Examples of Non-rational V arieties of A djoint G roups

Philippe Gille

Mathématiques, URA-CNRS 752, Bât. 425, Université de Paris-Sud, 91405, Orsay, France

Communicated by Michel Van den Bergh
R eceived September 18, 1996

Let k be a field of characteristic $\neq 2$ and k_{s} a separable closure of k. We say that an algebraic variety X / k is stably k-rational if there exist two affine spaces $\mathbb{A}_{k}^{m}, \mathbb{A}_{k}^{n}$ and a k-rational map $\mathbb{A}^{m} \times X \approx \mathbb{A}^{n}$. Merkurjev [9] gave a criterion of stable k-rationality for the adjoint classical groups with absolute rank ≤ 3, which covers the case of the variety $\operatorname{PSO}(q)$ for any quadratic form q / k of rank ≤ 6. This criterion gives examples of field k and quadratic form q of rank 6 with non-trivial signed discriminant such that the variety $\operatorname{PSO}(q)$ is not stably k-rational. The main result of this paper is the following:
Theorem. There exist a field k of characteristic 0 with cohomological dimension 3 and a quadratic form q / k with rank 8 and trivial signed discriminant such that the variety $\operatorname{PSO}(q)$ is not stably k-rational.
This is the first example of the quadratic form with trivial signed discriminant such that the variety $\operatorname{PSO}(q)$ is not stably k-rational and since [9], the 8 -dimension is minimal. This example is an adjoint group which is an inner form of the split adjoint group of type D_{4} [22] and it is the first example of an adjoint semisimple group which is an inner form and which is not a stably k-rational variety. In Section 3, we give another proof of the theorem with $\operatorname{cd}(k)=6$ which is more elementary because we don't use the Index Reduction Theory.
I thank J.-P. Tignol for answering my question about multiquadratic extensions (cf. Proposition 3) and the referee for pointing out a mistake in the first version of the paper.
Notations. We denote by $\mathbb{G}_{m}=\operatorname{Spec}(\mathbb{Z}[t, 1 / t]), \quad \mathbb{A}^{n}=\operatorname{Spec}\left(\mathbb{Z}\left[t_{1}\right.\right.$, $\left.\left.t_{2}, \ldots, t_{n}\right]\right)$ and for any scheme X, we denote by $\mathbb{G}_{m, X}=\mathbb{G}_{m} \times \times_{\text {Spec }(\mathbb{Z})} X$ and $\mathbb{A}_{X}^{n}=\mathbb{A}^{n} \times_{\text {Spec }(\mathbb{Z})} X$ the affine space of rank n on $X(n \in \mathbb{N})$. Let
$X^{\prime} \rightarrow X$ be a finite locally free morphism of schemes. We can write [4] the exact sequence of X-tori $1 \rightarrow R_{X^{\prime} / X}^{1} \mathbb{G}_{m} \rightarrow R_{X^{\prime} / X} \mathbb{G}_{m} \xrightarrow{N_{X^{\prime} / X}} \mathbb{G}_{m, X} \rightarrow 1$ where $R_{X^{\prime} / X} \mathbb{G}_{m}$ is the restriction from X^{\prime} to X of the X^{\prime}-torus $\mathbb{G}_{m, X^{\prime}}$.

Let X be a k-variety geometrically irreducible. We say that X is a k-rational variety if there exist an affine space \mathbb{A}_{k}^{n} and a k-birational map $X \approx \mathbb{A}_{k}^{n}$. We say that X is a stably rational k-variety if there exist two affine spaces $\mathbb{A}^{m}, \mathbb{A}^{n}$ and a k-birational map $\mathbb{A}^{m} \times X \approx \mathbb{A}^{n}$. One defines the norm group of X which is denoted $N_{X}(k)$ as the subgroup of k^{\times} generated by the $N_{L / k}\left(L^{\times}\right)$for any finite field extension L / k such that $X(L)$ is not empty.

