
TORSORS OVER AFFINE CURVES

PHILIPPE GILLE

Abstract. The lectures are an introduction to torsors in Algebraic Geometry with
special attention to the case of affine algebraic curves.
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1. Introduction

The theory of fibrations and principal fibrations is ubiquious in Topology and Dif-
ferential Geometry. In 1955, Grothendieck investigated a general theory of fibrations
focusing on functoriality issues [33]. In 1958, Grothendieck and Serre extended the
setting of G–bundles in algebraic geometry by means of the étale topology [53].

For simplicity we shall present this theory over rings or equivalently over affine
schemes. The general framework is close to that and can be found in other references
[18, 38, 12, 5].

We shall focus on the case of an affine smooth curve over a field, starting with
vector bundles and quadratic vector bundles. Important cases are the affine line and
the affine punctured line. Panin and Stavrova provided also independently a more
detailed survey of Harder’s results of §5.1 [PS].

For further topics, we recommend the survey Problems about torsors over regular
rings of K. Česnavičius [13].

Acknowledgments. We thank the organizers of the PCMI program Motivic Homo-
topy Theory for inviting us to lecture to the nice graduate summer school of Park
City. We thank Margot Bruneaux for the list of exercises. Finally we thank Jing Liu,
Andrea Maffei and the referee for useful comments.

2. The Swan-Serre correspondence

This is the correspondence between locally free modules of finite rank and vector
bundles, it arises from the case of a paracompact topological space [60].

We explain it in the setting of affine schemes following the book of Görtz-Wedhorn
[29, ch. 11] up to slightly different conventions.
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2.1. Vector group schemes. Let R be a ring (commutative, unital). The additive
R–group scheme is Ga,R = Spec(R[t]) and is a part of a wider family.
(a) Let M be an R–module. We denote by V(M) the affine R–scheme defined by
V(M) = Spec

(
Sym•(M)

)
; it is affine over R and represents the R–functor S 7→

HomS(M ⊗R S, S) = HomR(M,S) [19, 9.4.9]. Indeed for each R-ring B, we have

V(M)(B) = HomR−ring(Sym•(M), B) = HomR−mod(M,B).

It is called the vector group scheme attached to M , this construction commutes with
arbitrary base change of rings R → R′. We have V(R) = A1

R = Spec(R[t]), that is,
the affine line over R. We can consider V(M) as an R-scheme, as a commutative R–
group scheme or as a OR–module (where OR stands for the functor in R–rings defined
by OR(R′) = R′). Our default convention is that of OR-modules and is justified by
the following fact.

Proposition 2.1. [52, I.4.6.2] The functor M → V(M) induces a full contravariant
embedding of the category of R–modules in the category of vector group schemes over
R.

That functor has a nice behaviour. For example if the R–module M is finitely
presented, then the R-scheme V(M) is finitely presented [19, Cororllaire 9.4.7] and
the converse holds by using the limit criterion [62, Tag 0G8P].
(b) We assume now that M is locally free of finite rank and denote by M∨ its dual.
In this case Sym•(M) is of finite presentation [19, 9.4.11]. Also the R–functor S 7→
M ⊗R S is representable by the affine R–scheme V(M∨) which is also denoted by
W(M) [52, I.4.6].

Remark 2.2. Assuming that M is finitely presented, Romagny has shown that the
finite locally freeness condition on M is a necessary condition for the representability
of W(M) by a group scheme [47, Theorem 5.4.5]. The proof is one of the exercise.
This extends a result of Nitsure in the noetherian setting [46, Corollary 2].

Let r ≥ 0 be an integer.

Definition 2.3. A vector bundle of rank r over Spec(R) is an affine R-scheme X such
that there exists a partition 1 = f1 + · · · + fn and isomorphisms
φi : X ×R Rfi

∼−→ W((Rfi)
r) such that φi ◦ φ−1

j : W((Rfifj)
r)

∼−→ W
(
(Rfifj)

r
)

is a linear automorphism of W
(
(Rfifj)

r
)
for i, j = 1, . . . , n.

We say that the Zariski cover
(
Spec(Rfi)

)
i=1,..,n

trivializes the vector bundle X and
any finer cover trivializes as well X. A homomorphism of vector bundles X → X ′

of respective rank r, r′, is a morphism of R-schemes f : X → X ′ built locally
from linear maps. More precisely, we require that there exists a trivializing cover
(Spec(Rfi)i=1,..,n for X and X ′ with maps φi : X ×R Rfi

∼−→ W((Rfi)
r) and

φ′i : X ′ ×R Rfi
∼−→ W((Rfi)

r′) as is the definition such that each
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φ′j ◦fi ◦φ−1
i : W((Rfi)

r)→W((Rfi)
r′) arises from a Rfi-linear map (Rfi)

r → (Rfi)
r′ .

The notion of isomorphisms is clear and leads to the groupoid of vector bundles of
rank r over R whose objects are vector bundles of rank r and whose morphisms are
the isomorphisms. We denote by Vectr(R) this category.

Theorem 2.4. (Swan-Serre’s correspondence) The above functor M 7→ W(M) in-
duces an equivalence of categories between the groupoid of locally free R-modules of
rank r and Vectr(R).

Proof. See [29, Proposition 11.7] for the general case (i.e. over a base scheme). We
check first that the functor is well-defined. If M is locally free of rank r, there exists
a partition 1 = f1 + · · · + fn and trivializations ψi : Mfi

∼−→ (Rfi)
r. It follows that

each map ψj ◦ ψ−1
i : (Rfifj)

r ∼−→ (Rfifj)
r is a linear isomorphism for i, j = 1, . . . , n.

By applying the functor W, we get that W(M) is a vector bundle of rank r and the
trivializations are the

φi = ψi,∗ : W(M)×R Rfi
∼−→W((Rfi)

r).

It follows that the R-functor W is well-defined and is fully faithful. We need to
check that the functor is essentially surjective. We are given a vector bundle X over
Spec(R) of rank r and we need to construct an R–module M which is locally free of
rank r together with an isomorphism X

∼−→W(M) of vector bundles.
As in the definition consider a partition 1 = f1 + · · · + fn and isomorphisms φi :

W((Rfi)
r)

∼−→ X ×R Rfi . We put Mi = (Rfi)
r and we have linear isomorphisms

ψi,j = φj ◦ φ−1
i : (Mi)fj

∼−→ (Mi)fj satisfying the compatibilities ψi,j ◦ψj,k = ψi,k. We
define the R-module

M = Ker
(⊕

1≤i≤n

Mi →
⊕

1≤i,j≤n

(Mi)fj

)
where (m1, . . . ,mn) maps to the element whose (i, j)-th entry is mi

1
− ψj,i(mj

1
). Ac-

cording to [62, Tag 00EQ], the mapM →Mi induces an isomorphism γi : Mfi
∼−→Mi

for each i and we have ψi,j = γ−1
j ◦ γi for all i, j.

In particular M is locally free of rank r. Since ψi,j,∗ = γ−1
j,∗ ◦ γi,∗ = φ−1

j φi we can
glue the isomorphisms

W(M)×R Rfi

γi,∗−−→
∼

W(Mi)
φi←−
∼
X ×R Rfi

in an isomorphism of vector bundles W(M)
∼−→ X. �

A vector bundle of rank 1 is called a line bundle and a locally free R-module of
rank 1 is called an invertible R-module.

Examples 2.1.1. (a) Given a smooth map of affine schemes X = Spec(S) → Y =
Spec(R) of relative dimension r ≥ 1, the tangent bundle TX/Y = V(Ω1

S/R) is a vector
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bundle over Spec(S) of dimension r [20, §16.5.12]. Indeed the R-module Ω1
S/R is

locally free of rank r [5, §2, Proposition 5].

(b) The tangent bundle of the real sphere Z = Spec
(
R[x, y, z]/(x2 + y2 + z2 − 1)

)
is

an example of a vector bundle of dimension 2 which is not trivial. It can be proven
by differential topology (hairy ball theorem) but there are also algebraic proofs, see
for instance [61]. A consequence is that Z cannot be equipped with a structure of a
real algebraic group.
(c) Note that this tangent bundle extended to C becomes free. This is a consequence
of Murty-Swan’s theorem [43] since it is stably free.

2.2. Linear groups. Let M be a locally free R–module of finite rank. We consider
the R–algebra EndR(M∨) = M∨ ⊗R M . It is a locally free R-module of finite rank
so that we can consider the vector R–group scheme V

(
EndR(M∨)

)
which is an R–

functor with values in associative and unital algebras [19, 9.6.2]. It is isomorphic
to W

(
EndR(M)

)
. Now we consider the R–functor S 7→ AutS(M ⊗R S). It is rep-

resentable by an open R–subscheme of W
(
EndR(M)

)
which is denoted by GL(M)

(loc. cit., 9.6.4). We bear in mind that the action of the group scheme GL(M) on
W(M) (resp. V(M)) is a left (resp. right) action.

In particular, we denote by GLr = GL(Rr).

Remark 2.5. For R noetherian, Nitsure has shown that the finite locally freeness
condition onM is a necessary condition for the representability of GL(M) by a group
scheme [45].

If B is a locally free R–algebra of finite rank, we recall that the functor of invertible
elements of B is representable by an affine R-group scheme which is a principal open
subset of W(B). It is denoted by GL1(B) [12, 2.4.2.1].

