Loop torsors: from Topology to Arithmetic

Philippe Gille

Institut Camille Jordan, Lyon and IMAR, Bucharest

Bucharest, Imar, October 1, 2025

A conference dedicated to Vasile Brînzănescu on the occasion of his 80th birthday

Principal bundles in Topology

Let X be a topological space and let G be a topological group. A G-bundle Y over X is a topological space Y equipped with a continous right action of G together with a continous map $f: Y \to X$ which is G-invariant and such that X admits an open cover $(U_i)_{i \in I}$ and trivializations (which are G-equivariant)

$$\phi_i: U_i \times G \xrightarrow{\sim} Y \times_X U_i = f^{-1}(U_i).$$

It follows that each

$$\phi_i^{-1} \circ \phi_j : (U_i \cap U_j) \times_X G \to (U_i \cap U_j) \times_X G$$

is the left translation by a continuius function $g_{i,j}: U_i \cap U_j \to G$. Then $(g_{i,j})$ is the cocycle associated with the trivializations.

▶ A *G*-bundle is trivial if it is *G*-isomorphic to $X \times G$, equivalently the map $f: Y \to X$ admits a continous section.

Vector bundles

▶ If $G = \operatorname{GL}_n(\mathbb{R})$, a principal G-bundle over X is the same thing than a real vector bundle over X. In one way we associate to a $\operatorname{GL}_n(\mathbb{R})$ -bundle Y the contracted product

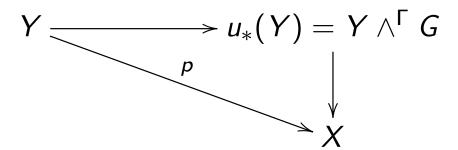
$$Y \wedge^{\operatorname{GL}_n(\mathbb{R})} \mathbb{R}^n = (Y \times \mathbb{R}^n)/\operatorname{GL}_n(\mathbb{R}).$$

Loop bundles

- Let Γ be a discrete group and let $p: Y \to X$ be a principal homogenous space for the group Γ .
- ▶ Given a homomorphism $u : \Gamma \to G$, we can form $u_*(Y) = Y \wedge^{\Gamma} G$ over X (where Γ acts on the right on Y and on the left on G through u).
- ▶ Then $u_*(Y)$ is a G-torsor and we say it a loop torsor.
- When X is connected, a special case is the construction of vector bundles over X from linear representations of the fundamental group $\pi_1(X,x)$.
- For example, the Moebius strip over the circle S^1 can be constructed with the 2-cover $p: S^1 \xrightarrow{\times 2} S^1$ and the map $\mathbb{Z}/2\mathbb{Z} \hookrightarrow \mathbb{R}^{\times}$.

Isotrivial bundles

For the *G*-bundle $u_*(Y) = Y \wedge^{\Gamma} G$, the map $Y \to Y \times G$, $y \mapsto (y, 1_G)$, induces a commutative diagram



- In other words the pull-back $u_*(Y) \times_X Y$ over Y is a trivial G-bundle.
- ▶ We say that a principal G-bundle $E \to X$ is *isotrivial* if there exists a covering map $q: X' \to X$ such that the pull-back $q^*(E)$ is a trivial G-bundle over X'.
- This terminology comes from Grothendieck, another one is *Virtually trivial bundle*.
- ▶ Isotriviality is then a necessary condition for *E* to arise from some loop construction. What about the converse?

Milnor's example

It seems that the simplest example of isotrivial principal G-bundle not arising from the loop construction is that of Milnor (1958).

- Let M be the compact oriented surface of genus $g \geq 1$. Its simply connected cover \widetilde{M} is $\mathbb C$ of the Poincaré half plane, so it is contractible.
- ▶ Let *G* be a connected Lie group and let

$$1 o \pi_1(\mathit{G}) o \widetilde{\mathit{G}} o \mathit{G} o 1$$

be the exact sequence of Lie groups arising from the simply connected cover of G.

► It induces a bijection

$$H^1(M,G) \xrightarrow{\sim} H^2(M,\pi_1(G))$$

where $H^1(M, G)$ stands for the set of isomorphism classes of principal G-bundles over M.

