On equations in tree-free groups

Laura Ciobanu

University of Fribourg, Switzerland

Summary

• Equations in groups

Summary

- Equations in groups
- Tree-free groups

Summary

- Equations in groups
- Tree-free groups
- Lyndon's equation in tree-free groups

Equations in groups

• G - a group

• $X = \{X_1, \dots, X_n\}$ - a set of variables.

An equation in variables X_1, \ldots, X_n with coefficients g_j in G is a formal expression of the form

$$g_1 X_{i_1}^{\epsilon_1} g_2 X_{i_2}^{\epsilon_2} \dots X_{i_m}^{\epsilon_m} g_{m+1} = 1$$

where $\epsilon_{j} \in \{1, -1\}$.

Equations in functional notation:

$$f(X_1, \dots, X_n, g_1, \dots, g_{m+1}) = 1$$
 (1)

A tuple (h_1, \ldots, h_n) of elements from G is a solution of the equation (1) if

$$f(h_1,\ldots,h_n,g_1,\ldots,g_{m+1}) = 1.$$

Questions

Diophantine Problem (DP)

Does there exist an algorithm which for any equation f = 1 with coefficients in G determines whether f = 1 has a solution or not?

Questions

Diophantine Problem (DP)

Does there exist an algorithm which for any equation f = 1 with coefficients in G determines whether f = 1 has a solution or not?

Search Diophantine Problem (SDP)

Does there exist an algorithm that finds a solution (all solutions) for any solvable equation f = 1 in G?

Example

• F - free group on a and b, X and Y variables.

$$XYX^{-1}Y^{-1} = aba^{-1}b^{-1}$$

Solutions: X = a, Y = b;

Example

• F - free group on a and b, X and Y variables.

$$XYX^{-1}Y^{-1} = aba^{-1}b^{-1}$$

Solutions: X = a, Y = b;

$$X = ab$$
, $Y = b$;

$$X = ab^n$$
, $Y = b$

. . .

Example

• F - free group on a and b, X and Y variables.

$$XYX^{-1}Y^{-1} = aba^{-1}b^{-1}$$

Solutions: X = a, Y = b;

$$X = ab$$
, $Y = b$;

. . .

$$X = ab^n, Y = b$$
$$X = a, Y = ba^m$$

Solving equations and the geometry of the groups

• Free groups (Makanin (1982) and Razborov (1985))

Solving equations and the geometry of the groups

- Free groups (Makanin (1982) and Razborov (1985))
- Torsion-free hyperbolic groups (Rips, Sela)
- Some relatively hyperbolic groups (Dahmani, Groves)
- Various free constructions (Diekert and others)

Connections

Tarski's Conjecture (Sela, Kharlampovich and Myasnikov) The elementary theories of non-abelian free groups with different number of generators coincide.

Connections

- **Tarski's Conjecture** (Sela, Kharlampovich and Myasnikov) The elementary theories of non-abelian free groups with different number of generators coincide.
- **Geometry** (Nielsen, Edmunds-Comerford, Culler, etc.) Quadratic equations (every variable appears twice) : well understood.

Tree-free groups

Λ -spaces

• An ordered abelian group is an abelian group Λ , together with a total ordering \leq on Λ , such that for all a, b and $c \in \Lambda$, $a \leq b$ implies $a + c \leq b + c$.

Λ -spaces

- An ordered abelian group is an abelian group Λ , together with a total ordering \leq on Λ , such that for all a, b and $c \in \Lambda$, $a \leq b$ implies $a + c \leq b + c$.
- A Λ -metric space (X, d) can be defined in the same way as a conventional metric space.

That is, $d: X \times X \to \Lambda$ is symmetric, satisfies the triangle inequality and satisfies d(x, y) = 0 if and only if x = y.

Λ -trees

Definition. A Λ -tree is a geodesic Λ -metric space (X, d) such that:

(a) if two segments of (X, d) intersect in a single point, which is an endpoint of both, then their union is a segment;

(b) the intersection of two segments with a common endpoint is also a segment.

Groups acting on $\Lambda\text{-trees}$

• Let G be a group that acts on X via isometries. Isometries of Λ -trees are analogous to those of ordinary trees in that we can classify them as *inversions*, *elliptic* and *hyperbolic*.

