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Principal bundles in Topology

I Let X be a topological space and let G be a topological
group. A G -bundle Y over X is a topological space Y
equipped with a continous right action of G together with a
continous map f : Y → X which is G -invariant and such that
X admits an open cover (Ui )i∈I and trivializations (which are
G -equivariant)

φi : Ui × G
∼−→ Y ×X Ui = f −1(Ui ).

I It follows that each

φ−1
i ◦ φj : (Ui ∩ Uj)×X G → (Ui ∩ Uj)×X G

is the left translation by a continuius function
gi ,j : Ui ∩ Uj → G . Then (gi ,j) is the cocycle associated with
the trivializations.

I A G -bundle is trivial if it is G -isomorphic to X × G ,
equivalently the map f : Y → X admits a continous section.



Vector bundles

I If G = GLn(R), a principal G -bundle over X is the same
thing than a real vector bundle over X . In one way we
associate to a GLn(R)-bundle Y the contracted product

Y ∧GLn(R) Rn = (Y × Rn)/GLn(R).



Loop bundles

I Let Γ be a discrete group and let p : Y → X be a principal
homogenous space for the group Γ.

I Given a homomorphism u : Γ→ G , we can form
u∗(Y ) = Y ∧Γ G over X (where Γ acts on the right on Y and
on the left on G through u).

I Then u∗(Y ) is a G -torsor and we say it a loop torsor.

I When X is connected, a special case is the construction of
vector bundles over X from linear representations of the
fundamental group π1(X , x).

I For example, the Moebius strip over the circle S1 can be

constructed with the 2-cover p : S1 ×2−−→ S1 and the map
Z/2Z ↪→ R×.



Isotrivial bundles

I For the G -bundle u∗(Y ) = Y ∧Γ G , the map Y → Y × G ,
y 7→ (y , 1G ), induces a commutative diagram

Y //

p

))

u∗(Y ) = Y ∧Γ G

��
X

I In other words the pull-back u∗(Y )×X Y over Y is a trivial
G -bundle.

I We say that a principal G -bundle E → X is isotrivial if there
exists a covering map q : X ′ → X such that the pull-back
q∗(E ) is a trivial G -bundle over X ′.

I This terminology comes from Grothendieck, another one is
Virtually trivial bundle.

I Isotriviality is then a necessary condition for E to arise from
some loop construction. What about the converse ?



Milnor’s example

It seems that the simplest example of isotrivial principal G -bundle
not arising from the loop construction is that of Milnor (1958).

I Let M be the compact oriented surface of genus g ≥ 1. Its
simply connected cover M̃ is C of the Poincaré half plane, so
it is contractible.

I Let G be a connected Lie group and let

1→ π1(G )→ G̃ → G → 1

be the exact sequence of Lie groups arising from the simply
connected cover of G .

I It induces a bijection

H1(M,G )
∼−→ H2(M, π1(G ))

where H1(M,G ) stands for the set of isomorphism classes of
principal G -bundles over M.

I We have

H2(M, π1(G ))
∼−→ Extab(H1(M,Z), π1(G ))⊕Hom

(
H2(M,Z), π1(G )

)
I Since H1(M) = Z2g and H2(M) = Z we have

H1(M,G )
∼−→ π1(G ).



Milnor’s example, II

I It induces a bijection

H1(M,G )
∼−→ H2(M, π1(G )) = π1(G ).

I We take G = GL2(R)+ so that π1(G ) = Z and

H1(M,G ) = Z.

I Milnor has shown that loop principal G -bundles gives rise to
positive indices.

I Thus the class −1 ∈ Z defines a principal G–bundle over M
which does not arise from the loop construction.



Torsors in Algebraic Geometry

Let k be an algebraically closed field of characteristic zero (e.g. C).

I Torsor is the name of principal bundle in Algebraic Geometry,
this generalization is due to Grothendieck and Serre in 1958.

I It went together with the notion of étale morphisms, that is,
of smooth morphisms of algebraic varieties of relative
dimension zero. An étale cover of an algebraic variety X is a
finite collection of étale maps f1 : U1 → X , . . . , fn : Un → X
such that f1(U1) ∪ · · · ∪ fn(Un) = X .