We have

$$H^2(M,\pi_1(G))\stackrel{\sim}{ o} \mathit{Ext}_{ab}(H_1(M,\mathbb{Z}),\pi_1(G)) \oplus \mathsf{Hom}(H_2(M,\mathbb{Z}),\pi_1(G))$$

Milnor's example, II

► It induces a bijection

$$H^1(M,G)\stackrel{\sim}{\longrightarrow} H^2(M,\pi_1(G))=\pi_1(G).$$

 $lackbox{We take } G=\mathrm{GL}_2(\mathbb{R})^+ ext{ so that } \pi_1(G)=\mathbb{Z} ext{ and }$

$$H^1(M,G)=\mathbb{Z}.$$

- ► Milnor has shown that loop principal *G*-bundles gives rise to positive indices.
- ▶ Thus the class $-1 \in \mathbb{Z}$ defines a principal G-bundle over M which does not arise from the loop construction.

Torsors in Algebraic Geometry

Let k be an algebraically closed field of characteristic zero (e.g. \mathbb{C}).

- Torsor is the name of principal bundle in Algebraic Geometry, this generalization is due to Grothendieck and Serre in 1958.
- It went together with the notion of *étale* morphisms, that is, of smooth morphisms of algebraic varieties of relative dimension zero. An étale cover of an algebraic variety X is a finite collection of étale maps $f_1: U_1 \to X, \ldots, f_n: U_n \to X$ such that $f_1(U_1) \cup \cdots \cup f_n(U_n) = X$.
- Let X be a k-variety and let G be a linear algebraic group. A G-torsor Y over X is an algebraic k-variety Y equipped with a right action of G together with map $f: Y \to X$ which is G-invariant and such that X admits an étale cover $(U_i)_{i \in I}$ and trivializations (which are G-equivariant)

$$\phi_i: U_i \times G \xrightarrow{\sim} Y \times_X U_i.$$

Torsors in Algebraic Geometry, II

- In the case of GL_n , a GL_n —torsor is the same thing than an algebraic vector bundle of rank n. In that case, Zariski topology is enough.
- We consider the rank one torus $\mathbb{G}_{m,k} = \operatorname{GL}_1 = \operatorname{Spec}(k[t^{\pm 1}])$. The map $\mathbb{G}_{m,k} \to \mathbb{G}_{m,k}$, $x \mapsto x^2$ is a $\mathbb{Z}/2\mathbb{Z}$ -torsor. It is not locally split for the Zariski topology.
- ▶ If Γ is a finite group, it is also an algebraic k–group. In that case Γ -torsors $Y \to X$ with X, Y connected are nothing but Galois covers of Grothendieck theory of fundamental group in algebraic geometry.

Loop torsors in Algebraic Geometry

- ▶ Given a Γ -torsor $p: Y \to X$ and a homomorphism $u: \Gamma \to G$, we can associate the G-torsor $u_*(Y) = Y \wedge^{\Gamma} G$ by taking the quotient in the algebraic sense (that is using flat sheaves and descent theory).
- ▶ This is a loop torsor and as in the topological case, the base change $u_*(Y) \times_X Y$ is a trivial G—torsor.
- We say that a G-torsor E over X is isotrivial if there exists a finite étale cover $X' \to X$ (right notion of covering map in Algebraic Geometry) such that $E \times_X X'$ is a trivial G-torsor.
- Loop torsors are then isotrivial but what about the converse?

Loop/Isotrivial I

- We denote by $H^1(X, G)$ the pointed set of isomorphism classes of G-torsors over X.
- Example : $G = \mathbb{G}_m$. We have $H^1(X, \mathbb{G}_m) = \operatorname{Pic}(X)$. The isotrivial torsors correspond to the torsion elements of $\operatorname{Pic}(X)$ and they are loop torsors by using the Kummer exact sequence $1 \to \mu_n \to \mathbb{G}_m \xrightarrow{\times n} \mathbb{G}_m \to 1$.
- ▶ We assume that X is a smooth connected projective variety. In this case, isotrivial G-torsors (and especially isotrivial vector bundles) have been studied by M. Nori (1976). Also there are important classification results by M. Brion in the case of abelian varieties.
- In this case, isotrivial G-torsors are indeed loop torsors. Let E be a G-torsor over X which is trivialized by a finite étale cover Y. Without loss of generality, we can assume that Y is connected and Grothendieck's theory tells us that $Y \to X$ is dominated by a Galois cover $Z \to X$ of finite group Γ .