2.3. Cocycles. Let M be a locally free R–module of rank r. There exists a partition
1 = f1 + · · · + fn of R and isomorphisms φi : (Rfi)

r ∼−→ M ×R Rfi . Then the
Rfifj–isomorphism φ−1

i φj : (Rfifj)
r ∼−→ (Rfifj)

r is linear so defines an element gi,j ∈
GLr(Rfifj). More precisely we have (φ−1

i φj)(v) = gi,j . v for each v ∈ (Rfifj)
r (in

other words, (Rfifj)
r is seen as column vectors).

Lemma 2.6. The element g = (gi,j) is a 1–cocycle, that is, satisfies the relation

gi,j gj,k = gi,k ∈ GLr(Rfifjfk)

for all i, j, k = 1, . . . , n.

Proof. Over Rfifjfk we have φ−1
i φk = (φ−1

i φj) ◦ (φ−1
j φk) = Lgi,j ◦Lgj,k = Lgi,jgj,k where

L stands for the left translation on GLr. �

If we replace the φi’s by the φ′i = φi ◦ gi’s with elements gi’s in
∏

GLr(Rfi), we get
g′i,j = g−1

i gi,j gj and we say that (g′i,j) is cohomologous to (gi,j).
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We denote by U =
(
Spec(Rfi)

)
i=1,..,n

the affine cover of Spec(R), by Z1(U/R,GLr)

the set of 1-cocycles. We consider the following equivalence relation on Z1(U/R,GLr):
the cocycle (g′i,j) is equivalent to the cocycle (gi,j) if g′i,j = g−1

i gi,j gj for some
(gi)i=1,..,n ∈

∏
i=1,..,n

G(Rfi). We denote by H1(U/R,GLr) = Z1(U/R,GLr)/ ∼ the

set of 1-cocycles modulo equivalence relation The set H1(U/R,GLr) is called the
pointed set of Čech cohomology with respect to U .

Summarizing we attached to the vector bundle W(M) of rank r a class γ(M) ∈
H1(U/R,GLr).

Conversely by Zariski glueing, we can attach to a cocycle (gi,j) a vector bundle Wg

over R of rank r equipped with trivializations φi : W(Rr
fi

)
∼−→Wg ×R Rfi such that

φ−1
i φj = gi,j.

Lemma 2.7. The pointed set H1(U/R,GLr) classifies the isomorphism classes of
vector bundles of rank r over Spec(R) which are trivialized by U .

For the proof, see [29, 11.15]. We can pass this construction to the limit over all
affine open covers ofX. We define the pointed set Ȟ1

Zar(R,GLr) = lim−→U H
1(U/R,GLr)

of non-abelian Čech cohomology of GLn with respect to the Zariski topology of
Spec(R). By passage to the limit, Lemma 2.7 implies that Ȟ1

Zar(R,GLr) classifies
the isomorphism classes of vector bundles of rank r over Spec(R).

We will refer to the map Vectr(R)→ Ȟ1
Zar(R,GLr), X 7→ [X] as the class map.

2.4. Functoriality. The principle is that nice constructions for vector bundles arise
from homomorphisms of group schemes. Given a map f : GLr → GLs, we can attach
to a vector bundle Wg of rank r (where g = (gi,j) is a cocycle) the vector bundle
Wf(g) of rank s where f(g) = (f(gi)). It can be shown (as an extra exercise) that
it extends to a functor X 7→ f∗(X) from vector bundles of rank r to vector bundles
of rank s and is compatible to class maps. We mean that the following diagram
commutes

(2.1) Vectr(R)
f∗

//

��

Vects(R)

��

Ȟ1
Zar(R,GLr)

f∗
// Ȟ1

Zar(R,GLr).

where the vertical arrows are the class maps. We limit ourselves here to the following
three cases for which we have an explicit description of f∗.

(a) Direct sum. If r = r1 + r2, we consider the map f : GLr1 ×GLr2 → GLr,
(A1, A2) 7→ A1 ⊕ A2. We then have f∗(W1,W2) = W1 ⊕W2.

Of course, it can be done with r = r1 + · · · + rl, in particular we have in the case
r = 1 + · · · + 1 the diagonal map (Gm)r → GLr which leads to decomposable vector
bundles, that is, direct sum of line bundles.
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(b) Tensor product. If r = r1 r2, we consider the map f : GLr1 ×GLr2 → GLr,
(A1, A2) 7→ A1 ⊗ A2 (called the Kronecker product). We then have f∗(W1,W2) =
W1 ⊗W2.

(c) Determinant. We put det(W) = det∗(W), this is the determinant line bundle.

2.5. The case of a Dedekind ring. Let R be a Dedekind ring, that is, a noetherian
domain such that the localization at each maximal ideal is a discrete valuation ring.
The next result is a classical fact of commutative algebra, see [31, II.4, Theorem 13].

Theorem 2.8. A locally free R–module of rank r ≥ 1 is isomorphic to Rr−1 ⊕ I for
I an invertible R–module which is unique up to isomorphism.

Since I ∼= Λr(Rr−1 ⊕ I) is the determinant of Rr−1 ⊕ I, the last assertion is clear.
Our goal is to discuss this statement with cohomological methods in view of possible
generalizations. The key input is the strong approximation theorem for the Dedekind
ring R.

Let Rf be localization of R and denote by {p1, . . . , pc} = Spec(R) \ Spec(Rf ) and
by vi the discrete valuation of K attached to pi. We denote by K̂i the completion of
K with respect to vi and by R̂i its valuation ring.

Theorem 2.9. (1) (Weak Approximation) The image of the diagonal embedding K ↪→∏
i=1,...,c K̂i is dense.
(2) (Chinese remainder) For each c-uple (e1, . . . , ec) of positive integers, the map

R→
c∏
i=1

R/peii is onto and its kernel is
c∏
i=1

peii .

(3) (Strong approximation) Let x1, . . . , xc ∈ K and let e = (e1, . . . , ec) be a c–uple
of integers. Then there exists x ∈ K such that vi(x− xi) ≥ ei for i = 1, .., c and and
vp(x) ≥ 0 for each maximal ideal p of R satisfying p 6= pi for i = 1, . . . , n.

Proof. Part (3) implies clearly (1) and (2). For a proof of (3), see [55, §I.3] or [7,
§VII.2.4]. For a direct proof of (2), see [62, Tag 00DT]. For a direct proof of (1), see
[7, §VI.7.2]. �

The Chinese remainder theorem is then a special case of strong approximation.
Coming back to Theorem 2.8, it states firstly that vector bundles over R are decom-
posable and secondly that vector bundles over R are classified by their determinant.
We limit ourselves to prove the following corollary by using strong approximation.

Corollary 2.10. A locally free R-module of rank r ≥ 1 is trivial if and only if its
determinant is trivial.

Proof. We are given a vector bundle W(M). It trivializes over an open affine subset
Spec(Rf ). We consider its class

[M ] ∈ ker
(
H1

Zar(R,GLr)→ H1
Zar(Rf ,GLr)

)
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and the right handside classifies isomorphism classes of vector bundles of rank r which
trivializes over Rf . We put Σ = Spec(R) \Spec(Rf ) = {p1, . . . ,pc}. We use then the
above notation and consider for each i the diagram

R̂pi
� � // K̂pi

R
?�

OO

� � // K
?�

OO

According to Nakayama’s lemma1, the R̂pi
–module M ⊗R R̂pi

is free so we can pick
a trivialization φ̂i : (R̂pi

)r
∼−→M ×R R̂pi

; we bear in mind that the choice φ̂i is up to
precomposing with an element of GLr(R̂pi

).
On the other hand, let φf : (Rf )

r ∼−→ M ×R Rf be a trivialization, similarly its
choice is up to precomposing with an element of GLr(Rf ). By extending the scalars
to K̂pi

, we obtain then two trivializations

φf,K̂pi
: (K̂pi

)r
∼−→M ×R K̂pi

,

φ̂i,K̂pi
: (K̂pi

)r
∼−→M ×R K̂pi

.

The linear map
φ−1

f,K̂pi

◦ φ̂i,K̂pi
: (K̂pi

)r
∼−→ (K̂pi

)r

gives rise to an element gi ∈ GLr(K̂pi
). Taking into account the choices, we attached

to M an element of the double coset

cΣ(R,GLr) := GLr(Rf ) \
∏

i=1,...,c

GLr(K̂pi
) / GLr(R̂pi

).

If we consider an isomorphic R-module ψ : M
∼−→ M ′, we can deal with the trivi-

alizations φ′f : (Rf )
r φf−→
∼

Mf

ψf−→
∼

M ′
f and φ̂′i : (R̂pi

)r
φ̂i−→
∼
M ×R R̂pi

ψ
R̂pi−−−→
∼

M ′ ×R R̂pi

and we observe that (φ′)−1

f,K̂pi

◦ (φ̂′)i,K̂pi
= φ−1

f,K̂pi

◦ φ̂i,K̂pi
. This shows that we defined

actually a class map

(2.2) ker
(
H1

Zar(R,GLr)→ H1
Zar(Rf ,GLr)

)
→ cΣ(R,GLr).

Claim 2.11. The class map (2.2) is injective.

For the sequel we need only to know that it has trivial kernel. We consider only this
special case and let the reader to deal with the general case. Indeed if [M ] belongs in
the kernel, it means that we can adjust the trivializations in order to get gi = 1 for

1We could do it over the local ring Rpi but we want to emphasize the approach involving
completions.



