner in [Bec89], it interpolates Poincaré and logarithmic Sobolev
inequalities for the Gaussian measure. In [LOO00], the authors prove that the measure p, (for
a € [1,2]) satisfies such an inequality for a constant C < oo and with a = 2(a — 1)/a. And
in [BRO3] the authors present a simple proof of Latata-Oleszkiewicz’s results and describe measures
on the line which enjoy the same inequality.

Our main purpose here will be to establish another type of interpolation between logarithmic Sobolev
and Poincaré inequalities, more directly linked to the structure of the usual logarithmic Sobolev
inequalities, i.e. an inequality “entropy-energy” where we will modify the energy to enable us
to consider u, measure. Note that this point of view was the one used by Bobkov-Ledoux in
[BL97] when considering double sided exponential measure. Let us describe further these modified
logarithmic Sobolev inequalities.

Let o € [1,2], a > 0 and g satisfying 1/a+1/8 =1 (8 > 2), we note

2

% if |z| <a
B
H, a(x) = 2—,H|x| 2/8 —2 .
’ o P— +a if |z >aand a #1
5 55 ||
+00 if |z > a and o = 1.

In Section 2 we give definition and general properties of the following inequality

Bt (1) <€ [ Hoa () 2 (L8T,.a(C))

In particular we prove that inequality LS, , satisfies some of the properties shared by Poincaré
or Gross logarithmic Sobolev inequalities ((1) or (3)), namely tensorisation and perturbation. Note
that in the case @ = 1, we find inequalities used by Bobkov-Ledoux in [BLY7] and for a = 2
inequality LST, ,(C) is exactly the Gross logarithmic Sobolev inequality.

We present also a concentration property which is adapted to this inequality. More precisely, if a
measure y satisfies the inequality LSI, o(C), we have that if f is a Lipschitz function on R with
| fllLip <1 then, there is B > 0 such that for every A > 0 one has

L (f — /fdua > >\> < exp (—Bmin (A%, \?)). (5)



This inequality was proved by Talagrand in [Tal91, Tal95] and also described by Maurey with the
so called property (7) in [Mau91], Bobkov-Ledoux in [BL97] study the particular case (o = 1). Let
us note that the cases a > 2 are studied by Bobkov-Ledoux in [BLO0], relying mainly on Brunn-
Minkowski inequalities, and by Bobkov-Zegarlinski in [BZ04] which refine the results presenting, via
Hardy’s inequality, some necessary and sufficient condition for measures on the real line. Let us
note to finish that they use, for the case o > 2, Hg(z) = |z|® with 1/a +1/8 = 1.

In Section 2.2, we extend Otto-Villani’s theorem (see [OV00]) for the relation with logarithmic
Sobolev inequality and transportation inequality. Let us define L, o by Lgo = Hg 4, the Fenchel-
Legendre transform of H, . We prove that if a probability measure ;1 on R satisfies the inequality
LSI,(C) then there are a’ > 0 and D > 0 such that it satisfies also a transportation inequality:
for all function F' on R", density of probability with respect to u,

TLa,’a(Fd/;, dp) < DEnt,(F), (Tar (D))

where
Ty, (Fdp,dp) = inf {/Laf,a(x - y)dﬂ(w,y)},

where the infimum is taken over the set of probabilities measures © on R x R"™ such that 7 has two
margins Fdy and du. This inequality was introduced by Talagrand in [Tal96] for the case o = 2
and a = 1. Let us note that the case a = 1 was also studied in [BGL01] with exactly this form and
the case a > 2 was studied in [Gen01].

In Section 3 we prove, as in [LOO00|, that the measure p, defined in (2) satisfies the inequality
LS1,,(C). More precisely we prove that there is A, B > 0 such that p, satisfies for all smooth
function such that f > 0 and ffzd,ua =1,

!

B

f

Due to the fact that u, enjoys Poincaré inequality, ;1. satisfies also inequality LST, o(C) for some
constants C' > 0 and a > 0.

Our method relies crucially on Hardy’s inequality we recall now: let u, v be two finite Borel measures
on RT. Then the best constant A so that every smooth function f satisfies

Ent,, (f*) < AVar,, (f)+ B / fdpg.

fz2

| U@- 107w <a [ e (6)
0 0

is finite if and only if

5 =supu(lzool) [ (%) ar 7)

z>0 dt

is finite, where v%¢ is the absolutely continuous part of v with respect to y. Moreover, when A is
finite we have
B <A<A4B.

This inequality was proved by Muckenhoupt [Muc72], one can see also [ABCT00, BRO03] for inter-
esting review and application of this result.

Finally in Section 4 we will present some inequalities satisfied by other measures. More precisely,
let ¢ be twice continuously differentiable and note the probability measure u, by,

po(dz) = %e_w(w)dx. (8)

Among them is considered

p(x) = |z|*(log(2 + [z)))”, with a €]1,2[, B €R,



which exhibits a modified logarithmic Sobolev inequality of function H (different in nature from
H, ), and which is not covered by Latala-Oleskiewickz inequality. We also present examples which
are unbounded perturbation of u,. We then derive new concentration inequalities in the spirit of
Talagrand and Maurey or Bobkov-Ledoux

Let us finally comment the case of general convex potential ¢ and p(dz) = e~?@dz. The natural
extension of our modified logarithmic Sobolev inequality would be to consider a function H behaving
quadratically near the origin and like ¢* (the Legendre transform of ¢) for large values. The
extension is however by no way trivial and requires appropriate technique currently under study.

