TORSORS OVER AFFINE CURVES

PHILIPPE GILLE

ABSTRACT. The lectures are an introduction to torsors in Algebraic Geometry with
special attention to the case of affine algebraic curves.
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1. INTRODUCTION

The theory of fibrations and principal fibrations is ubiquious in Topology and Dif-
ferential Geometry. In 1955, Grothendieck investigated a general theory of fibrations
focusing on functoriality issues [33]. In 1958, Grothendieck and Serre extended the
setting of G-bundles in algebraic geometry by means of the étale topology [53].

For simplicity we shall present this theory over rings or equivalently over affine
schemes. The general framework is close to that and can be found in other references
[18, 38, 12}, 5].

We shall focus on the case of an affine smooth curve over a field, starting with
vector bundles and quadratic vector bundles. Important cases are the affine line and
the affine punctured line. Panin and Stavrova provided also independently a more
detailed survey of Harder’s results of §5.1 [PS].

For further topics, we recommend the survey Problems about torsors over reqular
rings of K. Cesnavicius [13].

Acknowledgments. We thank the organizers of the PCMI program Motivic Homo-
topy Theory for inviting us to lecture to the nice graduate summer school of Park
City. We thank Margot Bruneaux for the list of exercises. Finally we thank Jing Liu,
Andrea Maffei and the referee for useful comments.

2. THE SWAN-SERRE CORRESPONDENCE

This is the correspondence between locally free modules of finite rank and vector
bundles, it arises from the case of a paracompact topological space [60].

We explain it in the setting of affine schemes following the book of Gortz-Wedhorn
[29, ch. 11| up to slightly different conventions.
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2.1. Vector group schemes. Let R be a ring (commutative, unital). The additive
R-group scheme is G, p = Spec(R[t]) and is a part of a wider family.

(a) Let M be an R-module. We denote by V(M) the affine R—scheme defined by
V(M) = Spec(Sym*(M)); it is affine over R and represents the R—functor S
Homg(M ®g S, S) = Homg(M, S) [19, 9.4.9]. Indeed for each R-ring B, we have

V(M)(B) = Hompg_ing(Sym®* (M), B) = Hompg_mea(M, B).

It is called the wvector group scheme attached to M, this construction commutes with
arbitrary base change of rings R — R’. We have V(R) = A}, = Spec(R[t]), that is,
the affine line over R. We can consider V(M) as an R-scheme, as a commutative R—
group scheme or as a Og—module (where Op stands for the functor in R-rings defined
by Or(R') = R'). Our default convention is that of Og-modules and is justified by
the following fact.

Proposition 2.1. |52, 1.4.6.2| The functor M — V(M) induces a full contravariant
embedding of the category of R—modules in the category of vector group schemes over

R.

That functor has a nice behaviour. For example if the R—-module M is finitely
presented, then the R-scheme V(M) is finitely presented [19, Cororllaire 9.4.7] and
the converse holds by using the limit criterion [62, Tag 0G8P].

(b) We assume now that M is locally free of finite rank and denote by MV its dual.
In this case Sym®(M) is of finite presentation [19, 9.4.11]. Also the R—functor S
M ®pg S is representable by the affine R—scheme V(M"Y) which is also denoted by
W (M) [52, 1.4.6].

Remark 2.2. Assuming that M is finitely presented, Romagny has shown that the
finite locally freeness condition on M is a necessary condition for the representability
of W(M) by a group scheme [47, Theorem 5.4.5]. The proof is one of the exercise.
This extends a result of Nitsure in the noetherian setting [46, Corollary 2].

Let » > 0 be an integer.

Definition 2.3. A vector bundle of rank r over Spec(R) is an affine R-scheme X such
that there exists a partition 1 = fi + --- + f,. and isomorphisms
¢i + X Xg Ry, = W((Ry,)") such that ¢; o ¢;' : W((Ryy,)") — W((Ryy,)")
is a linear automorphism of W ((Ry,y,)") fori,j=1,...,n.

We say that the Zariski cover (Spec(Ry,)),_,
any finer cover trivializes as well X. A homo’rr’lorphism of vector bundles X — X’
of respective rank r, /., is a morphism of R-schemes f : X — X’ built locally
from linear maps. More precisely, we require that there exists a trivializing cover

(Spec(Ry,)iz1,.n for X and X' with maps ¢; : X xgp Ry, — W((Ry,)") and
¢, X' xp R, — W((R;)") as is the definition such that each

. trivializes the vector bundle X and
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¢ jofiopt: W((Ry,)") — W((Ry,)") arises from a Rj,-linear map (Ry,)" — (Ry,)" .
The notion of isomorphisms is clear and leads to the groupoid of vector bundles of
rank r over R whose objects are vector bundles of rank r» and whose morphisms are
the isomorphisms. We denote by Vect,(R) this category.

Theorem 2.4. (Swan-Serre’s correspondence) The above functor M +— W (M) in-

duces an equivalence of categories between the groupoid of locally free R-modules of
rank r and Vect,(R).

Proof. See |29, Proposition 11.7] for the general case (i.e. over a base scheme). We
check first that the functor is well-defined. If M is locally free of rank r, there exists
a partition 1 = f; + -+ + f, and trivializations v¢; : My, — (Ry,)". It follows that
each map ¢; 0" ¢ (Rypy,)" — (Ry,y,)" is a linear isomorphism for i,j = 1,...,n.
By applying the functor W, we get that W (M) is a vector bundle of rank r and the
trivializations are the

¢i = wi,* : W(M) XR Rfi — W((sz)r)

It follows that the R-functor W is well-defined and is fully faithful. We need to
check that the functor is essentially surjective. We are given a vector bundle X over
Spec(R) of rank r and we need to construct an R-module M which is locally free of
rank 7 together with an isomorphism X — W(M) of vector bundles.

As in the definition consider a partition 1 = f; 4+ --- + f,, and isomorphisms ¢; :
W((R;,)") — X xgr Ry,. We put M; = (Ry,)" and we have linear isomorphisms
Vij=¢jod; " : (M;)5, — (M;)y, satisfying the compatibilities 1 ; 0 1; ), = 1 x. We

define the R-module
M:Ker(@ M - P (Ml-)fj)

1<i<n 1<4,j<n

where (my,...,m,) maps to the element whose (¢, 7)-th entry is % — 1);;(5). Ac-
cording to [62, Tag 00EQ)], the map M — M; induces an isomorphism v; : My, — M;
for each i and we have ¢;; = ;' o 7; for all i, ;.

In particular M is locally free of rank r. Since v ;. = 7]_*1 O Vix = gbj_lgbz we can
glue the isomorphisms

W(M) xp Ry, 2% W(M;) & X xg Ry,

in an isomorphism of vector bundles W (M) — X. O

A vector bundle of rank 1 is called a line bundle and a locally free R-module of
rank 1 is called an invertible R-module.

Examples 2.1.1. (a) Given a smooth map of affine schemes X = Spec(S) - Y =
Spec(R) of relative dimension 7 > 1, the tangent bundle Ty = V(QF ) r) is a vector
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bundle over Spec(S) of dimension r [20, §16.5.12]. Indeed the R-module QE/R is
locally free of rank r [5], §2, Proposition 5].

(b) The tangent bundle of the real sphere Z = Spec (R[x, y, 2]/ (* + y? + 22 — 1)) is
an example of a vector bundle of dimension 2 which is not trivial. It can be proven
by differential topology (hairy ball theorem) but there are also algebraic proofs, see
for instance [6I]. A consequence is that Z cannot be equipped with a structure of a
real algebraic group.

(c) Note that this tangent bundle extended to C becomes free. This is a consequence
of Murty-Swan’s theorem [43] since it is stably free.

2.2. Linear groups. Let M be a locally free R—module of finite rank. We consider
the R-algebra Endg(MY) = MY ®r M. It is a locally free R-module of finite rank
so that we can consider the vector R—group scheme V(EndR(M V)) which is an R—
functor with values in associative and unital algebras [19, 9.6.2]. It is isomorphic
to W (Endg(M)). Now we consider the R—functor S +— Auts(M ®p S). It is rep-
resentable by an open R-subscheme of W (Endg(M)) which is denoted by GL(M)
(loc. cit., 9.6.4). We bear in mind that the action of the group scheme GL(M) on
W(M) (resp. V(M)) is a left (resp. right) action.
In particular, we denote by GL, = GL(R").

Remark 2.5. For R noetherian, Nitsure has shown that the finite locally freeness

condition on M is a necessary condition for the representability of GL(M) by a group
scheme [45].

If B is a locally free R—algebra of finite rank, we recall that the functor of invertible

elements of B is representable by an affine R-group scheme which is a principal open
subset of W(B). It is denoted by GL(B) [12] 2.4.2.1].