TORSORS OVER AFFINE CURVES 9

i = 1, . . . , c. We claim that the isomorphism φf : Mf
∼−→ (Rf )

r extends (uniquely)
to an isomorphism M

∼−→ Rr. The point is that φf ⊗Rf
K̂pi

: Mf ⊗Rf
K̂pi

∼−→ (K̂pi
)r

is extended from φ̂i by base change from R̂pi
to K̂pi

. It means that there are no
denominators involved so that the map extends φf to an R-linear mapping ψ : M r →
Rr. For the same reason (φf )

−1 extends as well and we conclude that φf extends to
an R-linear isomorphism ψ : M r ∼−→ Rr.

We assume now that the determinant of W(M) is trivial. Using the diagram (2.1),
it follows that (gi) belongs by functoriality to the kernel of the map
det∗ : cΣ(R,GLr) → cΣ(R,Gm) = R×f \

∏
j=1,...,c

(K̂×pi
/R̂×pi

). After changing the trivi-

alizations we can2 then assume that gi ∈ SLr(K̂pi
) for i = 1, . . . , c. Since SLr(K̂pi

)

is generated by elementary matrices [59, lemme 64] and since Rf is dense in
∏

i K̂pi
by

the strong approximation therorem 2.8, it follows that SLr(Rf ) is dense in
∏

i=1,...,c SLr(K̂pi
)

(this goes by decomposing elements in a product of N elementary matrices for N >>

0). On the other hand, each group SLr(R̂pi
) is open (actually clopen) in SLr(K̂pi

) so
that cΣ(R, SLr) = 1. The Claim 2.11 enables us to conclude that W(M) is a trivial
vector bundle. �

Remarks 2.12. (a) The general case is quite close; we need to apply the previous
argument to GL(Rr−1 ⊕ I) for an invertible R–module I and strong approximation
with respect to the R–group scheme GL(Rr−1 ⊕ I).
(b) In the case r = 1, cΣ(R,Gm) = DivΣ(R)/R×f is isomorphic to ker

(
Pic(R) →

Pic(Rf )
)
[30, Theorem 6.2.4], in other words the class map is bijective. This is a

general fact, i.e. the map of Claim 2.11 is surjective. This can be seen by using
patching techniques (see [5, §6.2, D.4]).

(c) The density of SLr(Rf ) in
∏

i=1,...,c

SLr(K̂pi
) is an example of strong approximation.

This argument comes from Harder [35, Korollar 2.3.2] and is used further (see 5.1).

3. Zariski topology is not fine enough

The above definition of non–abelian Čech cohomology extends to an arbitrary group
scheme. There are several complementary reasons for trying to extend this theory.

3.1. The example of quadratic bundles. A quadratic form on an R–module M
is a map q : M → R which satisfies

(i) q(λx) = λ2q(x) for all λ ∈ R, x ∈M .
(ii) The formM×M → R, (x, y) 7→ bq(x, y) = q(x+y)−q(x)−q(y) is (symmetric)

bilinear.

2we use the surjectivity of the determinant.
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This concept is stable under arbitrary base change. The form q is regular if bq
induces an isomorphism M

∼−→ M∨. A fundamental example is the hyperbolic form
(V ⊕V ∨, hyp) attached to a locally free R-module of finite rank defined by hyp(v, φ)→
φ(v).

Suppose we are given a regular quadratic form (M, q) where M is locally free of
rank r. It is tempting to make analogies with vector bundles and to use the orthogonal
group scheme O(q,M) which is a closed subgroup scheme of GL(M). More precisely,
we have

O(q,M)(S) =
{
g ∈ GL(M)(S) | qS ◦ g = qS

}
for each R–ring S. For an open cover U of R we define Z1(U/R,O(q,M)) and
H1(U/R,O(q,M)) in the same way as in section 2 (it makes sense actually for any
R–group scheme). What we get is the following.

Lemma 3.1. The set H1
Zar(U/R,O(q,M)) classifies the isometry classes of regular

quadratic forms (q′,M ′) which are locally isomorphic over U to (q,M).

Proof. Let U = (Ui)i∈I be the open cover. We define a class map from the set S
of isomorphism classes of regular quadratic forms (q′,M ′) which are locally isomor-
phic over U to (q,M). Let (q′,M ′) be a regular quadratic form such that (q′,M ′)Ui

is isometric to (q,M)Ui
for each i. In other words we have trivialization maps

φi : (q,M)Ui

∼−→ (q′,M ′)Ui
for each i. On Ui,j = Ui ∩ Uj, we have gi,j = φ−1

i φj ∈
O(q,M)(Ui,j). This is a 1-cocycle, i.e. gi,j = gi,jgj,k on Ui,j,k = Ui∩Uj∩Uk. By taking
into account the choices, we obtain a well-defined map S → H1

Zar(U/R,O(q,M)).
�

This is nice, but the point is that regular quadratic forms over R of dimension
r have no reason to be locally isomorphic to (M, q) (e.g. this occurs already with
R = R, the field of real numbers). So the set H1

Zar(R,O(q,M)) is only a piece of what
we would like to obtain.

Remark 3.2. The above dictionnary is an example of the so-called "yoga of forms"
which is of general nature. See [32, §III.2.5] and [12, §2.2.4] and §4.6.(d).

3.2. Functoriality. If we have a map f : G → H of group schemes, we would like
to have some control on the map f∗ : H1

Zar(R,G)→ H1
Zar(R,H).

A basic example is the Kummer map fd : Gm → Gm, t 7→ td for an integer d. It
gives rise to the multiplication by d map on the Picard group Pic(R). In terms of
invertible modules, it corresponds to the map M 7→M⊗d.

We would like to understand its kernel and its image. We can already say some-
thing about the kernel. Given [M ] ∈ ker

(
Pic(R)

×d−→ Pic(R)
)
, then there exists a

trivialization θ : R
∼−→ M⊗d. We then define the commutative group Ad(R) of iso-

morphism classes of couples (M, θ) whereM is an invertible R–module equipped with
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a trivialization θ : R
∼−→M⊗d. The multiplication rule is given by (M, θ) . (M ′, θ′) =

(M ⊗RM ′, θ̃) where θ̃ is defined by the composite

R
∼−→ R⊗2 θ⊗θ′−−→M⊗d ⊗RM ′⊗d = (M ⊗RM ′)⊗d.

The trivial element is (R, θ0) where θ0 : R
∼−→ R⊗d. We have a forgetful map

Ad(R)→ Pic(R).

Lemma 3.2.1. We have dAd(R) = 0 and an exact sequence

1→ R×/(R×)d
φ−→ Ad(R)→ Pic(R)

×d−→ Pic(R)

with φ(a) = [(R, θa)] where θa : R
∼−→ R⊗d = R, x 7→ ax.

Proof. Given [(M, θ)] ∈ Ad(R), its d–power is [(M⊗d, θd)] where

θd : R
∼−→ R⊗d

θ⊗d

−−→ (M⊗d)⊗d = M⊗d2 .

It follows that (M⊗d, θd) is isomorphic to (R, θ0).
Next assume that φ(a) = [(R, θa)]) = 0 ∈ Ad(R), that is, there exists an iso-

morphism φ : R
∼−→ R of R–modules such that φ∗θ0 = θa. The map φ is the

multiplication by an unique b ∈ R× and we have bd = a. The injectivity of the first
map is established.

Clearly the sequence R×/(R×)d
φ−→ Ad(R) → Pic(R) is a complex, let us prove its

exactness. We are given (M, θ) such that R ∼= M so that we can deal with (R, θ).
Then θ : R

∼−→ R⊗d = R is given by a ∈ R×. Therefore (R, θ) = (R, θa). Finally the
exactness at Pic(R) is obvious. �

We will see later that we can provide a cohomological meaning to the group Ad(R)
(Remark 4.12).

4. General definitions

Grothendieck-Serre’s idea is to extend the notion of covers in algebraic geometry
[53]. They did it originally with étale covers (to be discussed in §4.8) but it turns
out that the flat cover setting is simpler in a first approach. This is the setting of the
book by Demazure-Gabriel [18, §III], and there are variants.

4.1. Non-abelian Čech cohomology.

Definition 4.1. A flat3 cover of R is a finite collection (Si)i∈I of R–rings satisfying
(i) Si is a flat R–algebra of finite presentation for i ∈ I;
(ii) Spec(R) =

⋃
i∈I Im

(
Spec(Si)→ Spec(R)

)
.

If we put S =
∏

i∈I Si, the conditions rephrase by saying that S is a faithfully flat
R–algebra of finite presentation. We can therefore always deal with a single ring.

3or fppf= fidèlement plat de présentation finie.
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Remark 4.2. For a partition 1 = f1 + · · ·+ fn, the family (Rfj)j=1,...,n is a flat cover
of R and so is Rf1 × · · · ×Rfn.

We define now Čech non-abelian cohomology. Let S be a faithfully flat R-algebra
of finite presentation. We denote by p∗i : S → S⊗R S the coprojections (i = 1, 2) and
similarly q∗i,j : S ⊗R S → S ⊗R S ⊗R S the partial coprojections (i < j).

Let G be an R–group scheme. A 1-cocycle for G and S/R is an element g ∈
G
(
S ⊗R S

)
satisfying

q∗1,2(g) q∗2,3(g) = q∗1,3(g) ∈ G
(
S ⊗R S ⊗R S

)
.

We denote by Z1(S/R,G) the pointed set of 1-cocycles of S/R with values in G (it is
pointed by the trivial 1–cocycle).

Two such cocycles g, g′ ∈ G(S) are cohomologous if there exists h ∈ G(S) such that
g = p∗1(h−1) g′ p∗2(h). We denote by Ȟ1(S/R,G) = Z1(S/R,G)/ ∼ the pointed set of
1-cocycles up to cohomology equivalence.

