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Equations in groups

• G - a group

• X = {X1, . . ., Xn} - a set of variables.

An equation in variables X1, . . . , Xn with coefficients gj
in G is a formal expression of the form

g1X
ε1
i1
g2X

ε2
i2
. . . Xεm

im
gm+1 = 1

where εj ∈ {1,−1}.



Equations in functional notation:

f(X1, . . . , Xn, g1, . . . , gm+1) = 1 (1)

A tuple (h1, . . . , hn) of elements from G is a solution

of the equation (1) if

f(h1, . . . , hn, g1, . . . , gm+1) = 1.
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Diophantine Problem (DP)

Does there exist an algorithm which for any equation

f = 1 with coefficients in G determines whether f = 1
has a solution or not?



Questions

Diophantine Problem (DP)

Does there exist an algorithm which for any equation

f = 1 with coefficients in G determines whether f = 1
has a solution or not?

Search Diophantine Problem (SDP)

Does there exist an algorithm that finds a solution (all

solutions) for any solvable equation f = 1 in G?
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Example

• F - free group on a and b, X and Y variables.

XYX−1Y −1 = aba−1b−1

Solutions: X = a, Y = b;

X = ab, Y = b;

. . .

X = abn, Y = b

X = a, Y = bam
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Solving equations and the geometry of the
groups

• Free groups (Makanin (1982) and Razborov (1985))

• Torsion-free hyperbolic groups (Rips, Sela)

• Some relatively hyperbolic groups (Dahmani, Groves)

• Various free constructions (Diekert and others)
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Connections

Tarski’s Conjecture (Sela, Kharlampovich and Myasnikov)

The elementary theories of non-abelian free groups with

different number of generators coincide.

Geometry (Nielsen, Edmunds-Comerford, Culler, etc.)

Quadratic equations (every variable appears twice) :

well understood.
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Λ-spaces

• An ordered abelian group is an abelian group Λ,

together with a total ordering ≤ on Λ, such that for all

a, b and c ∈ Λ, a ≤ b implies a+ c ≤ b+ c.

• A Λ-metric space (X, d) can be defined in the same

way as a conventional metric space.

That is, d : X × X → Λ is symmetric, satisfies the

triangle inequality and satisfies d(x, y) = 0 if and only

if x = y.



Λ-trees

Definition. A Λ-tree is a geodesic Λ-metric space (X, d)
such that:

(a) if two segments of (X, d) intersect in a single point,

which is an endpoint of both, then their union is a

segment;

(b) the intersection of two segments with a common

endpoint is also a segment.



Groups acting on Λ-trees

• Let G be a group that acts on X via isometries.

Isometries of Λ-trees are analogous to those of ordinary

trees in that we can classify them as inversions, elliptic
and hyperbolic.



Groups acting on Λ-trees

• Let G be a group that acts on X via isometries.

Isometries of Λ-trees are analogous to those of ordinary

trees in that we can classify them as inversions, elliptic
and hyperbolic.

• If g is hyperbolic, let Ag be the maximal g-invariant

linear subtree of X on which g acts by translation.

• Translation length function of any non-inversion g

given by ‖g‖.



Tree-free groups

• We consider only free actions, that is, actions without

inversions in which no non-trivial element of the group

fixes a point in the tree. Thus all non-trivial isometries

are hyperbolic.

• tree-free group = a group acting freely on a Λ-tree for

some Λ.
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Properties of Λ-free groups

Properties reminiscent of free groups:

• torsion-free,

• closed under taking subgroups and free products,

• commutativity is a transitive relation on non-identity

elements.

• . . .
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More on Λ-free groups

Archimeadean actions: well understood

Non - Archimeadean actions

• Structure theory for Zn-free groups (Bass, Martino - O

Rourke) and Rn-free groups (Guirardel).

• All limit groups are Rm-free groups (Sela, Kharlampovich

- Myasnikov, Guirardel).
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Limit groups = Fully residually free groups

Definition. Limit groups = groups with the same

universal theory as free groups.

Definition. A group G is fully residually free if for every

finite set S ⊂ G of non-trivial elements there exists a

homomorphism φ : G −→ F into a free group F such

that φ(g) 6= 1 for every g ∈ S.
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Lyndon’s Equation

Theorem (Lyndon, Schützenberger, Baumslag, . . . )

Let F be a free group, and let X, Y and Z be elements
in the free group. If

XpY qZr = 1

where p, q, r ≥ 2, then X, Y and Z commute.