2.3. Cocycles. Let M be alocally free R—module of rank r. There exists a partition
1 =fi+-+ f, of R and isomorphisms ¢; : (R;,)” — M xx Ry,. Then the
Ry, s,—isomorphism ¢; '¢; : (Ry,f,)" — (Ryy,)" is linear so defines an element g; ; €
GL,(Ry,s,). More precisely we have (¢; '¢;)(v) = gi;.v for each v € (Ryy,)" (in
other words, (Ry,s,)" is seen as column vectors).

Lemma 2.6. The element g = (g, ;) is a 1-cocycle, that is, satisfies the relation

9ij 9k = Gie € GLr(Ry,5,5,)
foralli,7,k=1,...,n.
Proof. Over Ry,y, 5, we have ¢; "¢y = (¢; ' ¢;) o ((b;l(bk) = Lg,,; 0Ly, = Ly, g, Where
L stands for the left translation on GL,. O

If we replace the ¢;’s by the ¢ = ¢; 0 g;’s with elements ¢;’s in [ [ GL,(Ry,), we get
9i; = g; ' gij g; and we say that (g:) is cohomologous to (g; ;).
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We denote by U = (Spec(Rfi))i:1 _ the affine cover of Spec(R), by Z'(U/R, GL,)
the set of 1-cocycles. We consider the following equivalence relation on Z'(U /R, GL,):

the cocycle (g;;) is equivalent to the cocycle (g;;) if gi; = g; Yg:;g; for some
(9i)i=1,.n € I G(Ry). We denote by H*(U/R,GL,) = Z'(U/R,GL,)/ ~ the
i=1,..,n

set of 1-cocycles modulo equivalence relation The set H'(U/R,GL,) is called the
pointed set of Cech cohomology with respect to U.

Summarizing we attached to the vector bundle W (M) of rank r a class y(M) €
HY(U/R,GL,).

Conversely by Zariski glueing, we can attach to a cocycle (g; ;) a vector bundle W,
over R of rank 7 equipped with trivializations ¢; : W(R7},) — W, xr Ry, such that

o7 P = gij.

Lemma 2.7. The pointed set H*(U/R,GL,) classifies the isomorphism classes of
vector bundles of rank r over Spec(R) which are trivialized by U.

For the proof, see [29, 11.15]. We can pass this construction to the limit over all

affine open covers of X. We define the pointed set H} (R, GL,) = lim H'(U/R,GL,)

of non-abelian Cech cohomology of GL, with respect to the Zariski topology of
Spec(R). By passage to the limit, Lemma implies that H} (R, GL,) classifies
the isomorphism classes of vector bundles of rank r over Spec(R).

We will refer to the map Vect,(R) — H} (R,GL,), X — [X] as the class map.

2.4. Functoriality. The principle is that nice constructions for vector bundles arise
from homomorphisms of group schemes. Given a map f : GL, — GL;, we can attach
to a vector bundle W, of rank r (where g = (g;;) is a cocycle) the vector bundle
Wy of rank s where f(g) = (f(g:)). It can be shown (as an extra exercise) that
it extends to a functor X — f,(X) from vector bundles of rank r to vector bundles
of rank s and is compatible to class maps. We mean that the following diagram
commutes

fx

(2.1) Vect, (R) Vect(R)
i (R,GL) —T {1l (R,GL,).

where the vertical arrows are the class maps. We limit ourselves here to the following
three cases for which we have an explicit description of f,.

(a) Direct sum. If r = ry + ry, we consider the map f : GL,, x GL,, — GL,,
(A1, A2) — Ay @ As. We then have f,(W1, Wy) = W; & W,

Of course, it can be done with r = r; + - 4 7, in particular we have in the case
r=1+---+1 the diagonal map (G,,)” — GL, which leads to decomposable vector
bundles, that is, direct sum of line bundles.
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(b) Tensor product. If r = ryry, we consider the map f : GL,, x GL,, — GL,,
(A1, A2) — Ay ® Ay (called the Kronecker product). We then have f,(W;, W) =
W, ® W,.

(c) Determinant. We put det(W) = det,(W), this is the determinant line bundle.

2.5. The case of a Dedekind ring. Let R be a Dedekind ring, that is, a noetherian
domain such that the localization at each maximal ideal is a discrete valuation ring.
The next result is a classical fact of commutative algebra, see [31), 11.4, Theorem 13].

Theorem 2.8. A locally free R—module of rank r > 1 is isomorphic to R™' ® I for
I an invertible R—module which is unique up to isomorphism.

Since I = A"(R™™! @ I) is the determinant of R"~! & I, the last assertion is clear.
Our goal is to discuss this statement with cohomological methods in view of possible
generalizations. The key input is the strong approximation theorem for the Dedekind
ring R.

Let Ry be localization of R and denote by {pi,...,p.} = Spec(R) \ Spec(R;) and

A~

by v; the discrete valuation of K attached to p;. We denote by K; the completion of

~

K with respect to v; and by R; its valuation ring.

Theorem 2.9. (1) (Weak Approzimation) The image of the diagonal embedding K —

Hi:l .....

(2) (Chinese remainder) For each c-uple (e1,...,e.) of positive integers, the map
(& C

R — [ R/p;" is onto and its kernel is ] p5*.
i=1 i=1

. K is dense.

(8) (Strong approximation) Let x1,...,z. € K and let e = (eq,...,e.) be a c—uple
of integers. Then there exists x € K such that v;(x — x;) > e; fori=1,..,c and and
vp(2) > 0 for each maximal ideal p of R satisfying p # p; fori=1,...,n.

Proof. Part (3) implies clearly (1) and (2). For a proof of (3), see [55 §I1.3] or [T,
§VIIL.2.4]. For a direct proof of (2), see [62, Tag 00DT]. For a direct proof of (1), see
7, §VL.7.2]. O

The Chinese remainder theorem is then a special case of strong approximation.
Coming back to Theorem [2.8] it states firstly that vector bundles over R are decom-
posable and secondly that vector bundles over R are classified by their determinant.
We limit ourselves to prove the following corollary by using strong approximation.

Corollary 2.10. A locally free R-module of rank r > 1 is trivial if and only if its
determinant s trivial.

Proof. We are given a vector bundle W (M). It trivializes over an open affine subset
Spec(Ry). We consider its class

[M] € ker (H},, (R, GL,) = Hp, (Ry, GL,))
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and the right handside classifies isomorphism classes of vector bundles of rank r which
trivializes over Ry. We put ¥ = Spec(R) \ Spec(Ry) = {p1,.-.,Pc}. We use then the
above notation and consider for each i the diagram

‘Epi — I?Pi

] ]

R——— K

According to Nakayama s 1emmal the R —module M ®g Rp is free so we can pick
a trivialization ¢Z : ( o) — M xp Rp ; we bear in mind that the choice (bl is up to
precomposing with an element of GL, (R 2.

On the other hand, let ¢; : (Rf)" — M xg Ry be a trivialization, similarly its
choice is up to precomposing with an element of GL,(Rf). By extending the scalars

to I?pi, we obtain then two trivializations
¢f,f(pi H(Kp)" — M xp Ky,

¢i,l?pi : (I?Pi)r % M XR I?Pi‘
The linear map

Ok iy, (Kp) — (Kp)"

gives rise to an element g; € GLT([A(pZ.). Taking into account the choices, we attached
to M an element of the double coset

cs(R,GL,) = GL,(R;) \ [] GL.(Ky,)/ GL(Ryp,).

i=1,...,c
If we consider an isomorphic R-module v : M =5 M’  we can deal with the trivi-

~ Vi
alizations ¢ : (Ry)" — 5y M —> M} and & - (Rp,)" — & %5 M xg Ry, — M x i Ry,

and we observe that (gb )f}fpi o (¢ )i Ry, = ﬁ?p o ¢i, &y, Lhis shows that we defined
actually a class map
(2.2) ker (H;ar(R, GL,) — HL (R;, GLT)) ~ ex(R, GL,).

Claim 2.11. The class map (2.2)) is injective.

For the sequel we need only to know that it has trivial kernel. We consider only this
special case and let the reader to deal with the general case. Indeed if [M] belongs in
the kernel, it means that we can adjust the trivializations in order to get g; = 1 for

IWe could do it over the local ring Rp, but we want to emphasize the approach involving
completions.



TORSORS OVER AFFINE CURVES 9

i =1,...,c. We claim that the isomorphism ¢; : My — (R;)" extends (uniquely)
to an 1somorphlsm M — R". The point is that ¢ ®Rf K 1 My ®p;, K S (K )7
is extended from ¢1 by base change from R to K It means that there are no

denominators involved so that the map extends o5 to an R—linear mapping ¢ : M" —
R". For the same reason (¢;) ' extends as well and we conclude that ¢; extends to

an R-linear isomorphism v : M" — R".