I Let X be a k-variety and let G be a linear algebraic group. A
G -torsor Y over X is an algebraic k-variety Y equipped with
a right action of G together with map f : Y → X which is
G -invariant and such that X admits an étale cover (Ui )i∈I
and trivializations (which are G -equivariant)

φi : Ui × G
∼−→ Y ×X Ui .



Torsors in Algebraic Geometry,II

I In the case of GLn, a GLn–torsor is the same thing than an
algebraic vector bundle of rank n. In that case, Zariski
topology is enough.

I We consider the rank one torus Gm,k = GL1 = Spec(k[t±1]).
The map Gm,k → Gm,k , x 7→ x2 is a Z/2Z–torsor. It is not
locally split for the Zariski topology.

I If Γ is a finite group, it is also an algebraic k–group. In that
case Γ-torsors Y → X with X ,Y connected are nothing but
Galois covers of Grothendieck theory of fundamental group in
algebraic geometry.



Loop torsors in Algebraic Geometry

I Given a Γ-torsor p : Y → X and a homomorphism u : Γ→ G ,
we can associate the G -torsor u∗(Y ) = Y ∧Γ G by taking the
quotient in the algebraic sense (that is using flat sheaves and
descent theory).

I This is a loop torsor and as in the topological case, the base
change u∗(Y )×X Y is a trivial G–torsor.

I We say that a G -torsor E over X is isotrivial if there exists a
finite étale cover X ′ → X (right notion of covering map in
Algebraic Geometry) such that E ×X X ′ is a trivial G -torsor.

I Loop torsors are then isotrivial but what about the converse ?



Loop/Isotrivial I

I We denote by H1(X ,G ) the pointed set of isomorphism
classes of G–torsors over X .

I Example : G = Gm. We have H1(X ,Gm) = Pic(X ). The
isotrivial torsors correspond to the torsion elements of Pic(X )
and they are loop torsors by using the Kummer exact

sequence 1→ µn → Gm
×n−−→ Gm → 1.

I We assume that X is a smooth connected projective variety.
In this case, isotrivial G -torsors (and especially isotrivial vector
bundles) have been studied by M. Nori (1976). Also there are
important classification results by M. Brion in the case of
abelian varieties.

I In this case, isotrivial G -torsors are indeed loop torsors. Let E
be a G -torsor over X which is trivialized by a finite étale cover
Y . Without loss of generality, we can assume that Y is
connected and Grothendieck’s theory tells us that Y → X is
dominated by a Galois cover Z → X of finite group Γ.



Loop/Isotrivial II

I Let E be a G -torsor over X which is trivialized by a finite
étale cover Y . We have seen that we can assume Z connected
and to be a Galois cover of X of group Γ.

I We appeal to the exact sequence of pointed sets

1→ H1(Γ,G (Z ))→ H1(X ,G )→ H1(Z ,G )

where H1(Γ,G (Z )) stands for the set of non-abelian group
cohomology defined by 1-cocycles.

I Since Z is projective, we have G (k) = G (Z ) so that
H1(Γ,G (Z )) = Hom(Γ,G (k))/G (k).

I The class of E gives rise then to some u : Γ→ G and it is
routine to check that u∗(Z ) ∼= E .



Affine case

I In the proceding reasonning, there was no need of the
projective assumption until the analysis of the sequence

1→ H1(Γ,G (Z ))→ H1(X ,G )→ H1(Z ,G ).

I When Z is affine, there is no reason a priori why the map
H1(Γ,G (k))→ H1(Γ,G (Z )) should be onto.

I With my collegues Chernousov and Pianzola, we were
interested in the case of the torus

(Gm)n = Spec(k[t±1
1 , . . . , t±1

n ]).

I A first result is that all G–torsors over (Gm)n are isotrivial,
this uses the strong vanishing fact H1(An

k ,G ) = 1
(Quillen-Suslin, Raghunathan).



A counterexample

I We know the algebraic fundamental group of (Gm)n, it is Ẑn

and a basis of finite covers is (Gm)n
×d−−→ (Gm)n is by taking n

copies of the Kummer cover of degree d .

