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Principal bundles in Topology

» Let X be a topological space and let G be a topological
group. A G-bundle Y over X is a topological space Y
equipped with a continous right action of G together with a
continous map f : Y — X which is G-invariant and such that
X admits an open cover (U;);c; and trivializations (which are

G-equivariant)

¢,':U,'><G:>Y><X U,':f_l(U,').

» |t follows that each
gbi_lo¢j ; (U,'ﬂUj) X x G%(UiﬂUj) Xx G

Is the left translation by a continuius function
gij: UiNnU; — G. Then (g ;) is the cocycle associated with

the trivializations.

» A G-bundle is trivial if it is G-isomorphic to X x G,
equivalently the map f : Y — X admits a continous section.



Vector bundles

» If G = GL,(R), a principal G-bundle over X is the same

thing than a real vector bundle over X. In one way we
associate to a GL,(R)-bundle Y the contracted product

Y AGEB) R — (Y x R")/GL(R).



Loop bundles

» Let [ be a discrete group and let p: Y — X be a principal
homogenous space for the group I.

» Given a homomorphism u : [ — G, we can form
u.(Y) =Y Al G over X (where I' acts on the right on Y and
on the left on G through u).

» Then u,(Y) is a G-torsor and we say it a loop torsor.

» When X is connected, a special case is the construction of
vector bundles over X from linear representations of the
fundamental group w1 (X, x).

» For example, the Moebius strip over the circle S can be

constructed with the 2-cover p : St %2, 51 and the map
7./27 — R*.



Isotrivial bundles

» For the G-bundle u,(Y) = YA'G, themap Y — Y x G,
y — (v, 1), induces a commutative diagram

Y u(Y)=Y A G
\ \L
X
» In other words the pull-back u,(Y) xx Y over Y is a trivial
G-bundle.

» We say that a principal G-bundle E — X is isotrivial if there

exists a covering map g : X’ — X such that the pull-back
g*(E) is a trivial G-bundle over X'.

» This terminology comes from Grothendieck, another one is
Virtually trivial bundle.

» Isotriviality is then a necessary condition for E to arise from
some loop construction. What about the converse ?



Milnor's example

It seems that the simplest example of isotrivial principal G-bundle
not arising from the loop construction is that of Milnor (1958).

> Let M be the compact oriented surface of genus g > 1. Its
simply connected cover M is C of the Poincaré half plane, so
it is contractible.

» Let G be a connected Lie group and let
15 7m(G) > G— G —1

be the exact sequence of Lie groups arising from the simply
connected cover of G.

» It induces a bijection
HY(M, G) = H*(M,m1(G))
where H1(M, G) stands for the set of isomorphism classes of
principal G-bundles over M.
» We have

H2(M, 71(G)) = Extap(Hi(M, Z), 71(G))@Hom (Ha(M, Z), 71(G))



Milnor's example, Il

» It induces a bijection
HY(M, G) = H?(M,11(G)) = m1(G).
> We take G = GL,(R)™ so that m(G) = Z and
HY(M, G) = Z.

» Milnor has shown that loop principal G-bundles gives rise to
positive indices.

» Thus the class —1 € Z defines a principal G-bundle over M
which does not arise from the loop construction.



Torsors in Algebraic Geometry

Let k be an algebraically closed field of characteristic zero (e.g. C).

» Torsor is the name of principal bundle in Algebraic Geometry,
this generalization is due to Grothendieck and Serre in 1958.

» [t went together with the notion of étale morphisms, that is,
of smooth morphisms of algebraic varieties of relative
dimension zero. An étale cover of an algebraic variety X is a
finite collection of étale maps 1 : U1 — X, ..., fh: Uy, = X
such that fi(U;)U---Uf(U,) = X.

» Let X be a k-variety and let G be a linear algebraic group. A
G-torsor Y over X is an algebraic k-variety Y equipped with
a right action of G together with map f : Y — X which is
G-invariant and such that X admits an étale cover (U;)i¢/
and trivializations (which are G-equivariant)

qﬁ,':U,'XG%YXxU,'.



Torsors in Algebraic Geometry,l|

» In the case of GL,, a GL,—torsor is the same thing than an
algebraic vector bundle of rank n. In that case, Zariski
topology is enough.

> We consider the rank one torus G, x = GL; = Spec(k[t*!]).
The map Gk — Gk, x — x? is a Z/2Z~torsor. It is not
locally split for the Zariski topology.

» If [ is a finite group, it is also an algebraic k—group. In that
case [-torsors Y — X with X, Y connected are nothing but
Galois covers of Grothendieck theory of fundamental group in
algebraic geometry.



Loop torsors in Algebraic Geometry

» Given a [-torsor p: Y — X and a homomorphism v : I — G,
we can associate the G-torsor u,(Y) = Y Al G by taking the
quotient in the algebraic sense (that is using flat sheaves and
descent theory).

» This is a loop torsor and as in the topological case, the base
change u.(Y) Xx Y is a trivial G—torsor.