Remark 4.3. In the case of a Zariski cover given by a partition of 1, the definition
is the same as in §3.1. What lies behind this, is the fact that intersection of open
subschemes is a special case of fiber product.

We can pass to the limit on all flat covers of Spec(R) and define Ȟ1
fppf (R,G) =

lim−→Ȟ1(S/R,G) 4. This construction is functorial in R and in the group scheme G.

4.2. Torsors. A (right)G–torsorX (with respect to the flat topology) is an R-scheme
equipped with a right action of G which satisfies the following properties:

(i) the action map X ×R G→ X ×R X, (x, g) 7→ (x, x.g), is an isomorphism;
(ii) There exists a flat cover R′/R such that X(R′) 6= ∅.

The first condition reflects the simple transitivity of the action, i.e.G(T ) acts simply
transitively on X(T ) for all R–rings T . The second condition is a local triviality
condition. An example is X = G with G acting by right translations, it is called the
split G–torsor. A morphism of G-torsors X → Y is a G-equivariant morphism.

If X(R) 6= ∅, a point x ∈ X(R) defines a morphism G → X, φx : g 7→ x.g, which
is G-equivariant (with respect to the right translation on G). The simply transitive
property implies that φx is an isomorphism of R-schemes; we say that X is trivial
and that φx is a trivialization.

Condition (ii) rephrases that an R–torsor X under G is locally trivial for the flat
topology.

A morphism of G–torsors X → Y is a G–equivariant map.

Lemma 4.4. A morphism of G-torsors f : X → Y is an isomorphism.
4There are set-theoretic issues there allowing us to consider this limit, see [4, Remarque 1.4.3]

and [63] for the fpqc setting.
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Proof. Let R′ be a flat cover of R which splits X. Let x′ be an element of X(R′) and
let y′ be its image by f . Then we have a commutative square

GR′

id
��

φx′

∼
// XR′

fR′
��

GR′
φy′

∼
// YR′ .

where the horizontal maps are orbit maps. As we have noticed before, the orbit
maps are isomorphisms so that fR′ is an isomorphism. We want to deduce that
f is an isomorphism as well. Assume first by simplicity that X and Y are affine
R–schemes (which holds if G is affine). We deal then with a morphism of R-rings
f ∗ : R[Y ]→ R[X] such that f ∗ ⊗R R′ is an isomorphism. It is then an isomorphism
in view of a basic property of faithfully flat modules [6, I.3, §1, Proposition 2]. In the
non affine case, we appeal to [20, 2.7.1.(viii)]. �

Thus the category of G–torsors is a groupoid and the above reasoning is a first step
in descent arguments. The R–functor of automorphisms of the trivial G–torsor G is
representable by G (acting by left translations).

We denote by H1
fppf (R,G) the set of isomorphism classes of G-torsors for the flat

topology. If S is a flat cover of R, we denote by H1
fppf (S/R,G) the subset of isomor-

phism classes of G-torsors trivialized over S.
As in the vector bundle case, we shall construct a class map γ : H1

fppf (S/R,G)→
Ȟ1
fppf (S/R,G) as follows.
Let X be a G–torsor over R equipped with a trivialization φ : G×R S

∼−→ X×R S.
Over S⊗RS, we then have two trivializations p∗1(φ) : G×R(S⊗RS)

∼−→ X×R(S⊗RS)
and p∗2(φ). It follows that p∗1(φ)−1 ◦ p∗2(φ) is an automorphism of the trivial G–torsor
over S ⊗R S, so is the left translation by an element g ∈ G(S ⊗R S). A computation
shows that g is a 1–cocycle [25, §2.2]; also changing φ changes g by a cohomologous
cocycle. The class map is then well-defined. Its study involves a gluing technique in
the flat setting.

4.3. Interlude: Faithfully flat descent. Let T be a faithfully flat extension of the
ring R (not necessarily of finite presentation). We put T⊗d = T ⊗R T · · · ⊗R T (d
times). One first important thing is that the Amitsur complex

0→M →M ⊗R T
d1−→M ⊗R T ⊗R T

d2−→M ⊗R T⊗3 . . .

is exact for each R–module M [38, III.1] where

dn(m⊗ t1 ⊗ · · · ⊗ tn) =
∑

i=0,...,n

(−1)im⊗ t1 ⊗ · · · ⊗ ti ⊗ 1⊗ ti+1 ⊗ · · · ⊗ tn.
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In the case M = R, this implies in particular that for any affine R-scheme X, we
have an exact sequence

0→ HomR(R[X], R)→ HomR(R[X], T )
d1−→ HomR(R[X], T ⊗R T )

In other words we have an identification

X(R) =
{
x ∈ X(T ) | p∗1(x) = p∗2(x) ∈ X(T ⊗R T )

}
.

This holds actually for any R-scheme Y , in other words, the R-functor hY (defined
by hY (T ) = Y (T ) for each R-ring T ) is a flat sheaf [62, Tag 023Q].

Given a T–module N we consider the T ⊗R T–modules p∗1(N) = T ⊗R N and
p∗2(N) = N ⊗R T . A descent datum on N is an isomorphism ϕ : p∗1(N)

∼−→ p∗2(N) of
T⊗2–modules such that the diagram

(4.1) T ⊗R T ⊗R N

ϕ1
**

ϕ2
// N ⊗R T ⊗R T

T ⊗R N ⊗R T
ϕ3

44

is commutative where ϕi is obtained by extending ϕ with ⊗RT at the position i.
For example we have ϕ1(t1 ⊗ t2 ⊗ n) = t1 ⊗ ϕ(t2 ⊗ n).

There is an obvious notion of morphisms for T -modules equipped with a descent
datum from T to R. IfM is an R–module, the identity ofM gives rises to a canonical
isomorphism canM : p∗1(M ⊗R T )

∼−→ p∗2(M ⊗R T ), this is a descent datum.

Theorem 4.5. (Faithfully flat descent, see [38, III, Theorem 2.1.2] )
(1) The functor M → (M ⊗R T, canM) is an equivalence of categories between the
category of R–modules and that of T–modules with descent datum. An inverse functor
(the descent functor) is (N,ϕ) 7→ {n ∈ N | n⊗ 1 = ϕ(1⊗ n)}.
(2) The functor above induces an equivalence of categories between the category of
R–algebras (commutative, unital) and that of T -algebras (commutative, unital) with
descent datum.

For (2), we need to explain what we mean by a descent datum on a T -algebra B.
This is an isomorphism of T⊗2-algebras ϕ : T ⊗R B

∼−→ B ⊗R T which satisfies the
analogous rule of (4.1). For an exhaustive view, we recommend [62, Tag 023F]. We
shall later see examples of descent beyond the case of Zariski covers (e.g. 4.16).

4.4. The linear case. An important example is the extension of Swan-Serre’s cor-
respondence. A consequence of the faithfully flat descent theorem (and of the fact
that the property of being locally free of rank r is local for the flat topology [62, Tag
05B2], [38, III.2.8]) is the following.
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Theorem 4.6. Let r ≥ 0 be an integer.
(1) Let M be a locally free R–module of rank r. Then the R–functor
S 7→ IsomS−mod(S

r,M ⊗R S) is representable by a GLr–torsor XM over Spec(R).
(2) The functor M 7→ XM induces an equivalence of categories between the groupoid
of locally free R–modules of rank r and the category of GLr–torsors over Spec(R).

Proof. See [12, 2.4.3.1]. This reference is for Zariski topology and étale topology but
works for the flat topology in view of the upcoming Proposition 4.14. �

This implies that the GLr–torsors are the same with flat topology or with Zariski
topology.

Corollary 4.7. (Hilbert-Grothendieck 90) We have H1
Zar(R,GLr) = H1

fppf (R,GLr).
In particular, if R is a local (or semilocal) ring, we have H1

fppf (R,GLr) = 1.

This is a special case of a more general statement which holds for GL1(B) where
B is an Azumaya R–algebra see [27, §4.2]. More generally, it holds for a separable
R–algebra (for example Azumaya or finite étale) which is a locally free R–module of
finite rank.

4.5. Torsors, cocycles, and twists.

Lemma 4.8. The map γ : H1
fppf (S/R,G)→ Ȟ1

fppf (S/R,G) is injective.

Proof. Once again we limit ourselves to the kernel for simplicity (for the general
argument, see [25, §2.2]). If (X,φ) gives rise to a cocycle which is cohomologous to
the trivial cocycle, it means that there exists a trivialization φ′ : G×R S

∼−→ X ×R S
such that the associated cocycle is trivial. We put x = φ′(1) ∈ X(S). Then p∗1(x) =
p∗2(x) = 1. Since X(R) identifies with {x ∈ X(S) | p∗1(x) = p∗2(x)}, we conclude that
X(R) is non-empty. �

Theorem 4.9. If G is affine, the class map H1
fppf (S/R,G) → Ȟ1

fppf (S/R,G) is
bijective.