If A / k is a central simple algebra, there exists a division algebra T / k and an integer r (Wedderburn's theorem) such that $A \underset{\rightarrow}{\sim} M_{r}(T)$ and the integer r and T are well defined. Then we denote $\operatorname{ind}_{k}(D)=$ $\sqrt{\operatorname{dim}_{k}(T)} \in \mathbb{Z}$ and $\operatorname{deg}(A)=\sqrt{\operatorname{dim}_{k}(A)} \in \mathbb{Z}$. If $A / k, B / k$ are two central simple algebras, we say that A and B are similar and we denote $A \sim B$ if there exist some integers m, n such that $M_{m}(A) \simeq M_{n}(B)$. If $a, b \in k^{\times}$, we denote by $(a, b)_{k}$ the standard quaternion algebra. We assume that all quadratic forms will be regular. If $q / k, q^{\prime} / k$ are two quadratic forms, we denote by $q \perp q^{\prime}$ their orthogonal sum, by $q \otimes q^{\prime}$ their tensor product, and by $\operatorname{rk}(q)$ the rank of q. We denote by $C(q)$ the Clifford algebra of q and by $C_{0}(q)$ the even Clifford algebra of q. We denote by $W(k)$ the Witt ring of the field k, by $I(k)$ the fundamental ideal generated by forms with even rank, and by disc ${ }_{ \pm}: I(k) \rightarrow k^{\times} / k^{\times 2}$ the morphism of signed discriminant. We will identify often a quadratic form q and its class $[q] \in W(k)$. If q is a k-quadratic form and E / k a field extension, we denote by q_{E} the quadratic form extended to E.

If $\left(a_{i}\right)_{=1, \ldots, n}$ is a family of elements k^{\times}, we denote by $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ the quadratic form $\sum_{i=1, \ldots, n} a_{i} X_{i}^{2}$ and by $\left\langle\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle\right\rangle$ the n-fold Pfister form $\left\langle 1, a_{1}\right\rangle \otimes\left\langle 1, a_{2}\right\rangle \otimes \cdots \otimes\left\langle 1, a_{n}\right\rangle$. We denote by $\mathbb{H}=\langle 1,-1\rangle$ the standard hyperbolic form of rank 2 .

We recall that a central simple algebra D / k is a k-biquaternionic algebra if D / k is isomorphic to an algebra $(a, b) \otimes_{k}(c, d)$ with $a, b, c, d \in$ k^{\times}[7]. We can associate to this isomorphism the Albert form $\langle a, b,-a b$, $-c,-d, c d\rangle$. Although this Albert form $\langle a, b,-a b,-c,-d, c d\rangle$ is not canonical, its similarity class is well defined and depends only on D. We said that a quadratic form ψ is an Albert form for D if ψ is similar to $\langle a, b,-a b,-c,-d, c d\rangle$. We recall that D is a division algebra iff the form $\langle a, b,-a b,-c,-d, c d\rangle$ is anisotropic, and that a k-form φ with rank 6 and a trivial signed discriminant is an A lbert form for some central simple algebra which is similar to $C(\varphi)$.

If q is a quadratic form with even rank, we denote by $\mathrm{SO}(q)$ (resp. PSO (q)) the special orthogonal group of q (resp. projective special orthog-
onal) and by $G(q)$ the group of similarity factors of q, i.e., $G(q)=\{\alpha \in$ $\left.k^{\times} \mid \alpha q \cong q\right\}$. It is well known that $G(\langle 1,-a\rangle)=N_{k(\sqrt{a}) / k}\left(k(\sqrt{a})^{\times}\right)$. If $a \in k^{\times}$, we will denote sometimes $N_{k}(a)=N_{k(\sqrt{a})}\left(k(\sqrt{a})^{\times}\right)$.

We denote by $\operatorname{cd}(k)$ the cohomological dimension of a field k [19] and by $u(k)$ the u-invariant of k, i.e., the supremum in $\mathbb{N} \cup\{\infty\}$ of the dimensions of anisotropic k-quadratic forms. If $P \subset k^{\times}$is a subset of k^{\times}, we denote by $\mathbb{Z}\langle P\rangle$ the subgroup of k^{\times}generated by P.

1. PRELIMINARIES

1.1. Norm Groups and R-Equivalence $[9,10]$

For any quadratic space (q, V) of even rank n, we denote by hyp (q) the subgroup of k^{\times}generated by the $N_{L / k}\left(L^{\times}\right)$for any finite field extension L / k such that q_{L} is hyperbolic. This condition can be written in another way. Indeed, let X_{q} be the variety of totally isotropic subspaces of V with dimension $n / 2$. It is known that X_{q} is a k-projective smooth variety which has a k-rational point iff $q=0 \in W(k)$, i.e., q is an hyperbolic form. Then we have $\operatorname{hyp}(q)=N_{X_{q}}(k)$. This invariant is connected with the study of R-equivalence on the group $\operatorname{PSO}(q)$. Recall the definition of R-equivalence.