Groups acting on $\Lambda\text{-trees}$

• Let G be a group that acts on X via isometries. Isometries of Λ -trees are analogous to those of ordinary trees in that we can classify them as *inversions*, *elliptic* and *hyperbolic*.

• If g is hyperbolic, let A_g be the maximal g-invariant linear subtree of X on which g acts by translation.

• Translation length function of any non-inversion g given by ||g||.

Tree-free groups

- We consider only *free* actions, that is, actions without inversions in which no non-trivial element of the group fixes a point in the tree. Thus all non-trivial isometries are hyperbolic.
- tree-free group = a group acting freely on a $\Lambda\text{-tree}$ for some $\Lambda.$

Properties reminiscent of free groups:

• torsion-free,

Properties reminiscent of free groups:

- torsion-free,
- closed under taking subgroups and free products,

Properties reminiscent of free groups:

- torsion-free,
- closed under taking subgroups and free products,
- commutativity is a transitive relation on non-identity elements.

Properties reminiscent of free groups:

- torsion-free,
- closed under taking subgroups and free products,
- commutativity is a transitive relation on non-identity elements.

More on $\Lambda\text{-}{\rm free}$ groups

Archimeadean actions: well understood

More on $\Lambda\text{-}{\rm free}$ groups

Archimeadean actions: well understood

Non - Archimeadean actions

- Structure theory for Zⁿ-free groups (Bass, Martino O Rourke) and ℝⁿ-free groups (Guirardel).
- All limit groups are ℝ^m-free groups (Sela, Kharlampovich
 Myasnikov, Guirardel).

Limit groups = Fully residually free groups

Definition. Limit groups = groups with the same universal theory as free groups.

Limit groups = Fully residually free groups

Definition. Limit groups = groups with the same universal theory as free groups.

Definition. A group G is fully residually free if for every finite set $S \subset G$ of non-trivial elements there exists a homomorphism $\phi : G \longrightarrow F$ into a free group F such that $\phi(g) \neq 1$ for every $g \in S$.

Lyndon's Equation

Theorem (Lyndon, Schützenberger, Baumslag, ...) Let F be a free group, and let X, Y and Z be elements in the free group. If

 $X^p Y^q Z^r = 1$

Lyndon's Equation

Theorem (Lyndon, Schützenberger, Baumslag, ...) Let F be a free group, and let X, Y and Z be elements in the free group. If

$X^p Y^q Z^r = 1$

where $p, q, r \geq 2$, then X, Y and Z commute.

Lyndon's equation in tree-free groups

Theorem (N. Brady, C., A. Martino, S. O Rourke)

Let G be a tree-free group and let x, y, z be elements in G. If $x^p y^q = z^r$ with p, q, $r \ge 4$, then x, y and z commute.

Observation

The equation $x^2y^2 = z^2$ implies that x, y and z commute in free groups, while in Λ -free groups this is not true, since the exceptional surface group

$$\langle x, y, z \mid x^2 y^2 z^2 = 1 \rangle$$

acts freely on a \mathbb{Z}^2 -tree (Gaglione, Spellman).

Consequences

Consider the sequence of groups

$$G_{pqr} = \langle x, y, z \, | \, x^p y^q = z^r \rangle.$$

Consequences

Consider the sequence of groups

$$G_{pqr} = \langle x, y, z \, | \, x^p y^q = z^r \rangle.$$

• G_{pqr} do not act freely on any Λ -tree, for $p, q, r \geq 4$.

Consequences

Consider the sequence of groups

$$G_{pqr} = \langle x, y, z \, | \, x^p y^q = z^r \rangle.$$

- G_{pqr} do not act freely on any Λ -tree, for $p, q, r \geq 4$.
- G_{pqr} are all small-cancellation groups. (C(6) T(4))

Consequences

Consider the sequence of groups

$$G_{pqr} = \langle x, y, z \, | \, x^p y^q = z^r \rangle.$$

- G_{pqr} do not act freely on any Λ -tree, for $p, q, r \geq 4$.
- G_{pqr} are all small-cancellation groups. (C(6) T(4))

Corollary. The groups G_{pqr} form a sequence of word hyperbolic groups which cannot act freely, and without inversions, by isometries on any Λ -tree.