We assume now that the determinant of W (M) is trivial. Using the diagram ({2.1)),
it follows that (g;) belongs by functoriality to the kernel of the map
det, : ¢x(R,GL,) — cx(R,G,,) = Rf\ H (KXZ,/R;). After changing the trivi-

alizations we Canl then assume that g; € SL ( p;) for i =1,... c. Since SLT(IA(pZ.)
is generated by elementary matrices [59, lemme 64] and since Rf is dense in [], I?pi by
the strong approximation therorem , it follows that SL, (i) is densein [[,_, . SL.(Kp
(this goes by decomposing elements in a product of N elementary matrices for N >>

0). On the other hand, each group SLr(ﬁpi) is open (actually clopen) in SLT(IA(pi) SO
that cg(R,SL,) = 1. The Claim enables us to conclude that W (M) is a trivial
vector bundle. O

Remarks 2.12. (a) The general case is quite close; we need to apply the previous
argument to GL(R"™! & I) for an invertible R—module I and strong approximation
with respect to the R—group scheme GL(R™™!' & I).

(b) In the case r = 1, en(R,G,) = Divg(R)/R; is isomorphic to ker (Pic(R) —
Pic(Ry)) [30, Theorem 6.2.4], in other words the class map is bijective. This is a

general fact, i.e. the map of Claim is surjective. This can be seen by using
patching techniques (see [5], §6.2, D.4]).

(c) The density of SL,(Ry) in  [] SLT(l?pi) is an example of strong approximation.
1=1,...,c

This argument comes from Harder [35, Korollar 2.3.2] and is used further (see [5.1]).

3. ZARISKI TOPOLOGY IS NOT FINE ENOUGH

The above definition of non-abelian Cech cohomology extends to an arbitrary group
scheme. There are several complementary reasons for trying to extend this theory.

3.1. The example of quadratic bundles. A quadratic form on an R—module M
is a map ¢ : M — R which satisfies

(i) ¢q(Az) = Nq(x) for all A € R, z € M.
(ii) The form M x M — R, (x,y) — by(z,y) = q(x+y) —q(x) —q(y) is (symmetric)
bilinear.

2we use the surjectivity of the determinant.
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This concept is stable under arbitrary base change. The form ¢ is reqular if b,
induces an isomorphism M — MV. A fundamental example is the hyperbolic form
(Ve VY, hyp) attached to a locally free R-module of finite rank defined by hyp(v, ¢) —
¢(v).

Suppose we are given a regular quadratic form (M, q) where M is locally free of
rank r. It is tempting to make analogies with vector bundles and to use the orthogonal
group scheme O(q, M) which is a closed subgroup scheme of GL(M). More precisely,
we have

O(q, M)(S) = {g € GL(M)(S) | gs0g = qs}

for each R-ring S. For an open cover U of R we define Z'(U/R,O(q, M)) and
H'(U/R,0O(q, M)) in the same way as in section 2 (it makes sense actually for any
R—group scheme). What we get is the following.

Lemma 3.1. The set H. (U/R,0(q, M)) classifies the isometry classes of reqular

quadratic forms (¢', M') which are locally isomorphic over U to (q, M).

Proof. Let U = (U,)ier be the open cover. We define a class map from the set S
of isomorphism classes of regular quadratic forms (¢, M’) which are locally isomor-
phic over U to (q,M). Let (¢, M') be a regular quadratic form such that (¢', M')y,
is isometric to (q, M)y, for each i. In other words we have trivialization maps
¢; : (g, M)y, — (¢, M")y, for each i. On U;; = U; N U;, we have g;; = ¢;'¢; €
O(q, M)(U, ;). This is a 1-cocycle, i.e. ¢;; = gijg;x on U; jr = U;NU;NUj. By taking
into account the choices, we obtain a well-defined map S — H,_ (U/R,O(q, M)).

O

This is nice, but the point is that regular quadratic forms over R of dimension
r have no reason to be locally isomorphic to (M, q) (e.g. this occurs already with
R =R, the field of real numbers). So the set H.. (R, O(q, M)) is only a piece of what
we would like to obtain.

Remark 3.2. The above dictionnary is an example of the so-called "yoga of forms"
which is of general nature. See [32] §II1.2.5] and [12, §2.2.4] and §4.6](d).

3.2. Functoriality. If we have a map f : G — H of group schemes, we would like
to have some control on the map f. : H}, .(R,G) — Hy, (R, H).

A basic example is the Kummer map f; : G,, — G,,, t — t¢ for an integer d. It
gives rise to the multiplication by d map on the Picard group Pic(R). In terms of
invertible modules, it corresponds to the map M — M®9.

We would like to understand its kernel and its image. We can already say some-

thing about the kernel. Given [M] € ker(Pic(R) xd, Pic(R)), then there exists a

trivialization 6 : R —s M®?. We then define the commutative group A4(R) of iso-
morphism classes of couples (M, ) where M is an invertible R—module equipped with
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a trivialization 6 : R — M®9. The multiplication rule is given by (M,0). (M’ 0') =
(M ®gr M',0) where 6 is defined by the composite

R = R 2% pred g MO = (M @5 M),
The trivial element is (R,6,) where 6, : R — R®. We have a forgetful map
Au(R) — Pic(R).
Lemma 3.2.1. We have d A;(R) = 0 and an exact sequence
1= R*/(R)* % Ag(R) — Pic(R) 2% Pic(R)
with ¢(a) = [(R,0,)] where 0, : R — R®** = R, x — ax.
Proof. Given [(M,0)] € Ay4(R), its d—power is [(M®4,6,)] where

ed ‘R ;> R®d ﬂ (M®d)®d — M®d2_

It follows that (M®9,6,) is isomorphic to (R, 6p).

Next assume that ¢(a) = [(R,0,)]) = 0 € A4(R), that is, there exists an iso-
morphism ¢ : R — R of R-modules such that ¢.,0, = 6,. The map ¢ is the
multiplication by an unique b € R* and we have b = a. The injectivity of the first
map is established.

Clearly the sequence R*/(R*)4 LN A4(R) — Pic(R) is a complex, let us prove its
exactness. We are given (M, #) such that R = M so that we can deal with (R, 9).
Then 0 : R — R®? = R is given by a € R*. Therefore (R, 0) = (R, 0,). Finally the
exactness at Pic(R) is obvious. O

We will see later that we can provide a cohomological meaning to the group Ay(R)
(Remark [4.12)).

4. GENERAL DEFINITIONS

Grothendieck-Serre’s idea is to extend the notion of covers in algebraic geometry
[53]. They did it originally with étale covers (to be discussed in but it turns
out that the flat cover setting is simpler in a first approach. This is the setting of the
book by Demazure-Gabriel [18, §III], and there are variants.

4.1. Non-abelian Cech cohomology.

Definition 4.1. A ﬂaﬂ cover of R is a finite collection (S;)ie; of R—rings satisfying
(i) S; is a flat R—algebra of finite presentation for i € I;
(ii) Spec(R) = U,¢; Im(Spec(Si) — Spec(R)).

If we put S = [[,.; Si, the conditions rephrase by saying that S is a faithfully flat
R-algebra of finite presentation. We can therefore always deal with a single ring.

3or fppf= fidélement plat de présentation finie.
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Remark 4.2. For a partition 1 = fi+---+ fu, the family (Ry,);=1,..n is a flat cover
of R and so is Ry, X --- X Ry, .

We define now Cech non-abelian cohomology. Let S be a faithfully flat R-algebra
of finite presentation. We denote by pf : S — S ®pg S the coprojections (i = 1,2) and
similarly ¢;; : S®r S — S ®r S ®r S the partial coprojections (i < j).

Let G be an R-group scheme. A 1-cocycle for G and S/R is an element g €
G(S ®Rr S) satisfying

G o(9) G53(9) = ai3(9) € G(S®rS®rS).

We denote by Z'(S/R,G) the pointed set of 1-cocycles of S/R with values in G (it is
pointed by the trivial 1-cocycle).

Two such cocycles g, ¢ € G(S) are cohomologous if there exists h € G(S) such that
g = pi(h™") ¢ pi(h). We denote by H'(S/R,G) = Z'(S/R,G)/ ~ the pointed set of
1-cocycles up to cohomology equivalence.

Remark 4.3. In the case of a Zariski cover given by a partition of 1, the definition
is the same as in §3.I] What lies behind this, is the fact that intersection of open
subschemes is a special case of fiber product.

We can pass to the limit on all flat covers of Spec(R) and define I:I}ppf(R, G) =
MQI(S /R,G) . This construction is functorial in R and in the group scheme G.