2 Modified logarithmic Sobolev inequalities: definition and gen-
eral properties

2.1 Definitions and classical properties

Let « € [1,2] and 8 > 2 satisfying 1/a + 1/ =1 and let a > 0. Let define the functions L, , and
H,,.
If « €]1, 2] we note

12

L) Y if|z| <a
a,a\T) = a
! —2
2-a 2l + 22 if|z| > a
a 2a
and
2
5 if|z| <a
H, a(x) = B
’ Q_BM 2& if >
a 5 +a 25 if|z| > a
If @ = 1 we note
2
x 2
— if|z] <a z” .
La,i(z) = 2 and H,1(z) = 9 %f lz| <a
ael - L iffz>a o ifle]>a
Let n € N* and z = (21,--- ,z,) € R, we note
n n
LaT,La(x) = ZLa o(zi) and H(S?a(z) = ZHa,a(xz)
=1 =1

Note that when there is no ambiguity we will drop the dependence in n and note L, , instead of
.

Let us define the logarithmic Sobolev inequality of function H, 4.

Definition 2.1 Let u be a probability measure on R", u satisfies a logarithmic Sobolev inequality
of function H, o with constant C, noted LSI, o(C), if for every C! function f > 0 such that every
integrals exists one has

Bnt, (1) < C [ Hao (%)qu, (L81,,4(C))

AN = of 1
Hoo (7 ) = S Hoa(07)

i=1

where

We detail some properties of L, , and H, , in the following lemma.



Lemma 2.2 Functions L, and H, , satisfies:
i: If @ €]1,2], Lo o and Hy o are C' on R

w: Ly o = Hg, where Ly , is the Fenchel-Legendre transform of Lgq. Of course we have also

a,o
H; = Loa-
113: For all t > 0 one has for all z € R

Loo(tz) = tQL%,a(a:), H,o(tz) = tQH%’a(x).

w: Let 0 < a < d, one has for allz € R

La,a(x) < La',a(w)a Hal’a(.’L‘) < Ha,a(.’L‘).
v: If a €]1,2], Ly o and Hg o are strictly convex and satisfies

lim La,a(-’ﬂ) = lim 7La,a(m) =
|z| =00 z |z|—o00 T

The assumptions given on « and S are significant only for condition iv, and condition v is significant
for Brenier-McCann-Gangbo’s theorem, which is crucial for the study of the link between modified
logarithmic Sobolev inequalities and transportation inequalities of the next section.

Here are some properties of the inequality LSI, (C).

Proposition 2.3 1. This property is known under the name of tensorisation.

Let p1 and po two probability measures on R™ and R"2. Suppose that py1 (resp. po) satisfies
the inequality LSI, o(C1) (resp. LSI,o(C2)) then the probability p1 @ po on R™ ™2 satisfies
inequality LSI, o(D), where D = max {C1, Co}.

1. This property is known under the name of perturbation.

Let p a measure on R* satisfying LS1,(C). Let h a bounded function on R* and defined fi
as

where Z = [ eldyp.
Then the measure [i satisfies the inequality LSI, o(D) with D = Ce?°*") where osc(h) =
sup(h) — inf(h).

iii. Link between LSI, o(C) inequality with Poincaré inequality.

Let p a measure on R*. If p satisfies LSI, o (C), then p satisfies a Poincaré inequality with
the constant C/2. Let us recall that p satisfies a Poincaré inequality with constant C/2 if

var,(f) < 5 [ 94Pd ©

for all smooth function f.

Proof

< One can find the details of the proof of the properties of tensorisation and perturbation and
the implication of the Poincaré inequality in chapters 1 and 3 of [ABCT00] (Section 1.2.6., Theo-
rem 3.2.1 and Theorem 3.4.3). >

Note that the tensorisation of the Entropy is well known property discussed by Lieb in [Lie75].



Remark 2.4 We may of course define logarithmic Sobolev inequality of function H, where H(z)
is quadratic for small values of |z| and with convez, faster than gquadratic, growth for large |x|.
See Section 4 for such examples. Note that Proposition 2.3 is of course still valid for this kind of
inequality. These inequalities are also studied in a general case in [Led99] in Proposition 2.9.

As in [LO00, BL97], by using Herbst’s argument, one can give precise estimates about concentration.

Proposition 2.5 Assume that the probability measure {1 on R satisfies the inequality LSI, o(C).
Let F be a function on R" such that Vi, ||0;F| < (, then we get for A > 0,

2—«

2a

2exp (_no‘_?ca (A —aCnl(2 — a))* — a? ) if A > aCQM,

pE(|F = p®(F)| 2 ) < 52
2exp( )

otherwise,

2a(a _ 1)1—aa2—a
aCe—1

where K, =

Proof

< Let us first present the proof when n = 1. Assume, without loss of generality, that [ Fdu = 0.
Let us recall briefly Herbst’s argument (see [ABCT00] for more details). Denote ®(t) = [ eFdy,
and remark that LS, ,(C) applied to f 2 — ¢!’ using basic properties of H, ,, yields to

t®'(t) — ®(t) log @(t) < CHgp (%) d(t) (10)

which, denoting K (t) = (1/t) log ®(¢), entails

. c ¢
K0 < a5 ).