Actions on negatively-curved spaces

Proposition. The groups G_{pqr} admit CAT(-1) structures corresponding to each isometry class of triangles in the hyperbolic plane.

Actions on negatively-curved spaces

Proposition. The groups G_{pqr} admit CAT(-1) structures corresponding to each isometry class of triangles in the hyperbolic plane.

• There are 3-dimensional CAT(-1) structures for G_{pqr} too. G_{pqr} is the fundamental group of the 2-complex obtained from a "thrice punctured sphere."

Actions on negatively-curved spaces

Proposition. The groups G_{pqr} admit CAT(-1) structures corresponding to each isometry class of triangles in the hyperbolic plane.

• There are 3-dimensional CAT(-1) structures for G_{pqr} too. G_{pqr} is the fundamental group of the 2-complex obtained from a "thrice punctured sphere."

• G_{pqr} are fundamental groups of graphs of groups. with underlying graph a tripod, edge groups all infinite cyclic, valence 1 vertex groups all infinite cyclic, and valence 3 vertex group being free of rank 2.

Observation

The groups

$$\langle x_1, x_2, \dots, x_n \, | \, x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_n^{\alpha_n} = 1 \rangle$$

are \mathbb{Z}^2 -free for $n \ge 4$, provided at least four α_i are non-zero (Bass, Martino - O Rourke).

Proof

 A_x , A_y and A_z : axes of translation of x, y and z. Assumption: $||x^p|| \ge ||y^q|| \ge ||z^r||$.

Proof

- A_x , A_y and A_z : axes of translation of x, y and z. Assumption: $||x^p|| \ge ||y^q|| \ge ||z^r||$.
 - A_x and A_y do not intersect;

Proof

- A_x , A_y and A_z : axes of translation of x, y and z. Assumption: $||x^p|| \ge ||y^q|| \ge ||z^r||$.
 - A_x and A_y do not intersect;
 - A_x and A_y do intersect.