Note that by passing to the limit on the flat covers, we get a bijectionH1
fppf (R,G)→

Ȟ1
fppf (R,G). The fact that we can descend torsors under an affine group scheme is

a consequence of the faithfully flat descent theorem. The sketch is as follows where
we denote by R[G] the coordinate ring of G. We are given a cocycle g ∈ G(S ⊗R S),
recall that it satisfies q1,2,∗(g) q2,3,∗(g) = q1,3,∗(g) ∈ G(S ⊗R S ⊗R S). We consider
the map L∗g : (S ⊗R S)[G]

∼−→ (S ⊗R S)[G] (where Lg : GS⊗RS → GS⊗RS is the left
multiplication by g). Define ϕg by the diagram

S ⊗R S[G]

α∼=
��

ϕg

∼
// S[G]⊗R S

β∼=
��

(S ⊗R S)[G]
L∗g

∼
// (S ⊗R S)[G]
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where α(s1⊗f) = (s1⊗1)p∗2(f) and β(f ⊗ s2) = p∗1(f)(1⊗ s2). The cocycle condition
implies that ϕg is a descent datum for the S-algebra S[G]. Theorem 4.5 defines an
R–algebra R[X] and X is actually a G-torsor denoted by Eg.

This construction is a special case of twisting. Again we are given a cocycle g ∈
G(S⊗RS), it satisfies q1,2,∗(g) q2,3,∗(g) = q1,3,∗(g) ∈ G(S⊗RS⊗RS). More generally, we
consider an affine R-scheme Y equipped with a left action of G. We denote by Aut(Y )
the fppf R-sheaf (in groups) of automorphisms of Y defined by T 7→ AutT (YT ) and
the action is nothing but a homomorphism of R-sheaves in groups a : G → Aut(Y ).
We can deal then with the automorphism ϕg = a(g) ∈ AutS⊗RS

(YS⊗RS) and the point
is that ϕg : Y ×R (S ⊗R S)

∼−→ Y ×R (S ⊗R S) defines a descent datum. This gives
rise to the twist of Yg of Y by the 1-cocycle g. The scheme Yg is affine over R.

A special case is the action of G on itself by inner automorphisms, twisted R-group
scheme Gg carries a natural structure of R-group schemes and it called the twisted
R-group scheme by the 1-cocycle g. The R–group scheme Gg acts on Yg for Y as
above. In particular it acts on Eg so that we have a map of R-sheaves in groups

ρg : Gg → AutG(Eg)

where the right handside stands for the fppf sheaf of G-equivariant isomorphisms of
Eg. In the case of the trivial cocycle, this is the map ρ0 : G→ AutG(E0) arising from
the left translation on the trivial G–torsor E0 = G. Since ρ0 is an isomorphism, ρg is
locally (for fppf) an isomorphism so is an isomorphism. It implies that AutG(Eg) is
representable by an affine R–group scheme and that it could be taken as an alternative
definition for the twisted R-group scheme Gg.

Remarks 4.10. (a) The above construction does not depend on choices of trivializa-
tions. It can be abstracted as follows. We can define for a G–torsor E the twist EY
and EG by means of contracted products as in [32, III.1, III.2.3]. For short the con-
tracted product E ∧G Y is the fppf quotient sheaf of E ×R Y by the left (free) action
of G given by g.(e, y) = (e.g−1, g.y); if Y is affine over R, this sheaf is representable
by an R-scheme which is nothing but EY .

(b) In practice, the affineness assumption in Theorem 4.5 is too strong. More
generally we can twist G–schemes equipped with an ample invertible G-linearized
bundle, see [5, §6, 7 and §10, lemma 6] for details. Another case due to Gabber is
that of ind-quasi-affine schemes [62, Tag 0APK].

4.6. Examples. (a) Vector group schemes. Let M be a locally free R–module of
finite rank, we claim that Ȟ1(R,W(M)) = 0 so that each W(M)–torsor is trivial.
We are given a flat cover S/R. Since the complex

M ⊗R S
p∗1−p∗2−−−→M ⊗R S ⊗R S →M ⊗R S ⊗R S ⊗R S

is exact, each cocycle g ∈ W(M)(S ⊗R S) = M ⊗R S ⊗R S is a coboundary. Thus
Ȟ1(S/R,W(M)) = 0 and Ȟ1(R,W(M)) = 0.
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(b) An important case is G = ΓR, that is, the finite constant group scheme attached to
an abstract finite group Γ. Recall that G(S) is the group of locally constant functions
Spec(S)→ Γ. In other words, G =

∐
γ∈Γ

Spec(R)γ so that its coordinate ring identifies

with R(Γ).
In this case a ΓR–torsor Spec(S)→ Spec(R) is the same thing as a Galois Γ–algebra

S and is called often a Galois cover5. A special case is that of a finite Galois extension
L/k of fields of Galois group Γ.

(c) As with GLr, a special nice case is the case of forms, that is when G is the
automorphism group of some algebraic structure, see [12, §2.2.3] for an exhaustive
discussion.

For example, the orthogonal group scheme O2n is the automorphism group of the
hyperbolic quadratic form attached to R2n. As regular quadratic forms of rank 2n are
locally isomorphic to the hyperbolic form in the flat topology, descent theory provides
an equivalence of categories between the groupoid of regular quadratic forms of rank
2n and the category of O2n-torsors. This is what we wanted in §3, that is, H1(R,O2n)
classifies the isomorphism classes of regular quadratic R–forms of rank 2n [18, III.5.2].

(d) Another important example is that of the symmetric group Sn. For any R–
algebra S, the group Sn(S) is the automorphism group of the S–algebra Sn = S ×
· · ·×S (n–times). Since finite étale algebras of degree n are locally isomorphic to Rn

for the étale topology, the same yoga shows that there is an equivalence of categories
between the category of Sn–torsors and that of finite étale R–algebras of rank n.

The functor which associates to a finite étale R–algebra of rank n a Sn–torsor
is defined by descent but can be described explicitely. This is the Galois closure
construction done by Serre in [53, §1.5], see also [3].

4.7. Functoriality issues. Let G → H be a monomorphism of R–group schemes.
We say that an R-scheme X equipped with a map f : H → X is a flat quotient of
H by G if for each R–algebra S the map H(S) → X(S) induces an injective map
H(S)/G(S) ↪→ X(S) and if for each x ∈ X(S), there exists a flat cover S ′ of S
such that xS′ belongs to the image of H(S ′)→ X(S ′) (we say that f is “couvrant” in
French). If it exists, a flat quotient is unique (up to unique isomorphism); furthermore,
if G is normal in H, then X carries a natural structure of R–group schemes, we say
in this case that 1 → G → H → X → 1 is an exact sequence of R–group schemes
(for the flat topology).

5This is our convention for Galois covers which has the advantage to be stable for base change.
In [51], one requires furthermore R,S to be connected.
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Lemma 4.11. Assume that the R–scheme X is the flat quotient of H by G.
(1) The map H → X is a G–torsor.
(2) There is an exact sequence of pointed sets

1→ G(R)→ H(R)→ X(R)
ϕ−→ H1

fppf (R,G)→ H1
fppf (R,H)

where ϕ(x) = [f−1(x)].

For the proof, see [18, III.4.2, Corollary 1.8 and III.4.4].

Remark 4.12. (a) Assume thatX is affine (or is equipped with an ampleG-linearized
invertible sheaf, see [5, §6.1, Theorem 7 and §10, Lemma 6] for details). Then the
category of G–torsors over Spec(R) is equivalent to the category of couples (F, x)
where F is an H-torsor and x ∈ (FX)(R) (where FX is the twist of X by the H–
torsor F ).

(b) If G is normal in H, then X has natural structure of an R-group scheme. In this
case (a) rephrases by saying that the category of G–torsors over Spec(R) is equivalent
to the category of couples (F, φ) where F is an H–torsor and φ a trivialization of the
X–torsor FX.

(c) The sequence 1 → SLr → GLr → Gm → 1 is an exact sequence of R–group
schemes. Using the extended Swan-Serre correspondence 4.6, an example of (b) is
that the category of SLr-torsors is equivalent to the category of pairs (M, θ) where
M is a locally free R–module of rank r and θ : R

∼−→ Λr(M) is a trivialization of the
determinant of M .

(d) For an integer d, we have the Kummer exact sequence 1 → µd → Gm
×d−→

Gm → 1. Similarly the category of µd–torsors is equivalent to the category of pairs
(M, θ) where M is an invertible R–module and θ : R

∼−→ M⊗r a trivialization. This
is related with §3.2.

Examples 4.7.1. Gm is the flat quotient of GLr by SLr and Gm is the flat quotient
of Gm by µd.

There are of course many more functorial properties for example when G is com-
mutative. In this case, H1(R,G) is equipped with a natural structure of an abelian
group arising from the product morphism G×R G→ G.

4.8. Étale covers. We remind to the reader that an étale morphism of rings R→ S is
a smooth morphism of relative dimension zero [41, §I.3]. There are several alternative
definitions, for example, S is a flat R–algebra of finite presentation such that for each
R–field F , then S ⊗R F is an étale F–algebra (i.e. a finite geometrically reduced
F–algebra).

Examples 4.13. (a) A localization morphism R→ Rf is étale.
(b) If d is invertible in R, the Kummer morphism Gm → Gm, t 7→ td is étale.
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(c) More generally, if d is invertible in R and r ∈ R×, then S = R[x]/(xd− r) is a
finite étale R–algebra.

Let G be an R-group scheme. We denote by Ȟ1
fppf (R,G) the Čech non-abelian

cohomology set defined by means of cocycles in §4.1.
We define the subset Ȟ1

ét(R,G) of Ȟ1
fppf (R,G) of classes which arises from cocycles

supported by étale covers. We define similarly H1
ét(R,G) from H1

ét(R,G).

Proposition 4.14. If G is affine smooth, then we have H1
ét(R,G) = H1

fppf (R,G)
∼−→

Ȟ1
fppf (R,G).