Then, integrating, and using K (0) = [ Fdy = 0, we obtain

B(t) < exp (Ct /Ot S%Ha,a (%) ds) . (11)

The Laplace transform of F' is then bounded by

b e B2 2B s
exp<0tg2Bﬂ(ﬂ_1)+0ta52(ﬂ_1) Ca %) ft>2g,

®(t) <
exp (C—) if0<t< %‘1

For the n-dimensional extension, use the tensorisation property of LSI, , and

- t ¢
—g;F ) < = ).
;_1 H,qo (28,F> < nHa,a( 5 )

Then we can use the case of dimension 1 with the constant C replaced by Cn. >

Remark 2.6 Let us present a simple application of the preceding Proposition to deviation inequality
of the empirical mean of a function. Consider the real valued function f, with |f'| < 1, and
F(zy,..,zy) = %2221 f(zg), which inherits the property that |0; F| < 1/n, we thus get the following
Hoeffding type inequality, (X;)1<i<n being independent and identically distributed according to pa,

1] 2 exp (—nKa()\—aC(Z—a))a—a22_a> ifA> %,
2a
P(ﬁ E f(Xk) = palf) >)\) < 9222
k=1 2exp (—n?> otherwise.



Remark 2.7 Note that the obtained form min(A*, \2?) is natural in regard to Gaussian approz-
imation. Indeed, consider, for example, F(x1,...,xy) = ﬁZZzlf(:vz) where |f'| < 1 we have

|0;F| < n~'/2 which enables us to recover the Gaussian concentration

1
(2

S (X8 = alf)
k=1

>>\) S 6_2)‘2/0,

for all n > 4X? /(ac)?.

Remark 2.8 For general logarithmic Sobolev of function H, we may obtain crude estimation of
the concentration, at least for large A. Indeed, using inequality (11), we have directly that the
concentration behavior is given by the Fenchel-Legendre transform of H for large values, see Section 4
for more details.

2.2 Link between inequality LSI,,(C) and transportation inequality

Definition 2.9 Let y be a probability measure on R, u satisfies a transportation inequality of
function L, o with constant C, noted Ty o(C), if for every function F, density of probability with
respect to i, one has

TLa,a (quadll’) < CEntu(F)a (Ta,a(c))

where

Tt (Fdu,p) = inf { / La,o(7 — y)dﬂ(w,y)},

where the infimum is taken over the set of probabilities measures m on R* X R" such that w has two
margins Fdu and u.

Otto and Villani proved that a logarithmic Sobolev inequality implies a transportation inequality
with a quadratic cost (this is the case a = = 2), see [OV00, BGL01]. They prove that if 4 satisfies
the inequality LST.2(C), (when a = 2 the constant a is not any more a parameter in this case),
then 4 satisfies the inequality 7" »(4C). In [BGLO1] another case is studied, when a = 1 and 8 = oc.
In this first theorem we give an extension for the other cases, where « € [1, 2].

Theorem 2.10 Let pu be a probability measure on R® and suppose that p satisfies the inequality
LS1,4(0).
Then p satisfies the transportation inequality Tac (C/4).

2

Proof
< As in [BGLO01], we use Hamilton-Jacobi equations. Let f be a Lipschitz bounded function on
R™, and set

_ 3 r—y n
Qufta) = wt {10) + thag o (27Y) 150, s e 12
and Qo f = f. The function @Q;f is known as the Hopf-Lax solution of the Hamilton-Jacobi equation
Ov
{ Nt,x) = Hac (Vo)(t,7), t >0, z € R",
ot 2 ¢
v(0,z) = f(z), z € R",

see for example [Bar94, Eva98].
For t > 0, define the function 3 by

P(t) :/e%Qtfd,u.



Since f is Lipschitz and bounded function one can prove that Q;f is also a Lipschitz and bounded
function on ¢ for almost every z € R™, then v is a C' function on R*. One gets

4 4t 4t 4t
— [ G@uret@tdu— [ T (VQunet I dy
1 1
= ZEnim(e%Qtf) + ;1&( ) log 9(t) / Ha,C (VQtf)eCQtfdu

Let use inequality LSI, (C) to the function exp (%Qt f) to get

2 4t
#10 < 1001000 + S ([ Hon( 5V )eE @ - [ Lt (0N d).

Due to the property of H, , (see Lemma 2.2),

2
( vw) S Hae (VQuf).

Then for all ¢ € [0, 1], one has

2t 442
Ha,a (Ethf) < EH%’a(thf)'

Then
Vie[0,1], (1) — (1) log Y1) < 0
After integration on [0, 1], we have
¥'(0)
$(0)

¥(1) < exp

from where

/eéQlfdu <el &ldn (13)

Ent,(F) = sup {/ngu, /egdu < 1},

we have with g = %Qlf —f %fd,u,

/F(Qlf - /fdu)du < %Entu(F).

Let take the supremum on the set of Lipschitz function f, the Kantorovich-Rubinstein’s theorem
applied to the distance Tr, , (Fdu,du), see [Vil03], implies that

Since

T, o(Fdu, ) < ZEnt (F).

2

>

As it is also the case in quadratic case, when the measure is log-concave one can prove that a
transportation inequality implies a logarithmic Sobolev inequality.

For the next theorem we suppose that the function of transport given by the theorem of Brenier-
Gangbo-McCann is a C? function. Such a regularity result is outside the scope of this paper and
we refer to Villani [Vil03] for further discussions around this problem. However we show here,
that once this result assumed, the methodology presented in Bobkov-Gentil-Ledour [BGL01], for the
exponential measure, still works.



Theorem 2.11 Let p be a probability measure on R™. Assume that
p(dz) = e #@dz

where @ is a convex function on R™.
If p satisfies the inequality To o(C) then for all X > C, p satisfies the logarithmic Sobolev inequality

42
LSI% Q (m) .
Proof
< Let note F density of probability with respect to x. Assume that F is C2, the general case can

result by density.
By the Brenier-Gangbo-McCann’s theorem, see [Bre91l, GM96], there exists a function ® such that

S =1d— VH, 0 V®,

transports F'du to the measure u, for every measurable bounded function g

/Q(S)qu = /gdu-

The function ® is a Lgo-concave function and if @ is C?, a classical argument of convexity (see
chapter 2 of [Vil03]), one has D [VH,, o V®(z)] is diagonalizable with real eigenvalues, all less
than 1.