Let G / k be a connected linear algebraic group. We recall that two rational points $g_{0}, g_{1} \in G(k)$ are directly R-equivalent if there exists $g(t) \in G(k(t))$ such that $g(0)=g_{0}$ and $g(1)=1$ and that the R-equivalence is the equivalence relation generated by this elementary relation. It is known [3] that the group $G(k) / R$ is trivial if the variety of the group G / k is stably k-rational. Merkurjev gave a formula which computes $G(k) / R$ for the adjoint classical groups. In the case of a group PSO (q), we have

$$
\operatorname{PSO}(q)(k) / R \xrightarrow{\sim} G(q) / \operatorname{hyp}(q) \cdot k^{\times 2} .
$$

M oreover, the invariant $G(k) / R$ (on suitable extensions of k) allows us to determine if an adjoint semisimple classical group with absolute rank ≤ 3 is (or is not) a stably k-rational variety. More precisely, in the case of PSO (q) with a quadratic form q of rank ≤ 6. M erkurjev's criterion is the following:

Theorem 1 [9]. Let q / k be a quadratic form with rank $2 m(m=2$ or 3) and signed discriminant $(d) \in k^{\times} / k^{\times 2}$.
(a) If $d \in k^{\times 2}$, the variety $\operatorname{PSO}(q)$ is k-rational and one has $G(q) / \operatorname{hyp}(q) \cdot k^{\times 2}=1$.
(b) If $d \notin k^{\times 2}$, we denote by $L=k(\sqrt{d})$ and $C_{0}(q)$ the even Clifford algebra of q which is a central simple algebra over L. One has the following alternative:
(i) If $\operatorname{ind}_{L}\left(C_{0}(q)\right)=1$ or 2 , then the variety $\operatorname{PSO}(q)$ is stably k-rational and $G(q) / h y p(q) \cdot k^{\times 2}=1$.
(ii) If $\operatorname{Ind}_{L}\left(C_{0}(q)\right)=4$, then there exists a field extension E / k such that $G\left(q_{E}\right) / \operatorname{hyp}\left(q_{E}\right) \cdot E^{\times 2} \neq 1$ and the variety $\mathrm{PSO}(q)$ is not stably k-rational.

Case (ii) can appear only if $\mathrm{rk}(q)=6$. The proof of the theorem uses in a crucial way the Index Reduction theory (cf. [11, 18, 21]).

Remark 1. If k is a field $(\operatorname{car}(k) \neq 2)$ with cohomological dimension 1, it is well known that any group $\operatorname{PSO}(q)$ is a quasi-split group and a k-rational variety. For illustrating case (ii) of the theorem, it is necessary to assume $\operatorname{cd}(k) \geq 2$. We will show that $\operatorname{cd}(k)=2$ is sufficient.

The construction by M erkurjev [12] for any integer $n(n \geq 2)$ of a field with u-invariants (cf. Notations) equal to $2 n$ from a division algebra D / k is functorial in k. M ore precisely, if D / k is isomorphic to $Q_{1} \otimes_{k} Q_{2} \cdots \otimes_{k}$ Q_{n-1} where the Q_{i} 's are quaternion algebras, one associates a field $F(k, D)$ with cohomological dimension 2 satisfying $\operatorname{ind}\left(D_{F(k, D)}\right)=2^{n-1}$ and $u(F(k, D))=2 n$. M oreover, if k^{\prime} / k is a field extension satisfying $\operatorname{ind}\left(D_{k^{\prime}}\right)=\operatorname{ind}\left(D_{k}\right)$, one has a natural embedding $F(k, D) \hookrightarrow F\left(k^{\prime}, D_{k^{\prime}}\right)$. Let us apply this remark. We fix a field k of characteristic zero, D / k a division algebra which is a tensor product of 2 quaternion algebras, and a proper quadratic field extension $k^{\prime}=k(\sqrt{d})$ satisfying ind $\left(D_{k}\right)=$ $\operatorname{ind}\left(D_{k^{\prime}}\right)=4$. For example, we can take $k=\mathbb{Q}\left(X_{1}, X_{2}, \ldots, X_{2 n-1}\right), Q_{i}=$ $\left(X_{2 i}, X_{2 i+1}\right)_{k}$ for $i=1, \ldots, n-1$ and $k^{\prime}=k\left(\sqrt{X_{1}}\right)$. Then we denote $F=F(k, D)$ and $F^{\prime}=F\left(k^{\prime}, D_{k^{\prime}}\right)$. One has a natural embedding $F \hookrightarrow F^{\prime}$ and since $\operatorname{ind}\left(D_{F^{\prime}}\right)=4$, one has ind $\left(D_{F(\sqrt{d})}\right)=4$. Denote $L=F(\sqrt{d})$. Let us fix an A lbert form ψ for D which represents -1 and let us define the k-form q with rank 6 and signed discriminant d by $\langle 1,-d\rangle \perp \psi=q \perp \mathbb{H}$. Then $C_{0}(q)_{L} \sim D_{L}, \operatorname{cd}(F)=2$, and q_{F} is an example of the quadratic form of case (ii) such that the variety $\operatorname{PSO}(q)$ is not stably F-rational.