4.2. Torsors. A (right) G-torsor X (with respect to the flat topology) is an R-scheme
equipped with a right action of G which satisfies the following properties:

(i) the action map X xgp G — X xgr X, (x,9) — (x,2.g), is an isomorphism;
(i) There exists a flat cover R'/R such that X (R') # 0.

The first condition reflects the simple transitivity of the action, i.e. G(T') acts simply
transitively on X(7T') for all R-rings T. The second condition is a local triviality
condition. An example is X = G with G acting by right translations, it is called the
split G—torsor. A morphism of G-torsors X — Y is a G-equivariant morphism.

If X(R) # 0, a point x € X(R) defines a morphism G — X, ¢, : g — x.g, which
is G-equivariant (with respect to the right translation on ). The simply transitive
property implies that ¢, is an isomorphism of R-schemes; we say that X is trivial
and that ¢, is a trivialization.

Condition (ii) rephrases that an R—torsor X under G is locally trivial for the flat
topology.

A morphism of G—torsors X — Y is a G—equivariant map.

Lemma 4.4. A morphism of G-torsors f : X — Y is an isomorphism.

4There are set-theoretic issues there allowing us to consider this limit, see [4, Remarque 1.4.3]
and [63] for the fpqc setting.
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Proof. Let R' be a flat cover of R which splits X. Let 2’ be an element of X (R') and
let 3/ be its image by f. Then we have a commutative square

Gyt
GR’ T eE— XR’

lid lf R/
By

GR’ s UE— YR/-

where the horizontal maps are orbit maps. As we have noticed before, the orbit
maps are isomorphisms so that fgr is an isomorphism. We want to deduce that
f is an isomorphism as well. Assume first by simplicity that X and Y are affine
R-schemes (which holds if G is affine). We deal then with a morphism of R-rings
[*: R[Y] — R[X] such that f* ®pz R’ is an isomorphism. It is then an isomorphism
in view of a basic property of faithfully flat modules [6, 1.3, §1, Proposition 2|. In the
non affine case, we appeal to |20} 2.7.1.(viii)]. O

Thus the category of G—torsors is a groupoid and the above reasoning is a first step
in descent arguments. The R—functor of automorphisms of the trivial G-torsor G is
representable by G (acting by left translations).

We denote by H}ppf(R, () the set of isomorphism classes of G-torsors for the flat
topology. If S'is a flat cover of R, we denote by H},,;(S/R,G) the subset of isomor-
phism classes of G-torsors trivialized over S.

As in the vector bundle case, we shall construct a class map v : Hy,,((S/R, G) —
]:I}ppf(S/R, G) as follows.

Let X be a G-torsor over R equipped with a trivialization ¢ : G xz S — X xg S.
Over S®pS, we then have two trivializations pi(¢) : GXr(S®rS) — X Xz (S®gS)
and p3(¢). Tt follows that pj(¢)~! o p3(¢) is an automorphism of the trivial G—torsor
over S ®g S, so is the left translation by an element g € G(S ®g S). A computation
shows that g is a 1-cocycle [25] §2.2|; also changing ¢ changes g by a cohomologous
cocycle. The class map is then well-defined. Its study involves a gluing technique in
the flat setting.

4.3. Interlude: Faithfully flat descent. Let T" be a faithfully flat extension of the
ring R (not necessarily of finite presentation). We put 7 = T@r T--- @ T (d
times). One first important thing is that the Amitsur complex

0M—MopT S MogTorT 2 MapT ...
is exact for each R—module M [38, III.1] where

d(m@th @ @t)= Y (-))mHe L1t ® - &,



14 PHILIPPE GILLE

In the case M = R, this implies in particular that for any affine R-scheme X, we
have an exact sequence

0 — Hompg(R[X], R) — Hompg(R[X],T) d—1> Hompg(R[X], T ®rT)
In other words we have an identification
X(R)={x e X(T) | pi(z) = p3(x) € X(T@RT)}.

This holds actually for any R-scheme Y, in other words, the R-functor hy (defined
by hy (T') = Y(T) for each R-ring T') is a flat sheaf [62, Tag 023Q)].

Given a T-module N we consider the 7" ®p T-modules p;(N) = T ®r N and
p5(N) = N ®@pT. A descent datum on N is an isomorphism ¢ : pi(N) — p5(N) of
T%2-modules such that the diagram

(4.1) TRrT g N N®RrT ®rT

T®r N QpT

is commutative where ¢, is obtained by extending ¢ with ®zT at the position .
For example we have pi(t; ® to ® n) = t; ® p(ta @ n).

There is an obvious notion of morphisms for T-modules equipped with a descent
datum from 7" to R. If M is an R-module, the identity of M gives rises to a canonical
isomorphism cany; : pi(M @ T) — p3(M ®r T), this is a descent datum.

Theorem 4.5. (Faithfully flat descent, see |38, 111, Theorem 2.1.2| )

(1) The functor M — (M ®g T,canyr) is an equivalence of categories between the
category of R—modules and that of T'-modules with descent datum. An inverse functor
(the descent functor) is (N,p) = {neN | n®@1=p(l®@n)}.

(2) The functor above induces an equivalence of categories between the category of
R-algebras (commutative, unital) and that of T-algebras (commutative, unital) with
descent datum.

For (2), we need to explain what we mean by a descent datum on a T-algebra B.
This is an isomorphism of T%2-algebras ¢ : T ®r B — B ®r T which satisfies the
analogous rule of (4.1). For an exhaustive view, we recommend [62, Tag 023F]. We
shall later see examples of descent beyond the case of Zariski covers (e.g. |4.16)).

4.4. The linear case. An important example is the extension of Swan-Serre’s cor-
respondence. A consequence of the faithfully flat descent theorem (and of the fact
that the property of being locally free of rank r is local for the flat topology [62, Tag
05B2|, [38, I11.2.8]) is the following.
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Theorem 4.6. Let r > 0 be an integer.

(1) Let M be a locally free R-module of rank r. Then the R—functor
S+ Isomg_med(S™, M ®@r S) is representable by a GL,~torsor X over Spec(R).
(2) The functor M — XM induces an equivalence of categories between the groupoid
of locally free R—modules of rank r and the category of GL,.~torsors over Spec(R).

Proof. See 12| 2.4.3.1]. This reference is for Zariski topology and étale topology but
works for the flat topology in view of the upcoming Proposition [£.14] O

This implies that the GL,~torsors are the same with flat topology or with Zariski
topology.

Corollary 4.7. (Hilbert-Grothendieck 90) We have Hy, (R,GL,) = H},, (R, GL,).

In particular, if R is a local (or semilocal) ring, we have Hj,, (R, GL,) = 1.

This is a special case of a more general statement which holds for GL;(5) where
B is an Azumaya R-algebra see |27, §4.2]. More generally, it holds for a separable
R-algebra (for example Azumaya or finite étale) which is a locally free R—module of
finite rank.

4.5. Torsors, cocycles, and twists.
Lemma 4.8. The map v : H},,(S/R,G) — H},,;(S/R,G) is injective.

Proof. Once again we limit ourselves to the kernel for simplicity (for the general
argument, see [25], §2.2]). If (X, ¢) gives rise to a cocycle which is cohomologous to
the trivial cocycle, it means that there exists a trivialization ¢’ : G xp S —+ X xp S
such that the associated cocycle is trivial. We put x = ¢/(1) € X(S). Then pj(z) =
ps(z) = 1. Since X (R) identifies with {z € X (S) | pi(x) = p3(x)}, we conclude that
X (R) is non-empty. O

Theorem 4.9. If G is affine, the class map H},, (S/R,G) — H}, (S/R,G) is
bijective.

Note that by passing to the limit on the flat covers, we get a bijection H}pp 7 (R, G) —
H}ppf(R, (). The fact that we can descend torsors under an affine group scheme is
a consequence of the faithfully flat descent theorem. The sketch is as follows where
we denote by R[G] the coordinate ring of G. We are given a cocycle g € G(S ®g S),
recall that it satisfies q12.4(9) g23.4(9) = q13.(9) € G(S ®r S ®r S). We consider
the map L} : (S ®g S)[G] — (S @r 5)[G] (where Ly : Gsgps — Gsgps is the left
multiplication by g). Define ¢, by the diagram

S @r S[G] 2 S[G] @r S

%la %lﬁ
L*

(S ®p 9)[G] ————— (S @R 9)[G]
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where a(s1® f) = (s1 @ 1)p5(f) and 5(f ®s2) = pi(f)(1® s3). The cocycle condition
implies that ¢, is a descent datum for the S-algebra S[G]. Theorem defines an
R-algebra R[X] and X is actually a G-torsor denoted by Ej.