According to the assumption made on function ®, one can assume that S is sufficiently smooth and

we obtain for z € R”,
F(z)e™?@® = ¢=9°5() det (VS (z)). (14)

Moreover this function gives the optimal transport, i.e.
Ty (it d) = [ Loa(VHa 0 VO)Fip

Then by (14), one has for z € R",
log F(z) = ¢(z) — p(x — VHgq 0 VO(z)) + logdet (Id — D [VHg o 0 VO(z)]).
Then since D [VH, o o V®(z)] is diagonalizable with real eigenvalues, all less than 1, we get
logdet (Id — D [VHy q 0 V®(2)]) < —div(VHgq 0 VO(z)).

Since ¢ is convex we have ¢(z) — ¢(z — VHg o0 V®(z)) < VH,q 0 V®(z) - Vy(z) and we obtain
Ent,(F) < / {VH,,0V®(z) Vo(z) — div(VH, o 0 VO(z)) } F(z)dp(z),

after integration by parts
Ent,(F) < /VF - VHg o 0 Vodpu.

Let A > 0 and let use Young inequality for the combined functions L, , and H, ,

F F
)\V? VHyooV® < Hyg (A%) + Loa(VHyq 0 V).

Thus

1 F 1
Entu(F) S X /Ha,a (}\%)Fdﬂ + X /La,a(VHa,a e} v@)Fd,U
VF 1
< )\/Hi,a (7>qu + XTLa,a(Fd/’I’ﬁdu)'



Thus if 44 satisfies the inequality T}, o(C) we get for all A > C

VF
Ha Fd
—G/ (F) "
Let us note now f? = F, we get

Ent ( —C ( v—)de,u

4)\? 9
< =0 H;A’Q(T)f dp.

Then p satisfies, for all A > C inequality LST 2.0 (%) >

Ent,(F) <

Remark 2.12 One can summarizes Theorem 2.10 and 2.11 by the following diagram (under as-
sumption of Theorem 2.11):

LS14,0(C) = Tac ,(C/4)

472

Notice, as it is the case for the traditional logarithmic Sobolev inequality, that there is a loss at the
level of the constants in the direction transportation inequality implies logarithmic Sobolev inequality.
When o = B = 2, we get as in [OV00], T. 2(C) — LSI.5(16C). As in [OV00], Theorem 2.11 can be
modified in the case Hess(y) > AId, where \ € R.

Also let us notice that as in the quadratic case we do not know if these two inequalities are equivalent.

As in Proposition 2.3, here are some properties of the inequality Tz, ,(C).

Proposition 2.13 i. Concentration inequality.

Assume that p satisfies a transportation inequality Ty, ,(C) then u satisfies the following
concentration inequality

VACR", with p(A)>=, p((4,)°) < 2el-cLaa)

51
2’
where (A,)° ={z e R*, d(4A,z) > r}.

1. Asin Proposition 2.3, the properties of tensorisation are also valid for transportation inequality
Ta,a(C).
Let py and pg be two probability measures on R™ and R™. Suppose that py (resp. o)

satisfies the inequality Ty o(C1) (resp. Toa(C2)) then the probability py ® pe on RM1T72
satisfies inequality Tg o(D), where D = max {C1, Co}.

iii. If the measure p verifies T, o(C), then p satisfies a Poincaré inequality (9) with the constant C.

Proof

< The demonstration of 1, 2 of these results is a simple adaptation of the traditional case introduce
by Marton in [Mar96], We return to the references for proofs (for example chapters 3, 7 and 8
of [ABCT00]).

The proof of 3 is an adaptation of the quadratic case. Suppose that p satisfies a T, o(C). By a
classical argument of Bobkov-Goétze, the measure p satisfies the dual form of Tg o(C) which is the
inequality (13),

/eéQlfdu <el Tl (15)

10



where Q1 f is defined as in (12) with the function L, 4.
Let note f = eg with g, C', bounded and with Vg also bounded, we get

Quf (@) = Qi(eg)(@) = ¢ inf {gla =) +eLe ol2) |
62
= cg(x) - 5 |Val* +o(e)

Then we obtain by (15),

€ € 9 €? 9 9 € € 2 9
_ - R < _ N
1+C/gdu 2C/|Vg| d,u+2c2/g du + o(e”) _1+C/gdu+202</gdu> + o(€?),
imply that
Var,(g) < C/IVQ\zdu-

>

Unfortunately, as in the traditional case of the transportation inequality, we do not know if this one
has property of perturbation as for inequality LS, o(C) (Proposition 2.3).

3 An important example on R, the measure pu,

Let a > 1 and define the probability measure u, on R by

1 a
ta(dz) = Z_€_|w| de,

[e%

where Z, = fe*|“|adx.
For Section 3 and 4 we will note by smooth function a locally absolutely continuous function on R.

Theorem 3.1 Let o €]1,2]. There ezists 0 < A, B < oo such that the measure u, satisfies the
following modified logarithmic Sobolev inequality, for any smooth function f on R such that f > 0
and ffzd;za =1 we have

B

!