1.2. Norm Group of a Family of Quadratic Forms

For any family of quadratic forms $\left(q_{i}\right)_{i=1, \ldots, m}$ with even rank, we denote by hyp $\left(q_{1}, q_{2}, \ldots, q_{m}\right)$ the subgroup of k^{\times}generated by the $N_{L / k}\left(L^{\times}\right)$ such that the forms $q_{i, L}$ are hyperbolic $(i=1, \ldots, m)$. Let X_{i} be the variety of totally isotropic subspaces of q_{i} with dimension $\operatorname{dim}\left(q_{i}\right) / 2$. Then
by definition, we have

$$
\operatorname{hyp}\left(q_{1}, q_{2}, \ldots, q_{m}\right)=N_{X_{1} \times X_{2} \cdots \times X_{m}}(k) \subset k^{\times} .
$$

Lemma 1. Let $\left(q_{i} / k\right)_{i=1, \ldots, m}$ be a family of quadratic forms with even rank and q / k a quadratic form with even rank.
(a) $G(q \perp \mathbb{H})=G(q)$.
(a') $\operatorname{hyp}\left(q_{1}, q_{2}, \ldots, q_{m}, q \perp \mathbb{H}\right)=\operatorname{hyp}\left(q_{1}, q_{2}, \ldots, q_{m}, q\right)$.
(b) $\operatorname{hyp}\left(q_{1}, q_{2}, \ldots, q_{m}\right) \subset \bigcap_{i=1, \ldots, m} \operatorname{hyp}\left(q_{i}\right)$.
(c) If L / k is a finite field extension, one has

$$
N_{L / k}\left(\operatorname{hyp}\left(q_{1, L}, q_{2, L}, \ldots, q_{m, L}\right)\right) \subset \operatorname{hyp}\left(q_{1}, q_{2}, \ldots, q_{m}\right) .
$$

(d) Let L / k be a finite splitting field extension for the forms $\left(q_{i}\right)_{i=1, \ldots, m}$. Then

$$
N_{L / k}\left(\operatorname{hyp}\left(q_{L}\right)\right) \subset \operatorname{hyp}\left(q_{1}, q_{2}, \ldots, q_{m}, q\right)
$$

(e) $($ respectively $[5,9])$. Denote $(d)=\operatorname{disc}_{ \pm}(q) \in k^{\times} / k^{\times 2}$. Then

$$
G(q)=G(\langle 1,-d\rangle) \cap G(q \perp\langle 1,-d\rangle)
$$

and

$$
\begin{aligned}
\operatorname{hyp} & \left(q_{1}, q_{2}, \ldots, q_{m}, q\right) \\
& =\operatorname{hyp}\left(q_{1}, q_{2}, \ldots, q_{m},(1,-d), q \perp\langle 1,-d\rangle\right) \\
& =N_{k(\sqrt{d}) / k}\left(\operatorname{hyp}\left(q_{1, k(\sqrt{d})}, q_{2, k(\sqrt{d})}, \ldots, q_{m, k(\sqrt{d})}, q_{k(\sqrt{d})}\right)\right) .
\end{aligned}
$$