Loop/Isotrivial II

- Let E be a G-torsor over X which is trivialized by a finite étale cover Y. We have seen that we can assume Z connected and to be a Galois cover of X of group Γ .
- ► We appeal to the exact sequence of pointed sets

$$1 o H^1(\Gamma, G(Z)) o H^1(X, G) o H^1(Z, G)$$

where $H^1(\Gamma, G(Z))$ stands for the set of non-abelian group cohomology defined by 1-cocycles.

- Since Z is projective, we have G(k) = G(Z) so that $H^1(\Gamma, G(Z)) = \text{Hom}(\Gamma, G(k))/G(k)$.
- ▶ The class of E gives rise then to some $u : \Gamma \to G$ and it is routine to check that $u_*(Z) \cong E$.

Affine case

In the proceding reasonning, there was no need of the projective assumption until the analysis of the sequence

$$1 o H^1(\Gamma, G(Z)) o H^1(X, G) o H^1(Z, G).$$

- When Z is affine, there is no reason a priori why the map $H^1(\Gamma, G(k)) \to H^1(\Gamma, G(Z))$ should be onto.
- With my collegues Chernousov and Pianzola, we were interested in the case of the torus

$$(\mathbb{G}_m)^n = \operatorname{Spec}(k[t_1^{\pm 1}, \dots, t_n^{\pm 1}]).$$

A first result is that all G-torsors over $(\mathbb{G}_m)^n$ are isotrivial, this uses the strong vanishing fact $H^1(\mathbb{A}^n_k, G) = 1$ (Quillen-Suslin, Raghunathan).

A counterexample

- We know the algebraic fundamental group of $(\mathbb{G}_m)^n$, it is $\widehat{\mathbb{Z}}^n$ and a basis of finite covers is $(\mathbb{G}_m)^n \xrightarrow{\times d} (\mathbb{G}_m)^n$ is by taking n copies of the Kummer cover of degree d.
- ▶ If n = 1 and G is connected, all torsors are loop (2012).
- The simplest example of (isotrivial) non loop torsor is for $G = \operatorname{PGL}_2$ and n = 2. In this case $H^1((\mathbb{G}_m)^2, \operatorname{PGL}_2)$ classifies quaternion Azumaya algebras over the Laurent polynomial ring $R = k[t_1^{\pm 1}, t_2^{\pm 1}]$.
- ightharpoonup The example is explicit. We consider first the loop object \mathscr{Q} defined by the presentation

$$T_1^2 = t_1, \ T_2^2 = t_2, \ T_1T_2 + T_2T_1 = 0.$$

It is an R-quaternion algebra arising from the map

$$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} o \mathrm{PGL}_2(k)$$
 applying $(1,0)$ on $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ and

$$(0,1)$$
 on $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

Counterexample, II

The R-quaternion algebra \mathcal{Q} is defined by

$$T_1^2 = t_1, \ T_2^2 = t_2, \ T_1T_2 + T_2T_1 = 0.$$

- The idea (due to Ojanguren-Sridharan) is to take $\mathcal{Q}' = \operatorname{End}_{\mathcal{Q}}(\mathcal{L})$ for a non-free invertible right \mathcal{Q} -module \mathcal{L} .
- ightharpoonup We define $\mathcal L$ as the kernel of the *split* map of right $\mathscr Q$ -modules

$$\Phi: \mathscr{Q}^2 \to \mathscr{Q}, \ (p,q) \mapsto (1+T_1)p - (1+T_2)q.$$

► It works because

$$\Phi(1+T_2,1+T_1)=(1+T_1)(1+T_2)-(1+T_2)(1+T_1)$$

- $= T_1T_2 T_2T_1 = 2T_1T_2 \in \mathscr{Q}^{\times}.$
- We have $\mathcal{L} \oplus \mathscr{Q} \xrightarrow{\sim} \mathscr{Q}^2$ and by computations, we can show that \mathcal{L} is not free.