I If n = 1 and G is connected, all torsors are loop (2012).

I The simplest example of (isotrivial) non loop torsor is for
G = PGL2 and n = 2. In this case H1((Gm)2,PGL2)
classifies quaternion Azumaya algebras over the Laurent
polynomial ring R = k[t±1

1 , t±1
2 ].

I The example is explicit. We consider first the loop object Q
defined by the presentation

T 2
1 = t1, T

2
2 = t2, , T1T2 + T2T1 = 0.

It is an R-quaternion algebra arising from the map

Z/2Z× Z/2Z→ PGL2(k) applying (1, 0) on

(
1 0
0 −1

)
and

(0, 1) on

(
0 1
1 0

)
.



Counterexample, II
The R-quaternion algebra Q is defined by

T 2
1 = t1, T

2
2 = t2, , T1T2 + T2T1 = 0.

I The idea (due to Ojanguren-Sridharan) is to take
Q′ = EndQ(L) for a non-free invertible right Q-module L.

I We define L as the kernel of the split map of right Q-modules

Φ : Q2 → Q, (p, q) 7→ (1 + T1)p − (1 + T2)q.

I It works because

Φ(1 + T2, 1 + T1) = (1 + T1)(1 + T2)− (1 + T2)(1 + T1)

I
= T1T2 − T2T1 = 2T1T2 ∈ Q×.

I We have L ⊕Q
∼−→ Q2 and by computations, we can show

that L is not free.



Loop brothers

I Since invertible modules are locally free, the counterexample
coincides with a loop torsor locally for the Zariski topology.
This is a general phenomenon.

I Theorem (CGP, 2017) Assume that G is reductive. Let E be
a G -torsor over (Gm)n. Then E admits a unique loop brother
E0, that is, a loop G -torsor E0 such that E and E0 coincide
locally for the Zariski topology.

I Before that we conjectured that E ∼= E0 under an additional
assumption of reductibility.

I Let E be a G -torsor over (Gm)n and consider its twisted
associated group scheme EG over (Gm)n so gives rise to an
algebraic group H(E ) over k(t1, ..., tn).

I Conjecture. Assume that G is semisimple and an almost
simple, and that H(E ) carries a proper parabolic subgroup.
Then E is a loop G -torsor.



Stavrova’s theorem.

I CGP Conjecture. Assume that DG is almost simple, and
that the algebraic group H(E ) carries a proper parabolic
subgroup. Then E is a loop G -torsor.

I A. Stavrova has proven the conjecture in 2019.

I This uses crucially subgroups of G (k[t±1
1 , . . . , t±1

n ]) generated
by unipotent elements and a trick called doubling variables.



Finally Arithmetic

Let Zp be the ring of p-adic integers for a prime p ; it can be
replace by any complete DVR e.g. k[[t]] for k a field.

I Torsors are of interest over rings as Zp[[t]][ 1
p ,

1
t ] which have

some similarity with k[t±1
1 , t±2

2 ].

I The ring Zp[[t]] is a regular complete local ring whose fraction
field is an overfield of the field Qp(t). This field is called
semi-global and the arithmetic of semi-global fields is a very
active area (Harbater, Parimala,....).

I The similarity is due to the shape of covers which relates to
the Abhyankar’s lemma.



Abhyankar’s lemma

The setting is the following. Let A be a complete (or henselian)
local ring of dimension r ≥ 1, f1, . . . , fr a family of regular
parameters.

I We denote by κ its residue field and by p its characteristic
exponent.

I We consider the divisor D = div(f1) + · · ·+ div(fr ), the
localization AD = A[f −1

1 , . . . , f −1
r ] and the fraction field

K = Frac(A).

I Example 1 : A = k[[x1, . . . , xr ]], fi = xi ,
AD = k[[x1, . . . , xr ]][x−1

1 , . . . , x−1
r ]. In this case κ = k .

I Example 2 : A = Zp[[x1, . . . , xr−1]], f1 = p, fi = xi for
i = 1, . . . , r − 1 and AD is a subring of
Qp[[x1, . . . , xr−1]][x−1

1 , . . . , x−1
r−1]. In this case κ = Fp.