(f) Let \tilde{G} be a subgroup of the profinite Galois group \mathfrak{G} al $\left(k_{s} / k\right)$ and $\tilde{k}=k_{s}^{6}$. Then

$$
\operatorname{hyp}\left(q_{1, \tilde{k}}, q_{2, \tilde{k}}, \ldots, q_{m, \tilde{k}}\right)=\bigcup_{k^{\prime} \subset \tilde{k}} \operatorname{hyp}\left(q_{1, k^{\prime}}, q_{2, k^{\prime}}, \ldots, q_{m, k^{\prime}}\right)
$$

where the union is taken on the extensions $k^{\prime} \subset \tilde{k}$ of finite degree over k.
Remark 2. The main result of this paper is based on examples of quadratic forms for which the inclusion (b) is strict. For (e), M erkurjev's Theorem 1 shows that the inclusion $N_{k(\sqrt{d}) / k}\left(G\left(q_{k(\sqrt{d})}\right)\right) \subset G(q)$ is strict in general. For a quadratic form with rank 6 and signed discriminant d, one has indeed $G(q) /$ hyp $(q) \cdot k^{\times 2}=G(q) / N_{k(\sqrt{d}) / k}\left(\operatorname{hyp}\left(q_{k(\sqrt{d})}\right)\right) \cdot k^{\times 2}=$ $G(q) / N_{k(\sqrt{d}) / k}\left(G\left(q_{k(\sqrt{d})}\right)\right) \cdot k^{\times 2}$ and this group is not trivial in general.

Proof. The assertion (a) is a straightforward result of Witt's theorem. The assertions (b), (c), and (d) are direct consequences of the definition and of the functoriality of norm maps for a tower of field extensions. Let us show the assertion (e). It is clear that we can assume $d \in k^{\times} \backslash k^{\times 2}$. First, the inclusion $G(\langle 1,-d\rangle) \cap G(q \perp\langle 1,-d\rangle) \subset G(q)$ is obvious. Conversely, if $a \in G(q)$, one has $\langle 1,-a\rangle \otimes q=0 \in W(k)$ and since $q=$ $\langle 1,-d\rangle \bmod I^{2}(k)$, one has $\langle 1,-a\rangle \otimes\langle 1,-d\rangle=0 \bmod I^{3}(k)$ and it is known [17, p. 88, Theorem 14.3] that $\langle 1,-a\rangle \otimes\langle 1,-d\rangle=0 \in W(k)$. Hence $\langle 1,-a\rangle \otimes(q \perp\langle 1,-d\rangle)=0 \in W(k)$ and $a \in G(\langle 1,-d\rangle) \cap G(q$ $\perp\langle 1,-d\rangle$).

The second formula of (e) is simpler and results from the following fact: any field extension L / k such that q_{L} is hyperbolic satisfies $d \in L^{\times 2}$ and then contains a subfield isomorphic to $k(\sqrt{d})$.
(f) This identity is formal. There exists a variety X / k such that $\operatorname{hyp}\left(q_{1, k}, q_{2, k}, \ldots, q_{m, k}\right)=N_{X}(k)$ and it is not difficult to show that $N_{Y}(\tilde{k})$ $=\bigcup_{k^{\prime} \subset \tilde{k}} N_{Y}\left(k^{\prime}\right)$ for any variety Y / k. Then one has the formula.

Let us give an application of Scharlau's transfer map [17, Sect. 5] which will be useful for showing Proposition 1.

Lemma 2. Let q, q^{\prime} be k-quadratic forms and $k^{\prime}=k(x) / k$ a finite field extension with degree $\left[k^{\prime}: k\right.$]. Assume that $q=\langle 1, x\rangle \otimes q^{\prime} \in W\left(k^{\prime}\right)$.
(a) If $\left[k^{\prime}: k\right]$ is even, then one has $\left\langle 1,-N_{k^{\prime} / k}(x)\right\rangle \otimes q=$ $\left\langle 1,-N_{k^{\prime} / k}(x)\right\rangle \otimes q^{\prime}=0 \in W(k)$, i.e., $N_{k^{\prime} / k} K(x) \in G(q) \cap G\left(q^{\prime}\right)$.
(b) If $\left[k^{\prime}: k\right]$ is odd, then one has $q=\left\langle 1, N_{k^{\prime} / k}(x)\right\rangle \otimes q^{\prime} \in W(k)$.