Loop brothers

- Since invertible modules are locally free, the counterexample coincides with a loop torsor locally for the Zariski topology. This is a general phenomenon.
- ▶ **Theorem** (CGP, 2017) Assume that G is reductive. Let E be a G-torsor over $(\mathbb{G}_m)^n$. Then E admits a unique loop brother E_0 , that is, a loop G-torsor E_0 such that E and E_0 coincide locally for the Zariski topology.
- ▶ Before that we conjectured that $E \cong E_0$ under an additional assumption of reductibility.
- Let E be a G-torsor over $(\mathbb{G}_m)^n$ and consider its twisted associated group scheme EG over $(\mathbb{G}_m)^n$ so gives rise to an algebraic group H(E) over $k(t_1,...,t_n)$.
- ▶ Conjecture. Assume that G is semisimple and an almost simple, and that H(E) carries a proper parabolic subgroup. Then E is a loop G-torsor.

Stavrova's theorem.

- ▶ **CGP Conjecture.** Assume that DG is almost simple, and that the algebraic group H(E) carries a proper parabolic subgroup. Then E is a loop G-torsor.
- ► A. Stavrova has proven the conjecture in 2019.
- This uses crucially subgroups of $G(k[t_1^{\pm 1}, \dots, t_n^{\pm 1}])$ generated by unipotent elements and a trick called *doubling variables*.

Finally Arithmetic

Let \mathbb{Z}_p be the ring of p-adic integers for a prime p; it can be replace by any complete DVR e.g. k[[t]] for k a field.

- Torsors are of interest over rings as $\mathbb{Z}_p[[t]][\frac{1}{p},\frac{1}{t}]$ which have some similarity with $k[t_1^{\pm 1},t_2^{\pm 2}]$.
- The ring $\mathbb{Z}_p[[t]]$ is a regular complete local ring whose fraction field is an overfield of the field $\mathbb{Q}_p(t)$. This field is called semi-global and the arithmetic of semi-global fields is a very active area (Harbater, Parimala,....).
- ► The similarity is due to the shape of covers which relates to the Abhyankar's lemma.

Abhyankar's lemma

The setting is the following. Let A be a complete (or henselian) local ring of dimension $r \geq 1$, f_1, \ldots, f_r a family of regular parameters.

- We denote by κ its residue field and by p its characteristic exponent.
- We consider the divisor $D = \operatorname{div}(f_1) + \cdots + \operatorname{div}(f_r)$, the localization $A_D = A[f_1^{-1}, \dots, f_r^{-1}]$ and the fraction field $K = \operatorname{Frac}(A)$.
- Example 1 : $A = k[[x_1, ..., x_r]], f_i = x_i,$ $A_D = k[[x_1, ..., x_r]][x_1^{-1}, ..., x_r^{-1}].$ In this case $\kappa = k$.
- ► Example 2 : $A = \mathbb{Z}_p[[x_1, ..., x_{r-1}]]$, $f_1 = p$, $f_i = x_i$ for i = 1, ..., r-1 and A_D is a subring of $\mathbb{Q}_p[[x_1, ..., x_{r-1}]][x_1^{-1}, ..., x_{r-1}^{-1}]$. In this case $\kappa = \mathbb{F}_p$.

Abhyankar's lemma II

The ring A is a complete (or henselian) local ring, A_D a localization with respect with a sequence of regular parameters.

- The Abyankhar's lemma is about a special kind of Galois covers of $\operatorname{Spec}(A_D)$ which are called tame (or tamely ramified). This is a technical condition which excludes for example to take $\mathbb{Z}_p[\sqrt[p]{p}]$; if the Galois group is of prime to p order, the tame condition is always satisfied.
- ▶ **Abyankhar's lemma.** Let $Y o Spec(A_D)$ be a Galois tame cover. Then it is dominated by a Galois tame cover of the shape

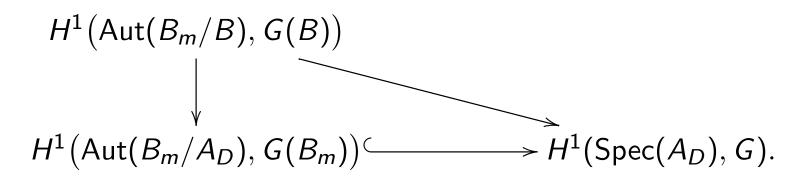
$$B_m = B[f_1^{-m}, \dots, f_r^{-m}]$$

where $Spec(B) \rightarrow Spec(A)$ is a Galois cover and m is a positive prime to p integer such that $\mu_m(B)$ is of cardinal m.