Ent,, (f*) < AVar,, (f)+ B / fdpa, (16)

22

where 1/a+1/8 = 1.
In the extreme case, a = 1, there exists A > 0 and 0 < A’ < oo such that we obtain the following
inequality: for all f smooth such that f > 0, fodul =1 and |f'| <A,

Ent,, (f2) < A'Varu1 (f). (17)

Corollary 3.2 Let a €]1,2] and assume that f is a smooth function on R. Then we obtain the

following estimation
B

Ent,, (f?) < AVar,, (f) + B /Q f7' fPdpa, (18)

o= {roonJrambofr.on o)

f+ = max(f,0) and f- = max(—f,0).

where

11



Proof
< We have f2 = f2 + f2. Then

Ent,, (f2) = sup{/fQQdua with /egdua < 1}

= sup{ / f9dpe + / f? gdpe with / eddpe < 1}

< Enty, (f7) +Ent,, (f2).

By Theorem 3.1 there exists A, B > 0 independent of f such that

1 |B
Ent,, (f?) < AVar, (fy) + B A % f2dpa,
+
1B
But,, () < AVan,, () + 8 [ 5] Fda
Q_ -

where 0, = {f+ >2/f f?rdua} and Q_ = {f_ > 2,/ffzdua}.
To conclude, it is enough to notice that
2 2
[ P - (( [ sedua) 4 ([ - )

Var,, (f+) + Var,, (f-)

S Varﬂa(f)a
and
ﬁﬂ2 £ﬂ2 B LIﬂZ
/Q+ . f+dua+/n_ I f_dua—/Q 7 [rdpa.
>

It implies the existence of a, > 0 and 0 < C, < oo, such that u, satisfies a logarithmic Sobolev
inequality of function H,, , with constant C,. Indeed, this is clear that u, satisfies a Poincaré
inequality, (see chapter 6 of [ABC'00]), with constant 0 < )\, < oo,

Var,, () < Xa [ dua

Then, by inequality (16), we obtain for any smooth function f > 0 on R,

1B
Ent,, (f?) < A\, / dug + B / f7 2.

Let us give a few hint on the proof of the Theorem 3.1, which will enable us to present key auxiliary
lemmas. We first use the following inequality for f > 0 such that [ f2du, = 1,

[ 108 e <5 [ (7= 12 dua + [ (7~ 2% 1or(s ~ 20 (19)
where it is obvious that truncation arguments are crucial. We will then need the following lemma:

Lemma 3.3 Let u be a probability measure on R and let f > 0 such that [ f?du = 1 then we obtain

12



i /(f —1)%du < 2Var,(f).

i f2dp < 8Var,(f).
f>2
2 2 log 4 2 2
s f“log fdu < 7Entu(f ) < 4Entu(f )
f>2 10g4 -1
Proof

< 4. We have [(f —1 )2dp = Var,(f) + (1 — ffdu)Q. Since fod,u =1 and f > 0 we obtain that
0 < [ fdu <1, then (ffdu) < [ fdu. Then

[ = 1d < Var,(7) + (Var, ()"
but since [ f2du =1, Var,(f) < 1, then f —1)%du < 2Var,(f).

#i. One verifies trivially that when x > 2, 22 < 4(z — 1)? and apply i.
1. Let us give the proof given in [CGO4] If z > 0 we have zlogz + 1 — z > 0 which yields

flog fPau+pu(f<2)— [ fPdu>0
<2 <2

hence Ent,, (f%) > Jis2 f2log f2dy — ff>2f dp. Since

2 2 2
du < / log f“du,
/mf u_10g4 [ s

we obtain Ent, (f?) > (1 - @) ff>2 f2log f2dp. >

Recall the Hardy’s inequality presented in the introduction. Let u, 7 be Borel measures on R, the
best constant A so that every smooth function f such that integrals are well defined, satisfies

| 6@ - 100 ute) <4 [ 12a, (20
0 0
is finite if and only if B

B = supu(e.<) | K (21)

is finite. And when A is finite we have this estimation
B < A<A4B.

A direct proof of this inequality with these properties of regularities for f can be found for example
in Theorem 6.2.1 of [ABCT00].

We then present different proof of the desired inequality, starting from (19), according to the value
of Ent,(f?), in which Hardy’s inequality plays a crucial role. First, when the entropy is large we
will need

Lemma 3.4 Let h defined as follow,

(1 i<,
”(”‘)‘{ 2 ifla] > 1.

Then there exists 0 < Cj, < oo such that for every smooth function g we have

Ent,, (¢°) < Cy / g?hdpq. (22)

13



Proof

< We use Theorem 3 of [BR03] which is a refinement of the criterion of a Bobkov-Gétze theorem
(see Theorem 5.3 of [BG99]).

The constant C}, satisfies max(b_,by) < Cp, < max(B_, B;) where

1 T ot
by =su z,+o00|) lo (1+—>/ Zo——dt,
+ = 8ubpa(le, +ooDlog {1+ 5 e ) ) Zen

1 0 lt®
[ 2?3““(] — 00, z]) log (1 + m) /x Zamdta

62 T 6\t|°‘
By =sup o[z, +o0|)log | 1 + ———= /Za—dt,
+ = 5up tafo, oo (14 ) [ %

o2 0l
el = os (14 o) [ i

An easy approximation prove that for large positive

po([z,00[) = /00 ie_‘t'adt ~ o e " (23)
o s Za © Zyare—1
T elt® Zy o
Zo———dt ~og —2€*
/0 “h(t) © oz’

and one may prove same equivalent for negative x. A simple calculation then yields that constants
by, b_, By and B_ are finite and the lemma is proved. >

Note that the function h is the smallest function such that the constant Cj, in the inequality (22) is
finite. More precisely, if h satisfy
z)

()

2
—~

li

T—00

=0

>

then the constant C;Z = 00.

In the case of small entropy, we will use so-called ®-Sobolev inequalities (even if our context is less
general), see Chafai [Cha04] for a comprehensive review, and Barthe-Cattiaux-Roberto [BCR04] for
a general approach in the case of measure y.