Proof. D enote $r=\left[k^{\prime}: k\right]$. In the two cases, we apply Scharlau's transfer $s_{*}: W(k(x)) \rightarrow W(k)$ associated with the linear form $s: k(x) \rightarrow k$ defined by $s(1)=1, s(x)=s\left(x^{2}\right)=\cdots=s\left(x^{r-1}\right)=0$. One has a projection formula $s_{*}\left(\varphi_{k^{\prime}} \otimes \psi\right)=\varphi \otimes s_{*}(\psi)$ for any $\varphi \in W(k), \psi \in W\left(k^{\prime}\right)$ which reduces the calculation to $s_{*}(\langle 1\rangle)$ and $s_{*}(\langle x\rangle)$.
(a) If r is even, one has $s_{*}(\langle 1\rangle)=\left\langle 1,-N_{k^{\prime} / k}(x)\right\rangle$ and $s_{*}(\langle x\rangle)=0$. A pplying s_{*} to q, one has $\left\langle 1,-N_{k^{\prime} / k}(x)\right\rangle \otimes q=\left\langle 1,-N_{k^{\prime} / k}(x)\right\rangle \otimes q^{\prime} \in$ $W(k)$. M oreover, since $\langle x\rangle \otimes q=\langle 1, x\rangle \otimes q^{\prime} \in W\left(k^{\prime}\right)$, it follows $\left\langle 1, N_{k^{\prime}, k}(x)\right\rangle \otimes q^{\prime}=0 \in W(k)$ and $\left\langle 1,-N_{k^{\prime} / k}(x)\right\rangle \otimes q=0 \in W(k)$.
(b) If r is odd, one has $s_{*}(\langle 1\rangle)=\langle 1\rangle$ and $s_{*}(\langle x\rangle)=\left\langle N_{k^{\prime} / k}(x)\right\rangle$. A pplying s_{*} to q, we obtain $q=\left\langle 1, N_{k^{\prime}, k}(x)\right\rangle \otimes q^{\prime} \in W(k)$.

We denote by $K=k((t))$ the field of formal series with valuation ring $O=k[[t]]$. R ecall that there exists an exact sequence of groups

$$
0 \rightarrow W(k) \xrightarrow{i} W(K) \xrightarrow{\partial_{t}} W(k) \rightarrow 0 .
$$

The map i is the restriction of k to K and let us describe the map ∂_{t}. A K-quadratic form q can be diagonalized in $\left\langle u_{1}, \ldots, u_{m}, t v_{1}, \ldots, t v_{n}\right\rangle$ where $u_{i}, v_{j} \in O^{\times}$. Then $\partial_{t}(q)=\left\langle\bar{v}_{1}, \ldots, \bar{v}_{n}\right\rangle$ where $\bar{v}_{i} \in k^{\times}=(O / t)^{\times}$. Let us give an application for similarity factors.

Lemma 3. Let γ be a k-quadratic form.
(a) If γ is not hyperbolic, then $G\left(\gamma_{K}\right)=G(\gamma) . K^{\times 2}$.
(b) One has $G(\langle\langle t\rangle\rangle \otimes \gamma)=\mathbb{Z}\langle t\rangle \cdot G(\gamma) \cdot K^{\times 2}$.

Proof. (a) The inclusion $G(\gamma) . K^{\times 2} \subset G\left(\gamma_{K}\right)$ is obvious. Conversely, let x be in $G\left(\gamma_{K}\right)$. Then $x=t^{d} a^{2} \alpha$ with $a \in K^{\times}, \alpha \in k^{\times}$, and $d=0$ or 1. If $d=1$, one has $0=\partial(\langle 1,-x\rangle \otimes \gamma)=\langle-\alpha\rangle \otimes \gamma \in W(k)$ then γ is hyperbolic and $d=0$. Hence $\alpha \in G\left(\gamma_{K}\right) \cap k^{\times}$. It follows $0=(\langle 1,-\alpha\rangle \otimes$ $\gamma)_{K}=i(\langle 1,-\alpha\rangle \otimes \gamma)$. Hence $0=\langle 1,-\alpha\rangle \otimes \gamma \in W(k), \alpha \in G(\gamma)$, and $x \in G(\gamma) . K^{\times 2}$.
(b) If the form γ is hyperbolic, then the assertion is obvious. We can assume that γ is not hyperbolic. The inclusion $\mathbb{Z}\langle t\rangle . G(\gamma) . K^{\times 2} \subset G\left(\varphi_{K}\right)$ is obvious. Conversely, let x be in $G\left(\varphi_{K}\right)$. Then $x=t^{\nu(x)} a^{2} \alpha$ with $a \in O^{\times}$ and $\alpha \in G\left(\varphi_{K}\right) \cap k^{\times}$. Applying the residue map $\partial: W(K) \rightarrow W(k)$, it yields $0=\partial(\langle 1,-\alpha\rangle \otimes \varphi)=\partial(\langle 1,-\alpha\rangle \otimes\langle 1, t\rangle \otimes \gamma)=\langle 1,-\alpha\rangle \otimes \gamma$ $\in W(k)$. Hence $\alpha \in G(\gamma)$ and $x \in \mathbb{Z}\langle t\rangle . G(\gamma) . K^{\times 2}$.