This construction is a special case of twisting. Again we are given a cocycle g €
G(S®RS), it satisfies q12.+(9) ¢23+(9) = q1,3+(9) € G(S®RS®RS). More generally, we
consider an affine R-scheme Y equipped with a left action of G. We denote by Aut(Y")
the fppf R-sheaf (in groups) of automorphisms of Y defined by T+ Aut,(Yr) and
the action is nothing but a homomorphism of R-sheaves in groups a : G — Aut(Y).
We can deal then with the automorphism ¢, = a(g) € Autg, (Ysg,s) and the point

is that ¢, : Y X (S®r S) — Y X (S ®r S) defines a descent datum. This gives
rise to the twist of Y, of Y by the 1-cocycle g. The scheme Y} is affine over R.

A special case is the action of G on itself by inner automorphisms, twisted R-group
scheme G, carries a natural structure of R-group schemes and it called the twisted
R-group scheme by the 1-cocycle g. The R-group scheme Gy acts on Y, for Y as
above. In particular it acts on £, so that we have a map of R-sheaves in groups

pg : Gy — Aut(Ey)

where the right handside stands for the fppf sheaf of G-equivariant isomorphisms of
E,. In the case of the trivial cocycle, this is the map py : G — Aut(Ep) arising from
the left translation on the trivial G-torsor Ey = G. Since py is an isomorphism, p, is
locally (for fppf) an isomorphism so is an isomorphism. It implies that Aut.(E,) is
representable by an affine R—group scheme and that it could be taken as an alternative
definition for the twisted R-group scheme G|.

Remarks 4.10. (a) The above construction does not depend on choices of trivializa-
tions. It can be abstracted as follows. We can define for a G-torsor E the twist Y
and G by means of contracted products as in [32], III.1, I11.2.3]. For short the con-
tracted product £ A®Y is the fppf quotient sheaf of E xz Y by the left (free) action
of G given by g.(e,y) = (e.g™%, g.y); if Y is affine over R, this sheaf is representable
by an R-scheme which is nothing but #Y.

(b) In practice, the affineness assumption in Theorem is too strong. More
generally we can twist G—schemes equipped with an ample invertible G-linearized
bundle, see [5, §6, 7 and §10, lemma 6] for details. Another case due to Gabber is
that of ind-quasi-affine schemes [62, Tag 0APK].

4.6. Examples. (a) Vector group schemes. Let M be a locally free R-module of
finite rank, we claim that H'(R, W(M)) = 0 so that each W (M)-torsor is trivial.
We are given a flat cover S/R. Since the complex

M&rS A M@pS@rS — MOrS®rS kS

is exact, each cocycle g € W(M)(S ®p S) = M ®r S ®g S is a coboundary. Thus
H'(S/R,W(M)) = 0 and H'(R, W(M)) = 0.



TORSORS OVER AFFINE CURVES 17

(b) An important case is G = I'g, that is, the finite constant group scheme attached to
an abstract finite group I'. Recall that G(.S) is the group of locally constant functions

Spec(S) — I'. In other words, G = [] Spec(R), so that its coordinate ring identifies
yerl’

with R,

In this case a I'g—torsor Spec(S) — Spec(R) is the same thing as a Galois I'-algebra
S and is called often a Galois coverf] A special case is that of a finite Galois extension
L/k of fields of Galois group I'.

(c¢) As with GL,, a special nice case is the case of forms, that is when G is the
automorphism group of some algebraic structure, see [12] §2.2.3] for an exhaustive
discussion.

For example, the orthogonal group scheme O, is the automorphism group of the
hyperbolic quadratic form attached to R?". As regular quadratic forms of rank 2n are
locally isomorphic to the hyperbolic form in the flat topology, descent theory provides
an equivalence of categories between the groupoid of regular quadratic forms of rank
2n and the category of Og,-torsors. This is what we wanted in , that is, H'(R, Os,,)
classifies the isomorphism classes of regular quadratic R—forms of rank 2n [I8|, T11.5.2].

(d) Another important example is that of the symmetric group S,. For any R-
algebra S, the group S,(5) is the automorphism group of the S—algebra S™ = S x
-+ xS (n—times). Since finite étale algebras of degree n are locally isomorphic to R™
for the étale topology, the same yoga shows that there is an equivalence of categories
between the category of S, —torsors and that of finite étale R—algebras of rank n.

The functor which associates to a finite étale R-algebra of rank n a .S,-torsor
is defined by descent but can be described explicitely. This is the Galois closure
construction done by Serre in [53], §1.5], see also [3].

4.7. Functoriality issues. Let G — H be a monomorphism of R—group schemes.
We say that an R-scheme X equipped with a map f : H — X is a flat quotient of
H by G if for each R-algebra S the map H(S) — X(S) induces an injective map
H(S)/G(S) — X(5) and if for each z € X(S5), there exists a flat cover S” of S
such that xg belongs to the image of H(S") — X (S’) (we say that f is “couvrant” in
French). If it exists, a flat quotient is unique (up to unique isomorphism); furthermore,
if G is normal in H, then X carries a natural structure of R—group schemes, we say
in this case that 1 - G - H — X — 1 is an exact sequence of R—group schemes
(for the flat topology).

SThis is our convention for Galois covers which has the advantage to be stable for base change.
In [51], one requires furthermore R, S to be connected.
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Lemma 4.11. Assume that the R—scheme X is the flat quotient of H by G.
(1) The map H — X is a G-torsor.

(2) There is an exact sequence of pointed sets
1— G(R) = H(R) - X(R) % H},,((R,G) — H}, ;(R, H)
where o(x) = [f~(x)].
For the proof, see [I8], 111.4.2, Corollary 1.8 and I11.4.4].

Remark 4.12. (a) Assume that X is affine (or is equipped with an ample G-linearized
invertible sheaf, see [0, §6.1, Theorem 7 and §10, Lemma 6| for details). Then the
category of G—torsors over Spec(R) is equivalent to the category of couples (F,x)
where F is an H-torsor and x € (¥X)(R) (where "X is the twist of X by the H-
torsor F).

(b) If G is normal in H, then X has natural structure of an R-group scheme. In this
case (a) rephrases by saying that the category of G-torsors over Spec(R) is equivalent
to the category of couples (F, ¢) where F'is an H—torsor and ¢ a trivialization of the
X torsor FX.

(c) The sequence 1 — SL, — GL, — G,, — 1 is an exact sequence of R-group
schemes. Using the extended Swan-Serre correspondence an example of (b) is
that the category of SL,-torsors is equivalent to the category of pairs (M, 6) where
M is a locally free R—module of rank r and § : R — A"(M) is a trivialization of the
determinant of M.

(d) For an integer d, we have the Kummer exact sequence 1 — pg — Gy, x4
Gy, — 1. Similarly the category of pg—torsors is equivalent to the category of pairs
(M, ) where M is an invertible R—module and 6 : R — M®" a trivialization. This
is related with §3.2]

Examples 4.7.1. G,, is the flat quotient of GL, by SL, and G,, is the flat quotient
of Gm by Hd-

There are of course many more functorial properties for example when G is com-
mutative. In this case, H'(R,G) is equipped with a natural structure of an abelian
group arising from the product morphism G xr G — G.

4.8. Etale covers. We remind to the reader that an étale morphism of rings R — S is
a smooth morphism of relative dimension zero [41] §1.3]. There are several alternative
definitions, for example, S is a flat R—algebra of finite presentation such that for each
R-field F, then S ®p F is an étale F—algebra (i.e. a finite geometrically reduced
F—algebra).

Examples 4.13. (a) A localization morphism R — Ry is étale.
(b) If d is invertible in R, the Kummer morphism G, — G,,, t — t¢ is étale.
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(c) More generally, if d is invertible in R and r € R*, then S = R[z]/(z? —r) is a
finite étale R—algebra.

Let G be an R-group scheme. We denote by H 1ppf(R, G) the Cech non-abelian
cohomology set defined by means of cocycles in

We define the subset H, (R, G) of H}pp (R, G) of classes which arises from cocycles
supported by étale covers. We define similarly H}, (R, G) from H},(R,G).

Proposition 4.14. If G is affine smooth, then we have H;(R,G) = H}, (R, G) —
a},:(R.G).

Proof. The right handside bijection is Theorem [4.9] Smoothness is a local property
with respect to the flat topology [20, Corollaire 17.7.3.(ii)| so that any G-torsor E is
smooth over R. According to the existence of quasi-sections |20, 17.16.3], £ admits
locally sections with respect to the étale topology. 0

4.9. Isotrivial torsors and Galois cohomology. We are given a Galois R—algebra
S of group I'. The action isomorphism Spec(S) x g I'r — Spec(S) x g Spec(S) can
be viewed as an isomorphism S ®gr S — S @z RT) = ST A 1-cocycle is then an
element 2z = (2,),er € G(S ®g S) = G(S)™) satisfying a certain relation.