Proof. The right handside bijection is Theorem 4.9. Smoothness is a local property
with respect to the flat topology [20, Corollaire 17.7.3.(ii)] so that any G-torsor E is
smooth over R. According to the existence of quasi-sections [20, 17.16.3], E admits
locally sections with respect to the étale topology. �

4.9. Isotrivial torsors and Galois cohomology. We are given a Galois R–algebra
S of group Γ. The action isomorphism Spec(S) ×R ΓR

∼−→ Spec(S) ×R Spec(S) can
be viewed as an isomorphism S ⊗R S

∼−→ S ⊗R R(Γ) = S(Γ). A 1-cocycle is then an
element z = (zγ)γ∈Γ ∈ G(S ⊗R S) = G(S)(Γ) satisfying a certain relation.

Since Γ acts on the left on S, it acts as well on the left on G(S).

Lemma 4.15. (see [25, lemme 2.2.3]) A Γ-tuple z = (zσ)σ∈Γ ∈ G(S(Γ)) = G(S)(Γ) =
Homsets(Γ, G(S)) is a 1–cocycle for S/R if and only if

zστ = zσ σ(zτ )

for all σ, τ ∈ Γ.

We find that Z1(S/R,G) is the set of Galois cocycles Z1(Γ, G(S)) and that Ȟ1(S/R,G)
is the set of non-abelian Galois cohomology H1(Γ, G(S)) = Z1(Γ, G(S))/ ∼ where
two cocycles z, z′ are cohomologous if zγ = g−1 z′γ γ(g) for some g ∈ G(S).

An interesting case is that of a constant group scheme G associated to an abstract
group Θ and S is connected. In this case, we have Z1(S/R,G) = Homgp(Γ,Θ) and
Ȟ1(S/R,G) = Homgp(Γ,Θ)/Θ.

Remark 4.16. Galois descent is therefore a special case of faithfully flat descent.
The reader can check that the category of R-modules is equivalent to the category of
couples (N, ρ) where N is an S-module equipped with a semilinear action of Γ (i.e.
ρ(σ)(λ . n) = σ(λ) . ρ(σ)(n)). A reference is [29, §14.20].

We say that a torsor E under an R–group scheme G is isotrivial if it is split by
a finite étale cover (which can be assumed Galois by taking the Galois closure).
This is subclass of torsors which can be explicitly studied by Galois cohomology
computations. It is often a preliminary question to decide whether a given torsor is
isotrivial. For example, for the ring of Laurent polynomials in characteristic zero and
a reductive group scheme, this is the case [27].
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5. Torsors over affine curves

5.1. The Dedekind case. Let R be a Dedekind ring with fraction field K. Let
f ∈ R and put Σ = Spec(R) \ Spec(Rf ) = {p1, . . . ,pc}, and use the notation of the
proof of Corollary 2.10. Let G be an affine flat R–group scheme. As in the proof of
2.10 we have a class map

(5.1) ker
(
H1
fppf (R,G)→ H1

fppf (Rf , G)×
∏

i=1,...,c

H1
fppf (R̂pi

, G)
)

−→ cΣ(R,G) = G(Rf )\
∏

i=1,...,c

G(K̂pi
)/G(R̂pi

).

This map is injective [35, §2.3], this generalizes the GLn case established in 2.11.

Remark 5.1. As already mentioned in Remark 2.12.(b), the surjectivity of the class
is a general fact obtained by using patching techniques (see [5, §6.2, D.4]). We will
not use that in the sequel.

The next results are due to Harder [35, Corollary 2.3.2 and Satz 3.3].

Corollary 5.2. If cΣ(R,G) = 1 (in particular if G(Rf ) is dense in
∏

j=1,...,c

G(K̂pi
)),

we have ker
(
H1
fppf (R,G)→ H1

fppf (Rf , G)×
∏

i=1,...,c

H1
fppf (R̂pi

, G)
)

= 1.

We examine now more closely the reductive case.

Proposition 5.3. Assume that G is a reductive split R–group scheme and let (B, T )
be a Killing couple, i.e. T is a maximal split R-torus of G and B an R–Borel subgroup
scheme containing it.

(1) The sequence of pointed sets

H1
fppf (R, T )→ H1

fppf (R,G)→ H1
fppf (K,G)

is exact.
(2) We have H1

Zar(R,G) = ker
(
H1
fppf (R,G)→ H1

fppf (K,G)
)
.

(3) If G is simply connected, then ker
(
H1
fppf (R,G) → H1

fppf (K,G)
)

= 1 and
H1

Zar(R,G) = 1.

At this stage we need to explain the vocabulary for reductive (resp. semisimple)
algebraic groups and also for group schemes. A reference is [16, §1.5 and Exercise
6.5.2].
• A smooth connected affine algebraic group G defined over an algebraically closed
field k is reductive (resp. semisimple) if 1 is the only smooth connected k-subgroup
which is normal and unipotent (resp. normal and solvable). Semisimple simply con-
nected here is more complicated; in characteristic zero this is equivalent to say that G
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is semisimple simply connected for Grothendieck’s theory [51] of finite étale covers6.
Examples of semisimple simply connected algebraic groups are SLn, Sp2n, Spinn.
• A smooth affine group scheme G over a ring R is reductive (resp. semisimple, resp.
semisimple simply connected) if each geometric fiberGs is reductive (resp. semisimple,
resp. semisimple simply connected).
• [16, 5.1.1] Let G be a reductive group scheme over a connected ring R. It is split if
there exists a maximal torus T ∼= Gr

m such that each root space Lie(G)a for a ∈ T̂ is
free of rank 1 over R. It admits a Borel R-subgroup scheme (i.e. a closed smooth R-
subgroup whose geometric fibers are Borel subgroups) containing T [52, XXII.5.1.1].

We proceed now to the proof of Proposition 5.3.

Proof. (1) SinceH1
fppf (K,T ) = 1 (Hilbert 90), the sequenceH1

fppf (R, T )→ H1
fppf (R,G)→

H1
fppf (K,G) is a complex of pointed sets. In order to establish the exactness, we claim

first that the map

H1(R,B)→ ker
(
H1
fppf (R,G)→ H1

fppf (K,G)
)

is onto. Let E be an R-torsor under G which becomes trivial over K. We admit that
the fppf sheafG/B is representable by a projective R-scheme [52, XXVI.1.2]. The idea
is to introduce the twisted R-scheme Y = E(G/B) (it is the scheme of Borel subgroups
of the twisted R–group scheme EG so is projective over R [52, XXVI, Théorème 3.3]).
Since EK is trivial we have Y (K) 6= ∅. Next we have Y (R) = Y (K) in view of the
valuative criterion of properness. It follows that Y has an R–point (equivalently EG

carries an R-Borel subgroup scheme). According to Remark 4.12.(a), it follows that
[E] belongs to the image of H1(R,B)→ H1(R,G).

We have B = U o T where U admits a T–equivariant filtration U0 = 1 ⊂ · · · ⊂
Ur = U such that Ui+1/Ui is isomorphic to the commutative unipotent R–group
(Ga)

li . Since H1
fppf (R,Ga) = 1 (Example 4.6.(a)), a dévissage argument shows that

the map H1
fppf (R, T ) → H1

fppf (R,B) is bijective7. We conclude that [E] belongs to
the image of H1

fppf (R, T )→ H1
fppf (R,G).

(2) Taking an isomorphism T ∼= Gr
m, we have H1

fppf (R, T ) ∼= Pic(R)r. In view of (1),
we have
ker
(
H1
fppf (R,G) ⊂ H1

fppf (K,G)
)
⊆ H1

Zar(R,G). The converse inclusion is obvious.
(3) We assume now that G is semisimple simply connected. We are given [E] ∈
H1

Zar(R,G) = ker
(
H1
fppf (R,G) → H1

fppf (K,G)
)
. From (2), there exists f ∈ R such

that ERf
is trivial as well as ERpi

for the maximal ideals p1, . . . , pc ∈ Σ = Spec(R) \
Spec(Rf ). It makes then sense to consider the class map of [E] in cΣ(R,G).

Claim 5.1.1. cΣ(R,G) = 1.

6In particular, for the field of complex numbers, this notion coincide with the topological one.
7this is a general fact, see [52, XXVI.2.3].
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The Claim and Corollary 5.2 implies that [E] = 1 ∈ H1
fppf (R,G) as desired. To

establish the Claim, we consider an opposite Borel R–subgroup B− to B, i.e. T =
B ∩ B− [16, Proposition 5.2.12]. We denote by U− its unipotent radical. Since each
G(K̂pi) is generated by U+(K̂i) and U−(K̂i) [59, lemma 64] and since U+ (resp. U−)
is isomorphic as R–scheme to An, we have that U+(Rf ) is dense in

∏
i=1 U

+(K̂pi) and
similarly for U−. It follows that G(Rf ) is dense in

∏
i=1 G(K̂pi) whence the Claim. �

We find then one more time that H1
Zar(R, SLn) = 1 but get for example also that

H1
Zar(R,E8) = 1 where E8 stands for the split group of type E8. Since Pic(k[t]) = 0

for a field k, it follows that H1
Zar(k[t], G) = 1 for a semisimple split simply connected

k-group G.

Remark 5.4. Proposition 5.3.(2) holds for an arbitrary reductive R-group scheme
G, this is a result of Nisnevich [44], see also [34]. Furthermore by taking into account
Remark 5.1 on the surjectivity of the class map, we get that the class map (5.1)
induces a bijection H1

Zar(R,G)
∼−→ cΣ(R,G).