2. PROOF OF THE MAIN RESULT

The main result is a direct consequence of the following proposition and M erkurjev's Theorem 1.

Proposition 1. Let k be a field of characteristic zero. Let $\left(q_{i}\right)_{i=1, \ldots, m}$ be a family of k-quadratic forms, $a \in k^{\times} \backslash k^{\times 2}$ and ψ / k a quadratic form satisfying the following condition
(C) For any $b \in k^{\times}$, the form $\langle\langle-a, b\rangle\rangle \perp \psi$ is not hyperbolic.

W e denote by $K=k((t))$ the field of formal series power with valuation ring $O=k[[t]]$ and

$$
q=\langle\langle-a, t\rangle\rangle \perp \psi .
$$

Then

$$
G\left(q_{K}\right)=(G(\langle 1,-a\rangle) \cap G(\psi)) \cdot K^{\times 2}
$$

and

$$
\operatorname{hyp}\left(\left(q_{i, K}\right)_{i=1, \ldots, m}, q_{K}\right) \cdot K^{\times 2}=\operatorname{hyp}\left(\left(q_{i}\right),\langle 1,-a\rangle, \psi\right) \cdot K^{\times 2}
$$

Proof. First, we observe that the condition (C) implies that the form ψ is not hyperbolic.

1st Step. The first equality. The inclusion $(G(\langle 1,-a\rangle) \cap G(\psi)) . K^{\times 2}$ $\subset G\left(q_{k}\right)$ is obvious. Conversely, let $x \in G\left(q_{K}\right)$. Then $x=t^{d} \beta^{2} b$ with $\beta \in K^{\times}, d=0$ or 1 , and $b \in k^{\times}$. If $d=1$, applying the residue map $\partial: W(K) \rightarrow W(k)$, one has $0=\partial(\langle 1,-b t\rangle \otimes q)=\partial(\langle\langle-b t, t,-a\rangle\rangle$ $\perp\langle 1,-b t\rangle \otimes \psi)=\partial(\langle\langle-b, t,-a\rangle\rangle \perp\langle 1,-b t\rangle \otimes \psi)=\langle\langle-b,-a\rangle\rangle$ $\perp\langle-b\rangle \otimes \psi \in W(k)$. Since $-b \in G(\langle\langle-b,-a\rangle\rangle)$, it yields $\langle\langle-$ $b,-a\rangle\rangle \perp \psi=0 \in W(k)$, which is a contradiction for the hypothesis (C). It follows that $d=0$ and $b \in G\left(q_{K}\right) \cap k^{\times}$. Applying again the map ∂_{t}, one can see easily that $b \in G(\langle 1,-a\rangle)$ and since $q=\langle\langle t\rangle\rangle \otimes\langle 1,-a\rangle \perp$ ψ, one has $b \in G(\langle 1,-a\rangle) \cap G(\psi)$ and $x \in(G(\langle 1,-a\rangle) \cap G(\psi)) . K^{\times 2}$.

2nd Step. Reduction to the case where the base field k has no proper odd extension. For the second equality, we will show that we can assume that the base field k has no proper odd extension. First, let us check that the condition (C) stays when we extend the scalars with an odd field extension. If k^{\prime} / k is a finite odd extension and if there exists $b^{\prime} \in$ $k^{\prime \times}$ such that $\left\langle\left\langle-a, b^{\prime}\right\rangle\right\rangle \perp \psi=0 \in W\left(k^{\prime}\right)$, since $\left[k^{\prime}: k\left(b^{\prime}\right)\right.$] is odd, Springer's theorem for odd extensions [17, p. 62] yields $\left\langle\left\langle-a, b^{\prime}\right\rangle\right\rangle \perp \psi=$ $0 \in W\left(k\left(b^{\prime}\right)\right)$ and Lemma 2 implies $\left\langle\left\langle-a, N_{k\left(b^{\prime}\right) / k}\left(b^{\prime}\right)\right\rangle\right\rangle \perp \psi=0 \in$ $W(k)$, which is a contradiction for the hypothesis (C).