Since I' acts on the left on S, it acts as well on the left on G(S).

Lemma 4.15. (sece [25, lemme 2.2.3]) A I-tuple z = (2,)ger € G(S1)) = G(9)1) =
Homygets(I', G(S)) is a 1-cocycle for S/R if and only if

Zor = 20 0(27)
forallo, 7 €T.

We find that Z'(S/R, G) is the set of Galois cocycles Z'(T', G(S)) and that H'(S/R, G)
is the set of non-abelian Galois cohomology H'(T', G(S)) = ZY(T',G(S))/ ~ where
two cocycles z, 2’ are cohomologous if z, = g~ ! 2l v(g) for some g € G(S).

An interesting case is that of a constant group scheme G associated to an abstract
group © and S is connected. In this case, we have Z'(S/R,G) = Hom,,(T",©) and
H'Y(S/R,G) = Hom,,(T",0)/6.

Remark 4.16. Galois descent is therefore a special case of faithfully flat descent.
The reader can check that the category of R-modules is equivalent to the category of

couples (N, p) where N is an S-module equipped with a semilinear action of T" (i.e.
p(a)(A.n)=0c(N).p(c)(n)). A reference is [29, §14.20].

We say that a torsor F under an R-group scheme G is isotrivial if it is split by
a finite étale cover (which can be assumed Galois by taking the Galois closure).
This is subclass of torsors which can be explicitly studied by Galois cohomology
computations. It is often a preliminary question to decide whether a given torsor is
isotrivial. For example, for the ring of Laurent polynomials in characteristic zero and
a reductive group scheme, this is the case [27].
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5. TORSORS OVER AFFINE CURVES

5.1. The Dedekind case. Let R be a Dedekind ring with fraction field K. Let
f € R and put ¥ = Spec(R) \ Spec(Ry) = {p1,..., P}, and use the notation of the
proof of Corollary 2.10] Let G be an affine flat R—group scheme. As in the proof of

we have a class map

(5.1)  ker(Hpy(R.G) > Hpy(Ry,G) x [ Hipy(R G))
i=1,...,c
— (RGO =GR\ [] GE,)/G(Ry,).
i=1,...,c

This map is injective [35], §2.3], this generalizes the GL,, case established in

Remark 5.1. As already mentioned in Remark [2.12|(b), the surjectivity of the class
is a general fact obtained by using patching techniques (see [5, §6.2, D.4]). We will
not use that in the sequel.

The next results are due to Harder [35, Corollary 2.3.2 and Satz 3.3|.
Corollary 5.2. If cs(R,G) =1 (in particular if G(Ry) is dense in ] G(IA(pi)),

we have ker(H}ppf(R, G) — Hj,,;(Ry, G) x } 11 H}ppf(ﬁpi7G>) =L

-----

We examine now more closely the reductive case.

Proposition 5.3. Assume that G is a reductive split R—group scheme and let (B, T')
be a Killing couple, i.e. T is a maximal split R-torus of G and B an R—Borel subgroup
scheme containing it.

(1) The sequence of pointed sets
1 1 1
prpf(R’ T — prpf(R’ G) — prpf<K’ )
18 ezact.

(2) We have HL (R, G) = ker(H}ppf(R, G)— HY (K, G)).

(3) If G is simply connected, then ker<H}ppf(R, G) — Hyp, (K, G)) = 1 and
Hj. (R, G)=1.

At this stage we need to explain the vocabulary for reductive (resp. semisimple)
algebraic groups and also for group schemes. A reference is [16, §1.5 and Exercise
6.5.2].

e A smooth connected affine algebraic group G defined over an algebraically closed
field & is reductive (resp. semisimple) if 1 is the only smooth connected k-subgroup
which is normal and unipotent (resp. normal and solvable). Semisimple simply con-
nected here is more complicated; in characteristic zero this is equivalent to say that G
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is semisimple simply connected for Grothendieck’s theory [51] of finite étale cover&ﬂ
Examples of semisimple simply connected algebraic groups are SL,,, Sp,,,, Spin,,.

e A smooth affine group scheme G over a ring R is reductive (resp. semisimple, resp.

semisimple simply connected) if each geometric fiber G is reductive (resp. semisimple,
resp. semisimple simply connected).

e [10, 5.1.1] Let G be a reductive group scheme over a connected ring R. It is split if
there exists a maximal torus 7' = GJ, such that each root space Lie(G), for a € T is
free of rank 1 over R. It admits a Borel R-subgroup scheme (i.e. a closed smooth R-
subgroup whose geometric fibers are Borel subgroups) containing 7" [52, XXII.5.1.1].

We proceed now to the proof of Proposition [5.3]

Proof. (1) Since H},,,(K,T) = 1 (Hilbert 90), the sequence Hy, (R, T) — H},, (R, G) —
H }pp (K, G) is a complex of pointed sets. In order to establish the exactness, we claim
first that the map

H'(R,B) — ker(H}ppf(R, G) — H}ppf(K, G))

is onto. Let E be an R-torsor under G which becomes trivial over K. We admit that
the fppf sheaf G/ B is representable by a projective R-scheme [52, XXVI.1.2|. The idea
is to introduce the twisted R-scheme Y = ¥(G/B) (it is the scheme of Borel subgroups
of the twisted R—group scheme ZG so is projective over R [52, XX VI, Théoréme 3.3]).
Since Ei is trivial we have Y (K) # (). Next we have Y(R) = Y(K) in view of the
valuative criterion of properness. It follows that Y has an R-point (equivalently E¢
carries an R-Borel subgroup scheme). According to Remark [4.12](a), it follows that
[E] belongs to the image of H'(R, B) — H*(R, G).

We have B = U x T where U admits a T—equivariant filtration Uy =1 C --- C
U, = U such that U;,;/U; is isomorphic to the commutative unipotent R—group
(Ga)". Since Hj,,;(R,G,) = 1 (Example (a)), a dévissage argument shows that
the map Hj,, (R, T) — Hp, (R, B) is bijectiveﬂ. We conclude that [E] belongs to
the image of H}, (R, T) — Hj, (R, G).

(2) Taking an isomorphism 7' = G, we have H}, (R, T) = Pic(R)". In view of (1),
we have

ker(H},,;(R,G) C Hy,,.(K,G)) C Hy,.(R,G). The converse inclusion is obvious.
(3) We assume now that G is semisimple simply connected. We are given [E] €
Hj..(R,G) = ker(H},,(R,G) = H}, (K,G)). From (2), there exists f € R such
that Ep, is trivial as well as Eg, for the maximal ideals py,...,p. € ¥ = Spec(R) \
Spec(Ry). It makes then sense to consider the class map of [E] in cx(R, G).

Claim 5.1.1. ¢x(R,G) = 1.

SIn particular, for the field of complex numbers, this notion coincide with the topological one.
Tthis is a general fact, see [52, XXVI1.2.3].
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The Claim and Corollary implies that [E] = 1 € H}, (R, G) as desired. To
establish the Claim, we consider an opposite Borel R—subgroup B~ to B, ie. T =
BN B~ [16, Proposition 5.2.12|. We denote by U~ its unipotent radical. Since each

G(K,,) is generated by U+(K;) and U~ (K;) [59, lemma 64] and since U™ (resp. U™)

i

is isomorphic as R-scheme to A", we have that U (Ry) is dense in [[,_, UT(K,,) and

i

similarly for U~. It follows that G(Ry) is dense in [ [,_, G(K,,) whence the Claim. [

We find then one more time that H}, (R, SL,) = 1 but get for example also that
H) (R, Eg) =1 where Eg stands for the split group of type Fg. Since Pic(k[t]) = 0
for a field k, it follows that H} (k[t], G) =1 for a semisimple split simply connected

Zar
k-group G.

Remark 5.4. Proposition [5.3}(2) holds for an arbitrary reductive R-group scheme
G, this is a result of Nisnevich [44], see also [34]. Furthermore by taking into account
Remark on the surjectivity of the class map, we get that the class map
induces a bijection Hi (R, G) — cs(R,G).

5.2. Affine curves over an algebraically closed field.

Theorem 5.5. Let G be a semisimple algebraic k—group where k is an algebraically
closed field. Let C' be a smooth connected affine curve. Then Hj,, (C,G) = 1.

ppf

Note that such a G is necessarily split. A slightly more general version is available
in [I5 §3|. One first ingredient is Steinberg’s theorem.