- ▶ The Galois group is $(\mu_m(B))^r \rtimes \operatorname{Aut}(B/A)$.
- ▶ If κ is algebraically closed, we have A = B so that the Galois theory is the same than for Laurent polynomial rings.

Torsors over $Spec(A_D)$

- Parimala's insight was that the results on torsors for Laurent polynomials should have suitable extensions for A_D .
- Let G be an affine A—group scheme (e.g. the orthogonal group of some quadratic A—form).
- ▶ A G-torsor E over $Spec(A_D)$ is tame loop if its class is the image of the composite



for some $B_m = B[f_1^{-m}, \dots, f_r^{-m}]$ as above.

It means that it arises from a Galois cocycle of a very nice shape (in particular with no denominators) with respect to an Abhyankar's cover.

The injectivity result

- We denote by $H^1_{tame}(A_D, G) \subset H^1(A_D, G)$ the subset consisting of classes of tame loop torsors over $Spec(A_D)$.
- ► I will give an example of a generalized result to the Abyankhar's setting and an example of an open question.
- We denote by $\widehat{X} \to X = \operatorname{Spec}(A)$ the blow-up of $\operatorname{Spec}(A)$ as its closed point. The exceptional divisor defines a valuation v on the fraction field K of A. We denote by K_v its completion.
- Example 1 : For $A = k[[x_1, \ldots, x_r]]$ and $r \ge 2$, then $K_v \cong k(\frac{x_1}{x_r}, \ldots, \frac{x_{r-1}}{x_r})((x_r))$.
- Example 2 : $A = \mathbb{Z}_p[[x_1, \dots, x_{r-1}]]$ K_v is a complete field for a discrete valuation of unequal characteristic and of residue field isomorphic to $\mathbb{F}_p(t_1, \dots, t_{r-1})$.
- ▶ **Theorem** (G., 2024). Assume that G is a reductive A—group scheme. The map

$$H^1_{loop}(A_D,G)\subset H^1(A_D,G) o H^1(K_V,G)$$

is injective

The injectivity result, II

We assume that G is a reductive A-group scheme.

► Theorem (G., 2024). The map

$$H^1_{loop}(A_D,G) \subset H^1(A_D,G) o H^1(K_V,G)$$

is injective.

- The interest is that $H^1(K_v, G)$ is a Galois cohomology set which is well-understood by means of the Bruhat-Tits' theory.
- ▶ In Example 1, it says for G/k reductive that the map

$$H_{loop}^{1}(k[[x_{1},\ldots,x_{r}]][x_{1}^{-1},\ldots,x_{r}^{-1}],G) \to H^{1}(k(\frac{x_{1}}{x_{r}},\ldots,\frac{x_{r-1}}{x_{r}})((x_{r})),G)$$

is injective.

► This is quite close of the previous injectivity result

$$H^1_{loop}(k[x_1^{\pm 1},\ldots,x_r^{\pm 1}],G)\to H^1(k((x_1))\ldots((x_r)),G).$$

The last map is bijective but it is not intrinsecal.

Open questions

We come back to the case of A_D and of a reductive A-group scheme G.

- Let E be a G-torsor over $Spec(A_D)$ which is split by an Abhyankar's cover.
- ▶ **Question 1.** Does *E* admits a tame loop brother?
- ▶ That is, does it exists a tame loop G-torsor E_0 such that E and E_0 coincide locally for the Zariski topology?
- ► Good news are that unicity follows from the injectivity theorem.
- ▶ Question 2. Under some reducibility condition, is E a tame loop G—torsor?