Lemma 3.5 Let Ty < Ty, T € [T1, T3] and g be a smooth function defined on [T, 00[. Assume that

o0
9(T) =2, g >2 and / g*dpa < 13,
T
then ©
/ (9 —2)*®(g*)dpa < Cy 9 dpia, (24)
T [T,00]

(a=1)
where ®(z) = log2 - (). The constant Cy depend on the measure po but does not depend on the

value of T € [Ty, T5].

Proof
< Let use Hardy’s inequality as explained in the introduction. We have g(T') = 2. We apply
inequality (20) on [T, 00[ and with the function f = g — 2 (note that f(7") = 0) and the following

measures
2(a—1)

dp = (loggQ) * dug and v = pg.

14



Then the constant C' in inequality (24) is finite if and only if

x a &) 2(a—1)
B = sup/ Zaew| dt/ (loggz) * ditg,
2T JT T

is finite.
2(a—1)
Since 2(a — 1)/ < 1 the function z — (logz)™ = is concave on [4,00[. By Jensen inequality we

obtain for all x > T,

0 2(a=1) 2a—1) o0 de,u
[ 080" duo <10g ™5 (2 L2 (o, ox.
T 87 9

Then by the property of g we have

2(a—1)

T
B < sup/ Znel!" dtlog™ = ) to([z, 00[)
21T JT

2(a—-1)

T
< sup [ 7 dtiog™ ( )ua([w,OOD-
z2T JTh [.’L‘ OO[

Using the approximation

X
o Z, o
/ Zoel!® dt ~o 2™,
0

aro—1
and that given in equality (23) we prove that B is finite, bounded by a constant C; which does not
depend on T'. >
We divide the proof of Theorem 3.1 in two parts: large and small entropy, both in the case of

positive function. Let us now present the proof in the case of large entropy.

Large entropy case:

Proposition 3.6 Suppose that o €]1,2]. There exists 0 < Ar, B, < oo such that for any smooth
functions f > 0 satisfying

/f2d,ua =1 and Ent (f2) >1, (25)

we have
fl
f

If @ = 1, there exists 0 < A} < oo and A > 0 such that for every smooth function f > 0 with
[ f?dpy =1, when |f'| < A, then we get

Ent,, (f2) < Ay Var,, (f) + By / Py, (26)

22

Ent,, (f?) < A} Var,, (f).

Proof of Proposition 3.6
< Let f be a smooth function satisfying f > 0, fodua =1 and ff4d,ua < 00.
A careful study on Rt of this function

= —z?logz? +5(z — 1) + 22 — 1 + (z — 2)2 log(z — 2)2

proves that for every z > 0

z?logz® < 5(z — 1) + 2% — 1 + (z — 2)? log(z — 2)7.

15



Then we obtain by Lemma 3.3.i, recalling that [ f?du, =1 and f > 0,

/ Plog fPdua < 5 / (f = 1)2dpsa + / (% = )dpa + / (f — 2% log(f — 2)2 dua
< 10Var,, (1) + [(F = 202 log(7 ~ 2)2due

which is the announced starting point inequality (19).
Since [ f2dua =1, one can easily prove that

[ =2 <1,

then [(f —2)% log(f — 2)%due < Ent,, ((f —2)%), and
Ent,, (f?) < 10Var,, (f)+Ent,, ((f —2)%). (27)

Hardy’s inequality of Lemma 3.4 with g = (f — 2) gives
Ent,, ((f —2)) < G / (7 = 2)ihdpe=C [ 1" (28)
>2

For p,q > 1 such that and 1/p + 1/q = 1 we have for every z,y > 0 by Young inequality,

vz a
<=+ L (29)
p q
Consider then « €]1,2] and 8 = a/(a—1). Let p = /2 and g = B/(8 — 2). Let € > 0 and let apply
inequality (29) to the right term of (28), we obtain on {f > 2},

L (I o-2s 2
B /8 (7) er Th s S

fl

f

B
LB g 2 1Bl

then
B

I —
P20 [ no6=2p2q,,

2dpg +
[odpa 3 59

Emwﬁf—mﬁ)égﬁg%ﬁﬂﬂ i

Let p a probability measure, then we have for every function f such that [ f2dp = 1 and for every
measurable function g such that [ f 2gdu exists we get

/f2gdu < Entu(fQ) + log/egdu.

This inequality is also true for all function g > 0 even integrals are infinite.
Let 7 > 0 and we apply the previous inequality with g = nh8/(6-2) (g > 0), we obtain then

Ent,, ((f - 2)+2) <
C i —2)C
ﬁeé_};)/g /f>2 f7 FPdpe + W (Ent“a (f2) + log/exp (nhﬂ/(/"”)dua). (30)

Since B8 = a/(a — 1), h(z)5/(F=2) = £ if |z| > 1, then we fix n = 1/2. And note

A= log/exp (%hﬂ/(ﬁm)dua < 00.

16



Fix now ¢ = inf {8/(A(B — 2)4C4), B/ ((B — 2)4C4)} and note k = Cj,/e(8~2)/2 We obtain

Entua((f—2)+2) gm/ 77

1
2

fzdﬂa + 4

1
Entua (fz) + Z

As Ent,,, (f?) > 1, inequality (27) implies

Ent,, (f*) < 20Var (f)—|—2/s/ (f—l>ﬁf2d
Ho = U 52 7 Ha;

which proves inequality (26) with A; = 20 and By, = 2k.
Assume now that @ = 1 and take f such that |f’| < A. We apply the limit case of Young inequality

to get on {f > 2},
fl 2 A 2
(7)< (3)

Then, with the same computation as in the case « €]1,2], on can found A > 0 and 0 < 4} < o0
such that for all smooth function f satisfying hypothesis on (25) and |f’| < A,

Ent,, (f2) < A} Var, (f).