Theorem 5.6. [58, Theorem 11.1| Let F' be a field and let H be a semisimple algebraic
F—group which is quasi-split (i.e. admits a Borel F—subgroup). Then the map

| | H'(F.T) » H'(F, H)

is onto where T runs over the maximal F—tori of H.

For the field k(C), we have that Br(k(C)) = 0 and more generally that cd(k(C)) =
1, this is a consequence of Tsen’s theorem stating that k(C') has the C} property [54,
I1.3.3]. A classical dévissage yields that H(k(C),T) = 1 for each k(C)-torus Tf]
Combining with Theorem [5.6] yields that H'(k(C),G) = 1 for each semisimple (split)
k—group G. A special case is that of PGL, which can be rephrased by saying that
the central simple algebras over k(C') are matrix algebras.

A second ingredient is the fact that the Picard group Pic(C) is divisible which
follows from the structure of Pic(C°) where C° is a smooth compactification of C.
We have an exact sequence

0 — Jee(k) = Pic(C°) - Z — 0

8Hint: Let n be the degree of a splitting field of 7', show that nH(k,T) = 1 and consider the

exact sequence 1 — ,T — T Raling s
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where Joe is the Jacobian variety of C°¢ [42, §1] (or [62, Tag 03RN]). If
C =C°\{zy,...,xs} the surjective map Pic(C¢) — Pic(C) induces an epimorphism
Jee(k) = Pic(C). Thus Pic(C) is a divisible group.

We proceed now to the proof of Theorem [5.5

Proof. We assume first that G is simply connected. Proposition [5.3] shows that
ker(H},,;(C,G) — Hj, . (k(C),G)) = 1. Since H'(k(C),G) = 1, it follows that
H}ppf(C, G)=1.

For the general case, let f : G** — G be the simply connected cover of G (e.g.
SL, — PGL,, Spin,, — SO,,) and put u = ker(f). Let T be a maximal torus of G*°,
then 7' = 7°°/u is a maximal torus of G. We consider the commutative diagram

f*

(5.2) H}ppf(C, T%°)

|

1=H;,(C,G*) ——— Hy,,(C,G).

H }ppf (C’ T)

The surjectivity of the right vertical map follows from H'(k(C),G) = 1 and of Propo-
sition (1) We use now the exact sequence 1 — p — 1¢ I T 5 1. We choose
isomorphisms 7°¢ = G}, and T = G}, f is given by a map A : Z" — Z" (on the
cocharacters) such that det(A) € Q*. It follows that f, reads

A : Pic(C)" — Pic(C)".

Since det(A) € Q* and Pic(C) is divisible, the map f. is then onto. Diagram chase
in the diagram ([5.2)) enables us to conclude that H'(C,G) = 1. O

Remark 5.7. The reductive case is of the same vein. Let S = G/ DG be the coradical
torus of G. One can show that the map H'(C,G) — H'(C,S) is bijective. This
generalizes the bijection H'(C, GL,) — H'(C,G,,) = Pic(C) seen in Theorem [2.8

5.3. The case of the affine line.

Theorem 5.8. (Raghunathan-Ramanathan [49]) Let G be a reductive k—group over
a field k. Then we have a bijection

H'(k,G) = ker(H'(k[t], G) — H'(k[t], G)).

If k is perfect or if the characteristic of p is “good” for G, we have H!(k,[t],G) =1
so that H'(k,G) = H'(k[t], G). When it happens, we say that G-torsors over kl[t]
are constant. There are a few exotic cases when it does not hold.

Example 5.3.1. Assume that k is not perfect of characteristic p > 0 and pick
a € k\ kP. We consider the k[t]-algebra A (unital, associative) generated by X, Y
submitted to the relations

XP— X =tYP=0qYXY '=X+1
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It is an Azumaya k[t]-algebra of degree p so defines a class [A] € H'(k[t], PGL,). It not
trivial over kg[t] because it is not trivial over k,((1)) (use for example [28, Corollary
4.7.4]). Cohomologically speaking this class arises from the k-subgroup p, X Z/pZ of
PGL,. We have Hj,, (k[t], 1) = K[t]* /E[t]*" = &~ /(k*)? and H},, (k[t],Z/pZ) =
k[t]/P(k[t]) where P = (x) = xP — x is the Artin Schreier cover. In the same manner
as in the field case |28, Proposition 4.7.3], one can check that the class [A] is the
image of ((a), [T]) in H*(k[t], PGL,). There are also examples for simply connected
groups [23] §2.4].

There are variations of the original proof [24] [14] [1]; all involve Bruhat-Tits the-
ory, which is the theory of reductive algebraic groups over a complete (or henselian)
discretly valued field [9, [10] and their integral models. Note that Kaletha and Prasad
wrote recently a wonderful book on this theory [37].

We will sketch the recent proof of [I] when the k-group G is split semisimple
simply connected and almost simple (i.e. its Dynkin diagram is connected), e.g. G =
SL,,, Spin,,,, Go. There is no need to deal with the projective line but only with the
completion K = k((3)) of the function field k(t) with respect to the point co.

We consider the Bruhat-Tits building B = B(G ) of Gk [37, §7.6]. This is a con-
tractible simplicial complex equipped with a metric. There is a “strongly transitive"
action of G(K') on B. Each maximal k-split torus 7" of G gives rises to an apartment
A(T) C B which is an euclidean affine space.

Example 5.3.2. If G = SL,, B is the Bruhat-Tits tree. If k£ = s, it looks as follows.

In this case, the apartments are the infinite lines. In this geometry, a triangle has

the shape



TORSORS OVER AFFINE CURVES 25

In particular the triangles are thin compared to euclidean geometry. This is an
occurence of non-positive curvature, see the reference book [8 II, Appendix|.

Let (B, T) be a Killing couple for G and consider the root system ® = ®(G,T) and
its base A. We call A(T) the standard apartment of B. The center ¢ of B is defined
in [9, 9.1.19.(c)]. It belongs to A(T") and is characterized as the unique point fixed
by G(k[[$]]). We have a decomposition of the euclidean space

A(T)=¢+T° @z R

where T0 = Homy,_g,(G,,, T') stands for the group of cocharacters of T. We define
the cone

Q=¢+{UET\O®ZR | (,v) >0V e A}

Theorem 5.9. (Soulé [56, Théoréme 1 |) The cone Q is a fundamental simplicial
domain for the action of G(k[t]) on B. In other words any simplex of B is G(k|[t])-
conjugated to a unique simplex of Q.

Remark 5.10. Using the precise shape of stabilizers, Soulé provided a presentation
of G(k[t]) generalizing Nagao’s presentation SLy(k[t]) = SLa(k) xpw) B(k[t]). For G
not split, it has been generalized by Margaux [40].

We proceed now to the proof of the above special case of Theorem [5.8]

Proof. We are given a G-torsor X over k[t] which is trivialized after an extension [[¢]
where [/k is a finite Galois extension of group I'. In other words X is given by a
1-cocycle z : I' — G(l[t]). We put L =1((1/t)) and consider the Bruhat-Tits building
B, of Gr. We denote by A;(T) the standard apartment of B;, by ¢; the center of B,
and by Q; C A;(T') the cone associated to the positive roots of (G, T;). We have a
natural embedding ¢ : B — B; which applies ¢ to ¢, and A(T') to A(T;) [9, Example
9.1.19.(c)] (or [37, §7.9.2]). Clearly we have +(Q) = Q;. The group G(L) x T actd] on
B, so that we get a twisted action of I' on B; defined by

oxT = 2,.0(x).

The Bruhat-Tits fixed point theorem implies the existence of a fixed point; another
way to see that is to take the barycenter (as defined in [36, Definition 3.1]) of a Galois
orbit. Let z € B; be a fixed point by the twisted Galois action. Soulé’s result
applied over [ provides a point xy € Q, such that © = g ¢ for some g € G(l[t]). Since
xo € Q) = 1(Q), x¢ is fixed by T.

Since x = 0 xx = z, o(x), it follows that g.xy = 2, 0(g.20) = 2, 0(g) . o so that

/ —_—
Zo- Lo = To-

9The unramified descent theorem [37, Theorem 9.2.7] states that ¢ induces a bijection B — (B;)"
and we do not use it.
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where 2/ = g7' 2z, 0(g) is an equivalent cocycle. It follows tha 2’ takes values in the
stabilizer G(l[t]).,. According to [56l §1.1], there exists a subset I C A and a split
k—unipotent k—group U,, such that G(I[t]),, = Uy, (1) x L;(l) where Ly is the standard
Levi subgroup of the standard parabolic k—subgroup P; of G.