5.2. Affine curves over an algebraically closed field.

Theorem 5.5. Let G be a semisimple algebraic k–group where k is an algebraically
closed field. Let C be a smooth connected affine curve. Then H1

fppf (C,G) = 1.

Note that such a G is necessarily split. A slightly more general version is available
in [15, §3]. One first ingredient is Steinberg’s theorem.

Theorem 5.6. [58, Theorem 11.1] Let F be a field and let H be a semisimple algebraic
F–group which is quasi-split (i.e. admits a Borel F–subgroup). Then the map⊔

T⊂H

H1(F, T )→ H1(F,H)

is onto where T runs over the maximal F–tori of H.

For the field k(C), we have that Br(k(C)) = 0 and more generally that cd(k(C)) =
1, this is a consequence of Tsen’s theorem stating that k(C) has the C1 property [54,
II.3.3]. A classical dévissage yields that H1(k(C), T ) = 1 for each k(C)-torus T 8.
Combining with Theorem 5.6 yields that H1(k(C), G) = 1 for each semisimple (split)
k–group G. A special case is that of PGLn which can be rephrased by saying that
the central simple algebras over k(C) are matrix algebras.

A second ingredient is the fact that the Picard group Pic(C) is divisible which
follows from the structure of Pic(Cc) where Cc is a smooth compactification of C.
We have an exact sequence

0→ JCc(k)→ Pic(Cc)→ Z→ 0

8Hint: Let n be the degree of a splitting field of T , show that nH1(k, T ) = 1 and consider the
exact sequence 1→ nT → T

×n−−→ T → 1.
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where JCc is the Jacobian variety of Cc [42, §1] (or [62, Tag 03RN]). If
C = Cc \ {x1, . . . , xs} the surjective map Pic(Cc)→ Pic(C) induces an epimorphism
JCc(k)→→ Pic(C). Thus Pic(C) is a divisible group.

We proceed now to the proof of Theorem 5.5.

Proof. We assume first that G is simply connected. Proposition 5.3 shows that
ker
(
H1
fppf (C,G) → H1

fppf (k(C), G)
)

= 1. Since H1(k(C), G) = 1, it follows that
H1
fppf (C,G) = 1.
For the general case, let f : Gsc → G be the simply connected cover of G (e.g.

SLn → PGLn, Spinn → SOn) and put µ = ker(f). Let T sc be a maximal torus of Gsc,
then T = T sc/µ is a maximal torus of G. We consider the commutative diagram

(5.2) H1
fppf (C, T

sc)

��

f∗
// H1

fppf (C, T )

����

1 = H1
fppf (C,G

sc) // H1
fppf (C,G).

The surjectivity of the right vertical map follows from H1(k(C), G) = 1 and of Propo-
sition 5.3.(1). We use now the exact sequence 1 → µ → T sc

f−→ T → 1. We choose
isomorphisms T sc ∼= Gr

m and T ∼= Gr
m, f is given by a map A : Zr → Zr (on the

cocharacters) such that det(A) ∈ Q×. It follows that f∗ reads
A : Pic(C)r → Pic(C)r.

Since det(A) ∈ Q× and Pic(C) is divisible, the map f∗ is then onto. Diagram chase
in the diagram (5.2) enables us to conclude that H1(C,G) = 1. �

Remark 5.7. The reductive case is of the same vein. Let S = G/DG be the coradical
torus of G. One can show that the map H1(C,G) → H1(C, S) is bijective. This
generalizes the bijection H1(C,GLr)

∼−→ H1(C,Gm) = Pic(C) seen in Theorem 2.8.

5.3. The case of the affine line.

Theorem 5.8. (Raghunathan-Ramanathan [49]) Let G be a reductive k–group over
a field k. Then we have a bijection

H1(k,G)
∼−→ ker

(
H1(k[t], G)→ H1(ks[t], G)

)
.

If k is perfect or if the characteristic of p is “good” for G, we have H1(ks[t], G) = 1
so that H1(k,G) = H1(k[t], G). When it happens, we say that G–torsors over k[t]
are constant. There are a few exotic cases when it does not hold.

Example 5.3.1. Assume that k is not perfect of characteristic p > 0 and pick
a ∈ k \ kp. We consider the k[t]–algebra A (unital, associative) generated by X, Y
submitted to the relations

Xp −X = t, Y p = a, Y XY −1 = X + 1.
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It is an Azumaya k[t]-algebra of degree p so defines a class [A] ∈ H1(k[t],PGLp). It not
trivial over ks[t] because it is not trivial over ks((1

t
)) (use for example [28, Corollary

4.7.4]). Cohomologically speaking this class arises from the k-subgroup µp×Z/pZ of
PGLp. We have H1

fppf (k[t], µp) = k[t]×/k[t]×
p

= k×/(k×)p and H1
fppf (k[t],Z/pZ) =

k[t]/P(k[t]) where P = (x) = xp− x is the Artin Schreier cover. In the same manner
as in the field case [28, Proposition 4.7.3], one can check that the class [A] is the
image of

(
(a), [T ]

)
in H1(k[t],PGLp). There are also examples for simply connected

groups [23, §2.4].

There are variations of the original proof [24, 14, 1]; all involve Bruhat-Tits the-
ory, which is the theory of reductive algebraic groups over a complete (or henselian)
discretly valued field [9, 10] and their integral models. Note that Kaletha and Prasad
wrote recently a wonderful book on this theory [37].

We will sketch the recent proof of [1] when the k-group G is split semisimple
simply connected and almost simple (i.e. its Dynkin diagram is connected), e.g. G =
SLn, Spin2n, G2. There is no need to deal with the projective line but only with the
completion K = k((1

t
)) of the function field k(t) with respect to the point ∞.

We consider the Bruhat-Tits building B = B(GK) of GK [37, §7.6]. This is a con-
tractible simplicial complex equipped with a metric. There is a “strongly transitive"
action of G(K) on B. Each maximal k-split torus T of G gives rises to an apartment
A(T ) ⊂ B which is an euclidean affine space.

Example 5.3.2. If G = SL2, B is the Bruhat-Tits tree. If k = F2, it looks as follows.

In this case, the apartments are the infinite lines. In this geometry, a triangle has
the shape

�
�

Q
Q

r r
r
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In particular the triangles are thin compared to euclidean geometry. This is an
occurence of non-positive curvature, see the reference book [8, II, Appendix].

Let (B, T ) be a Killing couple for G and consider the root system Φ = Φ(G, T ) and
its base ∆. We call A(T ) the standard apartment of B. The center φ of B is defined
in [9, 9.1.19.(c)]. It belongs to A(T ) and is characterized as the unique point fixed
by G(k[[1

t
]]). We have a decomposition of the euclidean space

A(T ) = φ+ T̂ 0 ⊗Z R

where T̂ 0 = Homk−gp(Gm, T ) stands for the group of cocharacters of T . We define
the cone

Q = φ+
{
v ∈ T̂ 0 ⊗Z R | 〈α, v〉 ≥ 0 ∀ α ∈ ∆

}
.

Theorem 5.9. (Soulé [56, Théorème 1 ]) The cone Q is a fundamental simplicial
domain for the action of G(k[t]) on B. In other words any simplex of B is G(k[t])-
conjugated to a unique simplex of Q.

Remark 5.10. Using the precise shape of stabilizers, Soulé provided a presentation
of G(k[t]) generalizing Nagao’s presentation SL2(k[t]) = SL2(k) ?B(k) B(k[t]). For G
not split, it has been generalized by Margaux [40].

We proceed now to the proof of the above special case of Theorem 5.8.

Proof. We are given a G-torsor X over k[t] which is trivialized after an extension l[t]
where l/k is a finite Galois extension of group Γ. In other words X is given by a
1–cocycle z : Γ→ G(l[t]). We put L = l((1/t)) and consider the Bruhat-Tits building
Bl of GL. We denote by Al(T ) the standard apartment of Bl, by φl the center of Bl
and by Ql ⊂ Al(T ) the cone associated to the positive roots of Φ(Gl, Tl). We have a
natural embedding ι : B → Bl which applies φ to φl and A(T ) to A(Tl) [9, Example
9.1.19.(c)] (or [37, §7.9.2]). Clearly we have ι(Q) = Ql. The group G(L)oΓ acts9 on
Bl so that we get a twisted action of Γ on Bl defined by

σ ? x = zσ . σ(x).

The Bruhat-Tits fixed point theorem implies the existence of a fixed point; another
way to see that is to take the barycenter (as defined in [36, Definition 3.1]) of a Galois
orbit. Let x ∈ Bl be a fixed point by the twisted Galois action. Soulé’s result 5.9
applied over l provides a point x0 ∈ Ql such that x = g x0 for some g ∈ G(l[t]). Since
x0 ∈ Ql = ι(Q), x0 is fixed by Γ.

Since x = σ ? x = zσ σ(x), it follows that g . x0 = zσ σ(g . x0) = zσ σ(g) . x0 so that

z′σ. x0 = x0.

9The unramified descent theorem [37, Theorem 9.2.7] states that ι induces a bijection B ∼−→ (Bl)Γ
and we do not use it.
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where z′σ = g−1 zσ σ(g) is an equivalent cocycle. It follows tha z′ takes values in the
stabilizer G(l[t])x0 . According to [56, §1.1], there exists a subset I ⊂ ∆ and a split
k–unipotent k–group Ux0 such that G(l[t])x0 = Ux0(l)oLI(l) where LI is the standard
Levi subgroup of the standard parabolic k–subgroup PI of G.