» We say that a G-torsor E over X is isotrivial if there exists a
finite étale cover X’ — X (right notion of covering map in
Algebraic Geometry) such that E xx X’ is a trivial G-torsor.

» Loop torsors are then isotrivial but what about the converse ?



Loop/Isotrivial |

» We denote by H1(X, G) the pointed set of isomorphism

>

>

classes of G—torsors over X.

Example : G = G,,,. We have H}(X, G,,) = Pic(X). The
isotrivial torsors correspond to the torsion elements of Pic(X)
and they are loop torsors by using the Kummer exact

sequence 1 — up, — Gy, RaliN Gm — 1.

We assume that X is a smooth connected projective variety.
In this case, isotrivial G-torsors (and especially isotrivial vector
bundles) have been studied by M. Nori (1976). Also there are
important classification results by M. Brion in the case of
abelian varieties.

In this case, isotrivial G-torsors are indeed loop torsors. Let E
be a G-torsor over X which is trivialized by a finite étale cover
Y. Without loss of generality, we can assume that Y is
connected and Grothendieck’s theory tells us that Y — X is
dominated by a Galois cover Z — X of finite group I'.



Loop/Isotrivial I

» Let E be a G-torsor over X which is trivialized by a finite
étale cover Y. We have seen that we can assume Z connected
and to be a Galois cover of X of group I'.

» We appeal to the exact sequence of pointed sets
1— HY(T,G(2)) = HY(X, G) = HY(Z,G)

where H1(', G(Z)) stands for the set of non-abelian group
cohomology defined by 1-cocycles.

» Since Z is projective, we have G(k) = G(Z) so that
HY(T, G(Z)) = Hom(T, G(k))/G(k).

» The class of E gives rise then to some uv: I — G and it is
routine to check that u,(Z) = E.



Affine case

» In the proceding reasonning, there was no need of the
projective assumption until the analysis of the sequence

1 — HY(T,G(2)) — HY(X,G) — HY(Z,G).
» When Z is affine, there is no reason a priori why the map
HY(T, G(k)) — HY(TI', G(Z)) should be onto.

» With my collegues Chernousov and Pianzola, we were
interested in the case of the torus

(Gm)™ = Spec(k[ti, ..., £51)).

» A first result is that all G—torsors over (G,)" are isotrivial,
this uses the strong vanishing fact H*(A7, G) =1
(Quillen-Suslin, Raghunathan).



A counterexample

> We know the algebraic fundamental group of (G,)", it is Z"

and a basis of finite covers is (G,)" alN (Gm)™ is by taking n
copies of the Kummer cover of degree d.

» If n=1 and G is connected, all torsors are loop (2012).

» The simplest example of (isotrivial) non loop torsor is for
G = PGL, and n = 2. In this case H((G,)?, PGL,)

classifies quaternion Azumaya algebras over the Laurent

polynomial ring R = k[t;—Ll, t2i1].

» The example is explicit. We consider first the loop object 2
defined by the presentation

Ti=t, T =t,, 1iTo+ T2 Ty = 0.
It is an R-quaternion algebra arising from the map

7.)27. % 7./27. — PGLa(k) applying (1,0) on (1 °1> and

.
(0,1) on (2 é)



Counterexample, |l
The R-quaternion algebra 2 is defined by

Ti=t, Ts=ty,, TiTo+ ToT1 =0.

» The idea (due to Ojanguren-Sridharan) is to take
2" = Endg(L) for a non-free invertible right 2-module L.

» We define £ as the kernel of the split map of right 2-modules

» It works because

(D(]. + I7,1+ Tl) — (1 + Tl)(]. + Tg) — (]. + T2)(1 + Tl)

= T1T,—T>T1=2T11> € 2.

» We have £L & 2 = 22 and by computations, we can show
that £ is not free.



Loop brothers

» Since invertible modules are locally free, the counterexample
coincides with a loop torsor locally for the Zariski topology.
This is a general phenomenon.

» Theorem (CGP, 2017) Assume that G is reductive. Let E be
a G-torsor over (G,,)". Then E admits a unique loop brother
Eo, that is, a loop G-torsor Eg such that E and Eg coincide
locally for the Zariski topology.

» Before that we conjectured that E = Ey under an additional
assumption of reductibility.

» Let E be a G-torsor over (G,,)" and consider its twisted
associated group scheme £G over (G,,)" so gives rise to an
algebraic group H(E) over k(ti, ..., tp).

» Conjecture. Assume that G is semisimple and an almost
simple, and that H(E) carries a proper parabolic subgroup.
Then E is a loop G-torsor.



Stavrova’'s theorem.

» CGP Conjecture. Assume that DG is almost simple, and
that the algebraic group H(E) carries a proper parabolic
subgroup. Then E is a loop G-torsor.

» A. Stavrova has proven the conjecture in 2019.

> This uses crucially subgroups of G(k[t!, ..., tF]) generated
by unipotent elements and a trick called doubling variables.