Let $\Delta(x,y)$ be the intersection of the two axes. Then

 $|\Delta(x,y)| < ||x|| + ||y||.$

A_x and A_y intersect

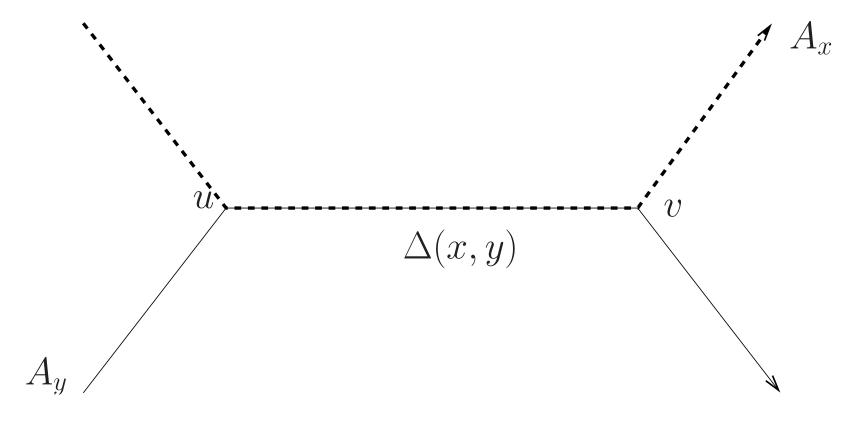


Figure 1: Coherent axes

A_x and A_y intersect incoherently

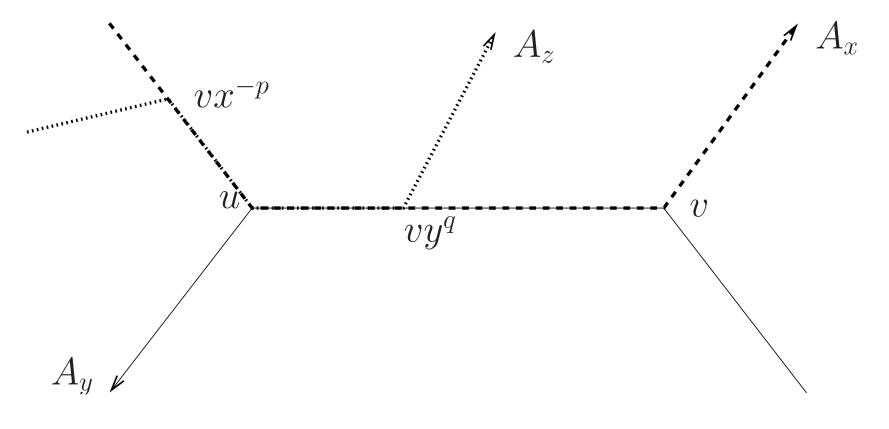


Figure 2: Large Intersection

A_x and A_y intersect incoherently

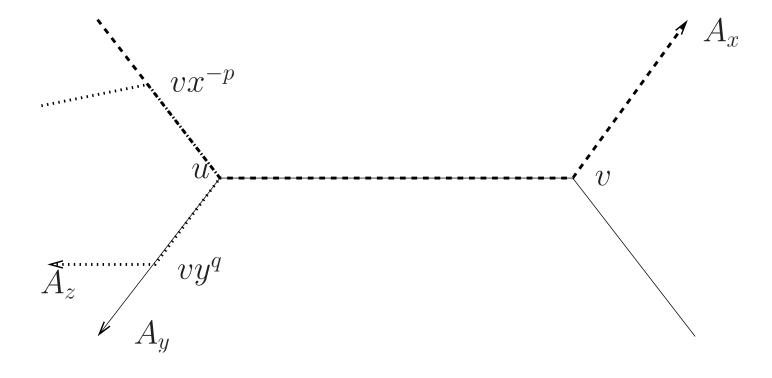


Figure 3: Small intersection

A_x and A_y intersect incoherently

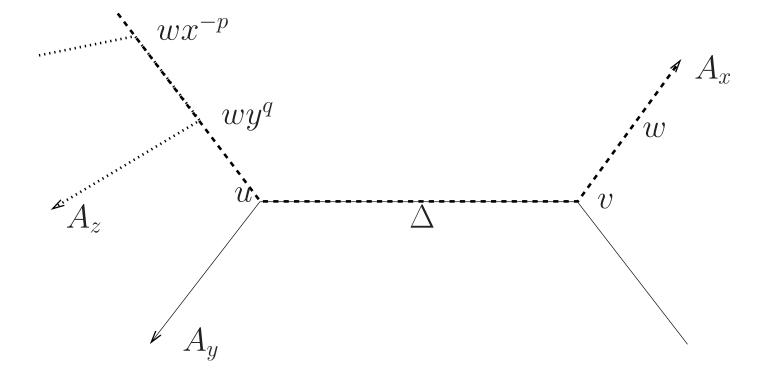


Figure 4: Exact intersection

More equations?

The equation $[X, Y] = Z^n$ has no non-trivial solutions in a free groups, where $n \ge 2$. What about tree-free groups?

More equations?

The equation $[X, Y] = Z^n$ has no non-trivial solutions in a free groups, where $n \ge 2$. What about tree-free groups?

Theorem.(Martino-O Rourke) The group

$$G = \langle x, y, x_1, \dots, x_n \mid [x, y] = w(x_1, \dots, x_n) \rangle$$

acts freely on a $\mathbb{Z} \times \mathbb{Z}$ -tree, where $w(x_1, \ldots, x_n)$ is a word in $\{x_1, \ldots, x_n\}$.

• In a free group, the equation

$[X_1, Y_1][X_2, Y_2] = Z^m$

has no non-trivial solutions for $m \ge 4$. (Comerford - Comerford - Edmunds) • In a free group, the equation

 $[X_1, Y_1][X_2, Y_2] = Z^m$

has no non-trivial solutions for $m \ge 4$. (Comerford - Comerford - Edmunds)

• The group

$$G = \langle x, y, z, t \mid [x, y] x^m = [z, t] \rangle$$

acts freely on a \mathbb{Z}^n -tree. (Martino-O Rourke)