We use now that the map H1
(
Γ, LI(l)

)
→ H1

(
Γ, Ux0(l) o LI(l)

)
is bijective [26,

lemme 7.3] so that [z] = [z′] ∈ H1
(
Γ, G(l[t])

)
belongs to the image of H1(Γ, G(l))→

H1
(
Γ, G(l[t]

)
. The proof is completed. �

5.4. The case of the punctured affine line. This case is more complicated than
the affine line.

Theorem 5.11. (see [14]) Let G be a reductive k–group over a field k of characteristic
zero. The map

H1(k[t±1], G)
∼−→ H1(k((t)), G)

is bijective.

The surjectivity is easy and comes by reduction to a finite subgroup. The hard part
is the injectivity where one crucial step is to show an existence of a maximal torus
for the relevant twisted group scheme. This involves Bruhat-Tits theory and twin
buildings. Note that Bruhat-Tits theory also provides a description of H1(k((t)), G)
[11].

6. What is next?

6.1. Dimension one. Fedorov constructed exotic examples of non constantG–torsors
over R[t] with R a local ring (henselian if we want) [21]. The way to detect that the
constructed torsors are not constant is to establish that the torsors do not extend to
the projective line P1

R. That method is related with the work on the Grothendieck-
Serre’s conjecture [13, §5].

6.2. Higher dimensions. Theorem 5.8 does not extend in dimension 2. The first
example is that of Ojanguren-Sridharan [48] with the field R of real numbers and
the unit group G = GL1(H) of the Hamilton quaternion algebra H. They show
that 1 = H1(R, G) ( H1(R[x, y], G). In other words, there is an invertible (right)
H[x, y]–module which is not free.

On the other hand, positive results start with Quillen-Suslin’s theorem rephrased
in H1(k[x1, . . . , xn],GLn) = 1. For an enough isotropic reductive k–group G, we have
H1(k,G) = H1(k[x1, . . . , xn], G) (Raghunathan’s results [50]). Note also the related
Stavrova’s results on higher Laurent polynomial rings [57].

Over polynomial rings over a nice ring, we have Lindel’s theorem [39] and general-
izations by Asok-Hoyois-Wendt [2] which are essential in A1-homotopy theory.



TORSORS OVER AFFINE CURVES 27

7. Exercices (T.A. Margot Bruneaux)

Let R be a commutative (unital) ring.

Exercise 1. Let M be an R–module of finite presentation. Let W(M) be the R–
functor defined by S 7→M ⊗R S. Show that W(M) is representable if and only if M
is a locally free R–module of finite type.

[Hint: To show that if W(M) is representable by a G–scheme then M is a locally
free R–module of finite type, one can show that G is smooth and then consider the
tangent vector bundle.]

Exercise 2. Let M be a locally free R–module of rank 2n ≥ 2 equipped with a regular
quadratic form q. Show that, locally for the flat topology, (M, q) is hyperbolic. [Hint:
One can deal first with the case of a local ring where 2 is invertible.]

Exercise 3. Let B be standard Borel R–subgroup of upper triangular matrices of
GL2,R.

(1) Show that the flat quotient of GL2,R by B exists in the category of R–schemes
and is isomorphic to the projective line.

(2) Deduce an exact sequence of pointed sets

1→ B(R)→ GL2(R)→ P1(R)→ H1
fppf (R,B)→ H1

fppf (R,GL2).

(3) For R local, show that H1
fppf (R,B) = 1 and that H1

fppf (R,Ga) = 1.

Exercise 4. Let G, G′ be affine group schemes over SpecR, T be a G–torsor and
φ : G → G′ be a homomorphism. We denote by T ∧G G′ the fppf-sheaf associated to
the presheaf S 7→ T (S)×Spec(R) G

′(S)/{(t, g′) ∼ (t · g−1, φ(g)g′)}.
(1) Show that T ∧G G′ is a G′–torsor. We obtain a map H1(φ) : H1(X,G) →

H1(X,G′) of pointed sets.
(2) Show that the following diagram is commutative

H1(X,G) H1(X,G)

Ȟ1(X,G) Ȟ1(X,G′).

H1(φ)

cG

Ȟ1(φ)

cG′

Exercise 5. Let R′ be a finite locally free R–algebra. Let r ≥ 0 be an integer. Let f
denote the map from SpecR′ to SpecR.

(1) Show that the R–functor S 7→ EndS⊗RR′

(
(S ⊗R R′)r

)∗
is representable by an

affine R–group scheme. We denote it by G̃ = RR′/R(GLr) (the Weil restric-
tion).
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(2) Show that a GLr,R′–torsor is locally trivialised by an open of the form f−1(U)
where U is an open of SpecR.

(3) Show that the category of G̃–torsors is equivalent to the category of locally free
R′–modules of rank r.

(4) Give an interpretation of the map H1(R,GLr)→ H1(R, G̃) and show that this
map is not in general injective nor surjective.

Exercise 6. Let d ≥ 1 be an integer and let R′ be a Z/dZ–Galois extension, i.e.,
SpecR′ is a Z/dZ–torsor over SpecR. We denote by σ the canonical generator of
Z/dZ.

(1) Show that the formula N(y) = y σ(y) · · ·σr−1(y) defines a group scheme ho-
momorphism N : RR′/R(Gm)→ Gm.

(2) Show that 1 → ker(N) → RR′/R(Gm) → Gm → 1 is an exact sequence of
R–group schemes.

(3) Deduce an exact sequence involving H1(R, ker(N)).
(4) Show that the flat quotient of RR′/R(Gm) by Gm exists in the category of

schemes and is isomorphic to ker(N).
(5) Construct an exact sequence

R× → (R′)×
σ−1−−→ ker(N)(R)→ ker (Pic(R)→ Pic(R′)) .

(6) Discuss the case of the coordinate ring A = R[ker(N)] of ker(N).
(7) For R = R and S = C, is the Gm–torsor RS/R(Gm)→ RS/R(Gm)/Gm trivial?

Exercise 7. (Lang isogeny) Let k be a field of caracteristic p. We denote by F the
Frobenius morphism.

Let G be a smooth algebraic group. Show that the map g 7→ g.F (g−1) is an
étale isogeny, i.e., it is surjective and finite étale. Deduce that SLn,Fp

is not simply-
connected in the sense of [51].

Exercise 8. (Weil restriction) Let R′ be a finite locally free R–algebra. Let r ≥ 0 be
an integer. Let f denote the map from SpecR′ to SpecR.

(1) Show that the R–functor S 7→ EndS⊗RR′

(
(S ⊗R R′)r

)∗
is representable by an

affine R–group scheme. We denote it by G̃ = RR′/R(GLr) (the Weil restric-
tion).

(2) Show that a GLr,R′–torsor is locally trivialized by an open of the form f−1(U)
where U is an open of Spec(R).

(3) Show that the category of G̃–torsors is equivalent to the category of locally free
R′–modules of rank r.

(4) Give an interpretation of the map H1(R,GLr)→ H1(R, G̃) and show that this
map is not in general injective nor surjective.
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Exercise 9. (after Ojanguren and Sridharan [48]). Let H be the Hamilton quaternion
algebra. Show that A = H[x, y] admits an invertible (right) H–module which is not
free.

[Hint : One can consider the exact sequence

0→ P → A2 f−→ A→ 0

where f : (γ, µ) 7→ (X + i)γ − (Y + j)µ.
Then one can find two solutions (γ1, µ1) and (γ2, µ2) of degree two and deduce a

contradiction.]

Exercise 10. Let R be an unitary commutative ring.
Show that Pic(R[t]) = Pic(R) when R is a normal ring of finite type over a field k

of dimension n.
[Hint: One can use that, for every X–scheme and every effective Cartier divisor L

of X, there is a Gysin-map L· from CHk(X) to CHk−1(|L|) defined by L · [Y ] = [i∗L]
where i : Y ↪→ X is an irreducible subscheme of X of dimension k. (See [22, §2.6].)]

Remark 7.0.1. See [64, §I.3] for examples in which Pic(R[t]) 6= Pic(R).

Exercise 11. (Patching) Let C1, C2, C0 be three categories and αi : Ci → C0 for i =
1, 2. We define the category C1 ×C0 C2 whose objects are the triple (C1, C2, φ) where
φ : α1(C1)→ α2(C2) is an isomorphism and a morphism from (C1, C2, φ) to (C ′1, C ′2, φ′)
consists of two morphisms fi : Ci → C ′i for i = 1, 2 such that φ′ ◦ α1(f1) = α2(f2) ◦ φ.

If F is a field, we denote by Vectn(F ) the category of F–vector spaces of dimension
n and if R is a ring, we denote by Modn(R) the category of R–modules locally free of
rank n.

(1) Let F1, F2 be two fields, F0 be an extension of this two fields, and let F =
F1 ∩ F2.

Show that if for every n, GLn(F0) = GLn(F1) GLn(F2), then the map:

β : Vectn(F ) → Vectn(F1)×Vectn(F0) Vectn(F2)

V 7→ (V ⊗F F1, V ⊗F F2, φ : V ⊗F F1 ⊗F1 F0
∼−→ V ⊗F F2 ⊗F2 F0)

is an equivalence of categories.
(2) If R is a DVR and K is its field of fractions, one can define in the same way

an application

γ : Modn(R)→ Vectn(K)×Vectn(K̂) Modn(R̂).

First show that GLn(K̂) = GLn(K)GLn(R̂) and then that γ is an equivalence
of categories.
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