>

Remark 3.7 With the same method as developed in Proposition 3.6 we can prove the inequality (26)
without Var,, (f). Suppose that o €]1,2]. There exists A > 0 such that for any functions f > 0
satisfying

/f2dpa =1 and Ent,, (f2) >1

we have
f'1°

Ent,, (f%) <A / 7 f2dug.

Small entropy case:

Proposition 3.8 Let o €]1,2]. There ezists Ag, Bg > 0 such that for any functions f > 0 satisfying

/f2d,ua =1 and Ent,, (f2) <1,

we have

/!

B
Ent,, (/%) < AsVar,, (f) + Bs / s, (31)

22

If a =1, there ezists 0 < A’y < oo such that,
Ent,, (%) < AgVar,, (f).
for all f such that |f'] < 1.

Proof of Proposition 3.8
< Let f > 0 satisfying [ f?du, = 1. As in Proposition 3.6, we start with inequality (19), which
readily implies

Ent,, (f2) = /f2 log f2dps < 10Var,, (f) + /(f — 2)ilogf2dua. (32)

We will now control the second term of the right hand side of this last inequality via the use of
®-Sobolev inequalities, namely Lemma 3.5.

Therefore we have to construct a function g defined on [T, co| (for a well chosen T') with g > 2 and
g(T') = 2 and which satisfies,

17



(1) / 92dpe < 13;
T

(2) /T (9 — 228(¢Y)dpa > © /T (- 202 log fdua:

!

f
2(a—1)

with ®(z) =log~ « (), 0 < D <1/2 and ¥(z) = z°.

o0
(83) / §Pdue < C
T

U ( ) f?dpo + D Ent,, (f?),
[T,00[N{f>2}

Let now define T} < 0 and 75 > 0 such that

1 3
7 and pia([T, +o0]) = 5.

Since [ f?duo =1 there exists T € [T}, Tb] such that f(T) < 2.
Introduce now g on [T, co] as follow

g=2+(f —2)4log” 2,

pall = 00 Ti) = 2, al(Th, T5]) =

where v = (2 — a)/(20).

Due to the fact that f is a smooth function (locally absolutely continuous function) then g is also
a smooth function. Moreover g satisfies g(7') = 2 and g(z) > 2 for all x > T. Let now compute
J7° g?dpa. We get

| e < 2 [ adua v [ (- 27108 P
T T Ty

< sz 72108 fdp.
[T1,00[N{f>2}
Since 27 € [0, 1] we have log?” f2 < log f? on {f > 2}. Then we obtain by Lemma 3.3.iii

o
/ Pdpe < 542 log? fPdua
T F>2

5+ 8Ent,, (f?)
13,

since Ent,, (f?) < 1.
Assumptions on Lemma 3.5 are satisfied, we obtain by inequality (24)

o0 9 2a-1) o 2
(9—2)3log o« g°dua < Cy g dug.
T [T,00[N{g>2}

Let us compare the various terms now.
First, denote u = 2(a — 1)/, we thus obtain

u 2
(9—2)3 log" ¢ = (f — 2)% log” f?log" (2+ (f — 2)+ log” f?)".
On {f > 2}, we have 2 + (f — 2); log” f2 > 2 + (f — 2); K, where K = log”4. Since K > 1 and
u + 27 = 1, one has
(9 —2)3 log" g* > (f —2)% 1og™** f* = (f — 2)% log f*.

Then we obtain
2(a—1)

o0 o0
/T (f —2)% log f2dp.q S/T (g—2)31log™ = g*dpa. (33)

18



Secondly one has on {f > 2},

g = f'log? f? (1 + 727;;0; ;2)

then using log f? > log4 on {f > 2} one obtain

o <[ Prog 2 (14 22
- logd ) -

Denoting D = (1 4 727 /log 4)?, one has
/ odyie < D 1108”7 dpa, (34)
[T,00[N{f>2} [T,00[N{f>2}

on [T,00[N{f > 2}.
Then, using inequalities (33) and (34), there exists C' > 0 (independent of T' € [Ty, T5]), such that

|- ptog e <0 J710g? fdjia. (35)
T [T,00[N{f>2}

When « €]1,2], we apply Inequality (29) with ¢ = «/(2 — @) and p = a/(2(a — 1)). We obtain for
every € > 0,

f_l>21 2y £2) £2
/[T,oo[ﬂ{fZZ}(f (108 1) 1 dpia <
f/

2 — 1) /
T 2—a
acio Jirsoingrs2y |

Fix ¢ such that 502770‘ < 1/16, then there exists A > 0 such that

[ 208 Papa < a [

T [Ty00[N{f2>2}

2 —«
Plpia +¢ / 12 1og f2da.
o [T,00[N{f>2}

1
f2dﬂa + = f2 log f2dUa-
16 Jir,00[n{f>2}

fl
f

Using Lemma 3.3.iii we have,

|2 P < a [

[Thoo[N{f>2}

fl
I

The same method can be used on | — 0o, T| and then we get

/T (7 — 2% log PPdpa < 4 il

oo ooin(sz2} | |

YEnt,, (52).

2
ditg

“Ent,, (/7).