Lyndon’s equation in tree-free groups

Theorem (N. Brady, C., A. Martino, S. O Rourke)

Let G be a tree-free group and let x, y, z be elements
in G. If xpyq = zr with p, q, r ≥ 4, then x, y and z

commute.



Observation

The equation x2y2 = z2 implies that x, y and z

commute in free groups, while in Λ-free groups this is

not true, since the exceptional surface group

〈x, y, z | x2y2z2 = 1〉

acts freely on a Z2-tree (Gaglione, Spellman).



Consequences

Consider the sequence of groups

Gpqr = 〈x, y, z |xpyq = zr〉.



Consequences

Consider the sequence of groups

Gpqr = 〈x, y, z |xpyq = zr〉.

• Gpqr do not act freely on any Λ-tree, for p, q, r ≥ 4.



Consequences

Consider the sequence of groups

Gpqr = 〈x, y, z |xpyq = zr〉.

• Gpqr do not act freely on any Λ-tree, for p, q, r ≥ 4.

• Gpqr are all small-cancellation groups. (C(6)− T (4))



Consequences

Consider the sequence of groups

Gpqr = 〈x, y, z |xpyq = zr〉.

• Gpqr do not act freely on any Λ-tree, for p, q, r ≥ 4.

• Gpqr are all small-cancellation groups. (C(6)− T (4))

Corollary. The groups Gpqr form a sequence of word
hyperbolic groups which cannot act freely, and without
inversions, by isometries on any Λ-tree.
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Proposition. The groups Gpqr admit CAT(-1) structures

corresponding to each isometry class of triangles in the

hyperbolic plane.

• There are 3-dimensional CAT(-1) structures for Gpqr

too. Gpqr is the fundamental group of the 2-complex

obtained from a “thrice punctured sphere.”



• Gpqr are fundamental groups of graphs of groups. with

underlying graph a tripod, edge groups all infinite cyclic,

valence 1 vertex groups all infinite cyclic, and valence 3

vertex group being free of rank 2.



Observation

The groups

〈x1, x2, . . . , xn |xα1
1 x

α2
2 · · ·xαn

n = 1〉

are Z2-free for n ≥ 4, provided at least four αi are non-zero

(Bass, Martino - O Rourke).
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Proof

Ax, Ay and Az: axes of translation of x, y and z.

Assumption: ‖xp‖ ≥ ‖yq‖ ≥ ‖zr‖.
• Ax and Ay do not intersect;

• Ax and Ay do intersect.

Let ∆(x, y) be the intersection of the two axes. Then

|∆(x, y)| < ‖x‖+ ‖y‖.



Ax and Ay intersect

u v

Ax

Ay

∆(x, y)

Figure 1: Coherent axes



Ax and Ay intersect incoherently

u v
vyq

vx−p

Ax

Ay

Az

Figure 2: Large Intersection



Ax and Ay intersect incoherently

u v

vx−p

vyq

Ax

Ay

Az

Figure 3: Small intersection



Ax and Ay intersect incoherently

u v

w

∆

wyq

wx−p

Ax

Ay

Az

Figure 4: Exact intersection
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More equations?

The equation [X,Y ] = Zn has no non-trivial solutions in

a free groups, where n ≥ 2. What about tree-free groups?

Theorem.(Martino-O Rourke) The group

G = 〈x, y, x1, . . . , xn | [x, y] = w(x1, . . . , xn)〉

acts freely on a Z× Z-tree, where w(x1, . . . , xn) is a word

in {x1, . . . , xn}.



• In a free group, the equation

[X1, Y1][X2, Y2] = Zm

has no non-trivial solutions for m ≥ 4.

(Comerford - Comerford - Edmunds)



• In a free group, the equation

[X1, Y1][X2, Y2] = Zm

has no non-trivial solutions for m ≥ 4.

(Comerford - Comerford - Edmunds)

• The group

G = 〈x, y, z, t | [x, y]xm = [z, t]〉

acts freely on a Zn-tree. (Martino-O Rourke)