Abhyankar’s lemma II
The ring A is a complete (or henselian) local ring, AD a
localization with respect with a sequence of regular parameters.

I The Abyankhar’s lemma is about a special kind of Galois
covers of Spec(AD) which are called tame (or tamely
ramified). This is a technical condition which excludes for
example to take Zp[ p

√
p] ; if the Galois group is of prime to p

order, the tame condition is always satisfied.

I Abyankhar’s lemma. Let Y → Spec(AD) be a Galois tame
cover. Then it is dominated by a Galois tame cover of the
shape

Bm = B[f −m1 , . . . , f −mr ]

where Spec(B)→ Spec(A) is a Galois cover and m is a
positive prime to p integer such that µm(B) is of cardinal m.

I The Galois group is (µm(B))r o Aut(B/A).

I If κ is algebraically closed, we have A = B so that the Galois
theory is the same than for Laurent polynomial rings.



Torsors over Spec(AD)

I Parimala’s insight was that the results on torsors for Laurent
polynomials should have suitable extensions for AD .

I Let G be an affine A–group scheme (e.g. the orthogonal
group of some quadratic A–form).

I A G -torsor E over Spec(AD) is tame loop if its class is the
image of the composite

H1
(
Aut(Bm/B),G (B)

)
�� ++

H1
(
Aut(Bm/AD),G (Bm)

) � � // H1(Spec(AD),G ).

for some Bm = B[f −m1 , . . . , f −mr ] as above.

I It means that it arises from a Galois cocycle of a very nice
shape (in particular with no denominators) with respect to an
Abhyankar’s cover.



The injectivity result
I We denote by H1

tame
loop

(AD ,G ) ⊂ H1(AD ,G ) the subset

consisting of classes of tame loop torsors over Spec(AD).

I I will give an example of a generalized result to the
Abyankhar’s setting and an example of an open question.

I We denote by X̂ → X = Spec(A) the blow-up of Spec(A) as
its closed point. The exceptional divisor defines a valuation v
on the fraction field K of A. We denote by Kv its completion.

I Example 1 : For A = k[[x1, . . . , xr ]] and r ≥ 2, then
Kv
∼= k

(
x1
xr
, . . . , xr−1

xr

)
((xr )).

I Example 2 : A = Zp[[x1, . . . , xr−1]] Kv is a complete field for
a discrete valuation of unequal characteristic and of residue
field isomorphic to Fp(t1, . . . , tr−1).

I Theorem (G., 2024). Assume that G is a reductive A–group
scheme. The map

H1
tame
loop

(AD ,G ) ⊂ H1(AD ,G )→ H1(Kv ,G )

is injective.



The injectivity result, II
We assume that G is a reductive A-group scheme.

I Theorem (G., 2024). The map

H1
tame
loop

(AD ,G ) ⊂ H1(AD ,G )→ H1(Kv ,G )

is injective.

I The interest is that H1(Kv ,G ) is a Galois cohomology set
which is well-understood by means of the Bruhat-Tits’ theory.

I In Example 1, it says for G/k reductive that the map

H1
tame
loop

(
k[[x1, . . . , xr ]][x−1

1 , . . . , x−1
r ],G

)
→ H1

(
k(

x1

xr
, . . . ,

xr−1

xr
)((xr )),G

)
is injective.

I This is quite close of the previous injectivity result

H1
loop

(
k[x±1

1 , . . . , x±1
r ],G

)
→ H1

(
k((x1)) . . . ((xr )),G

)
.

I The last map is bijective but it is not intrinsecal.



Open questions

We come back to the case of AD and of a reductive A-group
scheme G .

I Let E be a G -torsor over Spec(AD) which is split by an
Abhyankar’s cover.

I Question 1. Does E admits a tame loop brother ?

I That is, does it exists a tame loop G -torsor E0 such that E
and E0 coincide locally for the Zariski topology ?

I Good news are that unicity follows from the injectivity
theorem.

I Question 2. Under some reducibility condition, is E a tame
loop G–torsor ?