2
fedpe +4

And then, we get

fl

f f dlla‘l‘ Entlta(f )

[ -2 108 e <24 [

22

2

Note that the constant A does not depend on T
Then, by inequality (32), inequality (31) is proved for « €]1,2], with Ag = 34 and Bg = 4A.
Assume now that @ = 1. In this case 2y = 1, then using inequality (35) we obtain

o
/ (f —2)% log f2dp; < D log f*dp1 < 8D fdpy,
T [T',00[N{f>2} [T',00[N{f>2}
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for some constant C’. Then by Lemma 3.3.ii, we obtain the result which concludes the proof in this
case with Ay =10+ 8D. >

Let us give now a proof of the theorem.

Proof of Theorem 3.1

< The proof of the theorem is a simple consequence of Propositions 3.6 and 3.8. For a €]1,2], we
get inequality (16) with A = max{Ar, As} and B = max{Br,Bgs} and for & = 1 one find A > 0
and 0 < A" = max{A}, A} } < oo such that inequality (17) is true. >

4 Extension to other measures

We will present in this section modified logarithmic Sobolev inequality of function H for more
general measure than p, which can be derived using the proof carried on in Section 3: the large
entropy case where the optimal Hardy function A is identified and used to derive the optimal H, and
the small entropy case where ® and g (used on the proof of Proposition 3.7) have to be identified
leading to the same H function.

Let us first consider the following probability measure p4 g for o € [1,2] and S € R defined by
1
Pa,p(dz) = Ee_‘p(w)dm where ¢(z) = |z|*(log |z])? for |z| > 1
and ¢ twice continuously differentiable.

Theorem 4.1 There exists 0 < A, B < oo such that the measure po g satisfies the following loga-
rithmic Sobolev inequality: for any smooth f on R such that [ f2dues =1 and f > 0, we have

!
Entua,g (f2) < Avarua,g (f) +B H ( r ) fzdﬂa,ﬁa (36)
£>2 f
where H 1is positive smooth and given for x > 2 by
pa-t
loge-1 z

H(z) = z2es"’ if a=1,8€R",

H(z) =2?log ?(z) if a=2,R".

Proof
<1 We will mimic closely the proof given in the y, case, considering large and small entropy case.
We will not present all the calculus but give the essential arguments.

Let now treat the case a €]1,2[.
Large entropy. We will first apply Lemma 3.4 to measure j, g, one has then that b, b_, B, B_
are finite if one take h positive smooth

2—a

h(zx)

logﬂx ol 2

One has then to determine H to construct 1 such that there exists n > 0 with ny(h) exponentially
integrable with respect to s s and H = 9*(z?) where 9* is the Fenchel-Legendre transform of .
Considering the exponential integrability condition leads us to consider 9 (z) behaving asymptoti-

a 28
cally as z?-« log?-« . One may thus derive the asymptotic behavior of ¢* and finally H.
Small entropy. One desires here to apply Lemma 3.5, evaluating ® and then build the function

g satisfying conditions (gl), (g2) and (g3). By Hardy’s inequality and arguments in the proof of
Lemma 3.5, one may choose ® for z large enough as

28
o

d(z) = logQ%(m) (log log x)
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Setting then
2—a -8
g=2+(f—2)1log= f*(loglogf?) =,
one may then verify (gl), (g2) and (g3) with ¥ = H defined in the large entropy step.
Now if @ =1 and 8 > 0, then the same arguments gives that for large enough z

Qp(:L') — logQB z, w* (:E) _ xewl/@ﬁ) 2 wl/ﬁ.

and H(z) = z°e
If o« =2 and B <0, we have for large enough z.

1 _
P(x) = Ee% l/ﬂ, P*(z) = xlog_ﬂx and H(z) = z2 log_ﬂ .

Remark 4.2 i. Using once again Herbst’s argument, we may derive concentration properties
for the measure pq g of desired order, for every function F with |F'| < 1, there ezists C > 0
such that, for all A > 0,

— i a B 2
tap (IF = pap(F)| > A) < 2e7CmnOTIogm A0,
The extension to greater dimension being handled as in the previous case

ii. Note that the Latata-Oleszkiewicz inequalities I(r) (see [LO00]) are not well adapted for the
family of measures puq g. Indeed, using Hardy’s characterization of this inequalities obtained
by Barthe-Roberto [BR03, Th. 13 and Prop. 15], one may show that p, g satisfies an I(a/2)
inequality if B > 0 and an I(a/2 — €) (e being arbitrary small) for < 0, which entails
consequently not optimal concentration properties.

iii. By the characterization of the spectral gap property on R, one obtains that each measure g g
satisfies a Poincaré inequality and thus a modified logarithmic Sobolev inequality.

Following the previous proof, we may generalize the family u, s adding an explicit multiplicative
term to the potential |z|®log? |z, as for example loglog” || which will give us new modified log-
arithmic Sobolev inequality, but each of this new measure has to be considered “one-by-one” (we
hope some general results for ¢ convex). We may now state a result enabling us to get the sta-
bility of these modified logarithmic Sobolev inequality by addition of an unbounded perturbation:
consider the measures

dx

dro(z) = exp (—|x|a — |ac|0“1 cos(x)) 7 a €]1,2],
(8
b —xpo d:t
&Yap(z) = (1 +12)°€ Z—lzgo, a€]l,2],beR.
a,b

Proposition 4.3 There exists a > 0 such that the measures 7o and v, satisfy a logarithmic Sobolev
inequality of function H, .

Proof

< Following the proof given in Section 3 , one sees that the result hold true once one may verify
that the Hardy’s inequalities of Lemma 3.4 and Lemma, 3.5 hold with the h and ® obtained for the
case of pq. It is easily checked once remarked that

dre(x)
dz

and the same for 7,5. >

dre(x)

!
log ~oo — x| and <log . ) ~oo —(a = 1)|z|*71
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