Finally Arithmetic

Let Z, be the ring of p-adic integers for a prime p; it can be
replace by any complete DVR e.g. k|[[t]] for k a field.

» Torsors are of interest over rings as Zp[[t]][%, 1] which have

some similarity with k[t;", t572].

» The ring Zp|[[t]] is a regular complete local ring whose fraction
field is an overfield of the field Q,(t). This field is called
semi-global and the arithmetic of semi-global fields is a very
active area (Harbater, Parimala,....).

» The similarity is due to the shape of covers which relates to
the Abhyankar's lemma.



Abhyankar's lemma

The setting is the following. Let A be a complete (or henselian)
local ring of dimension r > 1, f1,...,f, a family of regular
parameters.

» \We denote by « its residue field and by p its characteristic
exponent.

» We consider the divisor D = div(fy) + - - - + div(f,), the
localization Ap = A[f;*,..., 1] and the fraction field
K = Frac(A).

» Example 1: A= k|[x1,...,x]], fi = x;,
Ap = k[[x1,...,x]][x; %, ..., x71]. In this case k = k.

» Example 2: A=Z,|[x1,...,x—1]], A =p, fi = x; for
i=1,...,r—1 and Ap is a subring of
Qullx1, - xe—1ll[xt, ..., x 4] In this case k = F,,.



Abhyankar's lemma ||

The ring A is a complete (or henselian) local ring, Ap a
localization with respect with a sequence of regular parameters.

» The Abyankhar's lemma is about a special kind of Galois
covers of Spec(Ap) which are called tame (or tamely
ramified). This is a technical condition which excludes for
example to take Z,[¢/p]; if the Galois group is of prime to p
order, the tame condition is always satisfied.

» Abyankhar’s lemma. Let Y — Spec(Ap) be a Galois tame
cover. Then it is dominated by a Galois tame cover of the
shape

Bm=B[f{", ..., "]

r

where Spec(B) — Spec(A) is a Galois cover and m is a
positive prime to p integer such that u,(B) is of cardinal m.

» The Galois group is (um(B))" x Aut(B/A).

» |f k is algebraically closed, we have A = B so that the Galois
theory is the same than for Laurent polynomial rings.



Torsors over Spec(Ap)

» Parimala’s insight was that the results on torsors for Laurent
polynomials should have suitable extensions for Ap.

» Let G be an affine A—group scheme (e.g. the orthogonal
group of some quadratic A-form).

» A G-torsor E over Spec(Ap) is tame loop if its class is the
iImage of the composite

H (Aut(Bn/B), G(B))

T

H (Aut(Bm/Ap), G(Bm))C H(Spec(Ap), G).

for some B, = B[f; ", ..., f,] as above.

» [t means that it arises from a Galois cocycle of a very nice
shape (in particular with no denominators) with respect to an
Abhyankar’s cover.



The Injectivity result

>

>

>

We denote by H.,..(Ap, G) C H(Ap, G) the subset

loop
consisting of classes of tame loop torsors over Spec(Ap).

| will give an example of a generalized result to the
Abyankhar's setting and an example of an open question.

We denote by X — X = Spec(A) the blow-up of Spec(A) as
its closed point. The exceptional divisor defines a valuation v
on the fraction field K of A. We denote by K|, its completion.

Example 1 : For A = k{[[x1,...,x/]] and r > 2, then
K, = k(... 22)((x)).
Example 2 : A = Zp|[[x1,...,x—1]] K, is a complete field for

a discrete valuation of unequal characteristic and of residue
field isomorphic to Fp(t1, ..., tr—1).

Theorem (G., 2024). Assume that G is a reductive A—group
scheme. The map

Hime(Ap, G) € HY(Ap, G) — HY(K,, G)
loop

1Ic iniar-tivin



The injectivity result, |l

We assume that G is a reductive A-group scheme.

» Theorem (G., 2024). The map
Hime(Ap, G) C H'(Ap, G) — H*(K,, G)

loop
IS Injective.

» The interest is that H(K,, G) is a Galois cohomology set
which is well-understood by means of the Bruhat-Tits' theory.

» In Example 1, it says for G/k reductive that the map

Xr—1

Hiame (k[[x1, - x g Y - 71, G) — Hl(k(%, LN (), 6)

loop r

IS Injective.
» This is quite close of the previous injectivity result

H,loop(k[xlil, L xEY, G) — H? (k((x1))---((x)), G).

» The last map is bijective but it is not intrinsecal.



Open questions

We come back to the case of Ap and of a reductive A-group
scheme G.

>

Let E be a G-torsor over Spec(Ap) which is split by an
Abhyankar’s cover.

Question 1. Does E admits a tame loop brother?

That is, does it exists a tame loop G-torsor Eg such that E
and Eg coincide locally for the Zariski topology ?

Good news are that unicity follows from the injectivity
theorem.

Question 2. Under some reducibility condition, is E a tame
loop G—torsor?