We use now that the map H'(T, L;(1)) — H' (T, Uy, (I) x L;(1)) is bijective [26]
lemme 7.3] so that [2] = [2/] € H'(I', G(I[t])) belongs to the image of H*(I', G(l)) —
H' (I, G(I[t]). The proof is completed. O

5.4. The case of the punctured affine line. This case is more complicated than
the affine line.

Theorem 5.11. (see [14]) Let G be a reductive k—group over a field k of characteristic
zero. The map

H'(K[t*],G) — H'(k((1)). G)
18 bijective.

The surjectivity is easy and comes by reduction to a finite subgroup. The hard part
is the injectivity where one crucial step is to show an existence of a maximal torus
for the relevant twisted group scheme. This involves Bruhat-Tits theory and twin
buildings. Note that Bruhat-Tits theory also provides a description of H*(k((t)), &)
[11].

6. WHAT IS NEXT?

6.1. Dimension one. Fedorov constructed exotic examples of non constant G—torsors
over R[t] with R a local ring (henselian if we want) [2I]. The way to detect that the
constructed torsors are not constant is to establish that the torsors do not extend to
the projective line PL. That method is related with the work on the Grothendieck-
Serre’s conjecture [13] §5].

6.2. Higher dimensions. Theorem does not extend in dimension 2. The first
example is that of Ojanguren-Sridharan [48] with the field R of real numbers and
the unit group G = GL;(H) of the Hamilton quaternion algebra H. They show
that 1 = H'(R,G) € H'(R[x,y],G). In other words, there is an invertible (right)
H{[z, y]-module which is not free.

On the other hand, positive results start with Quillen-Suslin’s theorem rephrased
in H'(k[xy,...,z,],GL,) = 1. For an enough isotropic reductive k—group G, we have
H'(k,G) = H'(k[z1,...,7,],G) (Raghunathan’s results [50]). Note also the related
Stavrova’s results on higher Laurent polynomial rings [57].

Over polynomial rings over a nice ring, we have Lindel’s theorem [39] and general-
izations by Asok-Hoyois-Wendt [2] which are essential in A'-homotopy theory.
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7. EXERCICES (T.A. MARGOT BRUNEAUX)

Let R be a commutative (unital) ring.

Exercise 1. Let M be an R-module of finite presentation. Let W (M) be the R-
functor defined by S — M ®@g S. Show that W (M) is representable if and only if M
s a locally free R—module of finite type.

[Hint: To show that if W (M) is representable by a G-scheme then M s a locally
free R—module of finite type, one can show that G is smooth and then consider the
tangent vector bundle.|

Exercise 2. Let M be a locally free R—module of rank 2n > 2 equipped with a regular
quadratic form q. Show that, locally for the flat topology, (M,q) is hyperbolic. [Hint:
One can deal first with the case of a local ring where 2 is invertible.|

Exercise 3. Let B be standard Borel R—subgroup of upper triangular matrices of
GLg g.

(1) Show that the flat quotient of GLo g by B exists in the category of R-schemes
and 1s 1somorphic to the projective line.
(2) Deduce an ezact sequence of pointed sets

1 — B(R) = GLy(R) = P'(R) = Hj,,;(R,B) = Hj,,(R,GLy).
(3) For R local, show that Hy, (R, B) =1 and that H;,,;(R,G,) = 1.

Exercise 4. Let G, G' be affine group schemes over Spec R, T be a G—torsor and
¢ : G — G' be a homomorphism. We denote by T AN G’ the fppf-sheaf associated to
the presheaf S — T(S) Xspec(r) G'(S)/{(t, ") ~ (t- g7, d(9)d")}
(1) Show that T \¢ G" is a G'—torsor. We obtain a map H'(¢) : HY(X,G) —
HY(X,G") of pointed sets.
(2) Show that the following diagram is commutative

HY(X,G) (o) HY(X,G)

Cgl ) lCG/
HY(X,QG) H9) HY(X,G".

Exercise 5. Let R’ be a finite locally free R—algebra. Let v > 0 be an integer. Let f
denote the map from Spec R’ to Spec R.

(1) Show that the R—functor S — Endgg,r ((S ®Rr R’)T>* is representable by an

affine R—group scheme. We denote it by G = Rp/r(GL,) (the Weil restric-
tion).
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(2) Show that a GL, g —torsor is locally trivialised by an open of the form f~1(U)
where U is an open of Spec R.

(3) Show that the category of G—torsors is equivalent to the category of locally free
R'—modules of rank r. N

(4) Give an interpretation of the map H'(R,GL,) — H'(R, Q) and show that this
map s not in general injective nor surjective.

Exercise 6. Let d > 1 be an integer and let R’ be a Z/dZ-Galois extension, i.e.,
Spec R is a Z/dZ—torsor over Spec R. We denote by o the canonical generator of
Z7/dZ.

(1) Show that the formula N(y) = yo(y)---o" ' (y) defines a group scheme ho-
momorphism N : Rpp(Gr) — Gy

(2) Show that 1 — ker(N) — Rr/r(Gn) = G, — 1 is an exact sequence of
R—group schemes.

(3) Deduce an exact sequence involving H'(R, ker(N)).

(4) Show that the flat quotient of Rp r(Gy) by Gy, exists in the category of
schemes and is isomorphic to ker(N).

(5) Construct an exact sequence

R* — (R')* 2= ker(N)(R) — ker (Pic(R) — Pic(R')).

(6) Discuss the case of the coordinate ring A = Rlker(N)] of ker(V).
(7) For R=R and S = C, is the G,,~torsor Rs/r(G,,) = Rs/r(Gn) /Gy, trivial?

Exercise 7. (Lang isogeny) Let k be a field of caracteristic p. We denote by F' the
Frobenius morphism.

Let G be a smooth algebraic group. Show that the map g — g.F(g™') is an
étale isogeny, i.e., it is surjective and finite étale. Deduce that SLHE s not simply-
connected in the sense of [51].

Exercise 8. (Weil restriction) Let R’ be a finite locally free R—algebra. Let r > 0 be
an integer. Let f denote the map from Spec R’ to Spec R.

(1) Show that the R—functor S — Endgg,r ((S Rr R’)T>* is representable by an

affine R—group scheme. We denote it by G = Rp/r(GL,) (the Weil restric-
tion).

(2) ShOZU that a GL, g —torsor is locally trivialized by an open of the form f~1(U)
where U is an open of Spec(R).

(3) Show that the category of G-torsors is equivalent to the category of locally free
R'-modules of rank r.

(4) Give an interpretation of the map H'(R, GL,) — H'(R, G) and show that this
map 1s not in general injective nor surjective.
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Exercise 9. (after Ojanguren and Sridharan [48]). Let H be the Hamilton quaternion
algebra. Show that A = H[x,y| admits an invertible (right) H-module which is not
free.

[Hint : One can consider the exact sequence

0P A2L 450

where f: (v, 1) = (X +4)y = (Y +j)p.
Then one can find two solutions (v1, 1) and (e, pe) of degree two and deduce a
contradiction.|

Exercise 10. Let R be an unitary commutative ring.

Show that Pic(R[t]) = Pic(R) when R is a normal ring of finite type over a field k
of dimension n.

[Hint: One can use that, for every X —scheme and every effective Cartier divisor L
of X, there is a Gysin-map L- from CHy(X) to CHy_1(|L|) defined by L-]Y] = [i*L]
where i : Y — X is an irreducible subscheme of X of dimension k. (See [22], §2.6].)/

Remark 7.0.1. See [64, §1.3] for examples in which Pic(R][t]) # Pic(R).

Exercise 11. (Patching) Let Ci,Cs,Cy be three categories and o; : C; — Co for i =
1,2. We define the category C; X¢, C2 whose objects are the triple (Cy,Ca, ¢) where
¢ :a1(Cr) = aa(Cq) is an isomorphism and a morphism from (Cy,Ca, @) to (C1,Ch, @)
consists of two morphisms f; : C; — C! for i = 1,2 such that ¢ o aq(f1) = aa(f2) o ¢.

If F is a field, we denote by Vect, (F) the category of F'—vector spaces of dimension
n and if R is a ring, we denote by Mod,,(R) the category of R—modules locally free of
rank n.

(1) Let Fy, Fy be two fields, Fy be an extension of this two fields, and let F =
FiNF;,.
Show that if for every n, GL,(Fo) = GL,(F1) GL,(F3), then the map:

B Vect,(F) — Vect, (F1) Xvect, () Vecty(F3)
Vv — (V@FFl,V(X)FFQ,gbIV®FF1®F1F0%V@FFQ(@FQF())
18 an equivalence of categories.
(2) If R is a DVR and K is its field of fractions, one can define in the same way
an application

7+ Mody(R) — Vect,(K) Xyeo. () Modn(R).

First show that GLy(K) = GL,(K)GL,(R) and then that ~y is an equivalence
of categories.
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