Let $\tilde{G} \subset G \operatorname{Gl}\left(k_{s} / k\right)$ be a 2-Sylow subgroup of the profinite G alois group $\mathrm{G} a l\left(k_{s} / k\right), \tilde{k}=k_{s}^{\tilde{G}}$, and $\tilde{K}=K \otimes_{k} \tilde{k}$ and let us assume that

$$
\operatorname{hyp}\left(\left(q_{i, \tilde{K}}\right), q_{\tilde{K}}\right) \cdot \tilde{K}^{\otimes 2}=\operatorname{hyp}\left(\left(q_{i, \tilde{k}}\right),\langle 1,-a\rangle_{\tilde{k}}, \psi_{\tilde{k}}\right) \cdot \tilde{K}^{\times 2} .
$$

Due to Lemma 1(f), one has

$$
\begin{aligned}
& \operatorname{hyp}\left(\left(q_{i, \tilde{k}}\right),\langle 1,-a\rangle_{\tilde{k}}, \psi_{\tilde{k}}\right) \cdot \tilde{K}^{\times 2} \\
& \quad=\bigcup_{k^{\prime} \subset \tilde{k}} \operatorname{hyp}\left(\left(q_{i, k^{\prime}}\right),\langle 1,-a\rangle_{k^{\prime}}, \psi_{k^{\prime}}\right) \cdot\left(K \otimes_{k} k^{\prime}\right)^{\times 2}
\end{aligned}
$$

where the reunion is taken on the subextensions $k^{\prime} \subset \tilde{k}$ finite over k. Now, we can show the equality

$$
\operatorname{hyp}\left(\left(q_{i, K}\right)_{i=1, \ldots, m}, q_{K}\right) \cdot K^{\times 2}=\operatorname{hyp}\left(\left(q_{i}\right),\langle 1,-a\rangle, \psi\right) \cdot K^{\times 2}
$$

where the inclusion \supset is obvious. For the inverse inclusion, let x be in
hyp $\left(\left(q_{i, K}\right)_{i=1, \ldots, m}, q_{K}\right) . K^{\times 2}$. Since the inclusion

$$
\operatorname{hyp}\left(\left(q_{i, K}\right)_{i=1, \ldots, m}, q_{K}\right) \cdot K^{\times 2} \subset \operatorname{hyp}\left(\left(q_{i, \tilde{K}}\right), q_{\tilde{K}}\right) \cdot \tilde{K}^{\times 2},
$$

there exists a finite odd extension k^{\prime} / k such that

$$
x \in \operatorname{hyp}\left(\left(q_{i, k^{\prime}}\right),\langle 1,-a\rangle_{k^{\prime}}, \psi_{k^{\prime}}\right) \cdot\left(K \otimes_{k} k^{\prime}\right)^{\times 2} .
$$

Hensel's lemma allows us to assume that $x \in k^{\times}$. If $\left[k^{\prime}: k\right]=2 p+1$, one has $N_{k^{\prime} / k}(x)=x \cdot x^{2 p}$ and Lemma $1(\mathrm{c})$ yields $x \in \operatorname{Hyp}\left(\left(q_{i}\right)\right.$, $\langle 1,-a\rangle, \psi\rangle . K^{\times 2}$.

3rd Step. The Second Equality. We can assume that the field k has no proper odd extensions. The inclusion

$$
\operatorname{hyp}\left(\left(q_{i}\right),\langle 1,-a\rangle, \psi\right) \cdot K^{\times 2} \subset \operatorname{hyp}\left(\left(q_{i, K}\right)_{i=1, \ldots, m}, q_{K}\right) \cdot K^{\times 2}
$$

is obvious. For the inverse inclusion, we have to show for any finite extension L / K splitting q and the q_{i}^{\prime} s that $N_{L / K}\left(L^{\times}\right) \subset h y p\left(\left(q_{i}\right)\right.$, $\langle 1,-a\rangle, \psi) . K^{\times 2}$. Let L / K be such a finite extension with valuation ring O_{L}, residue field k^{\prime}, ramification index e, and residual index f. Let us denote by K^{\prime} / K the maximal non-ramified extension of K with valuation ring O^{\prime}. Since k has characteristic zero, the field K^{\prime} is k-isomorphic to $k^{\prime}((t))$. Therefore we can assume that $K^{\prime}=k^{\prime}((t))$.

We recall that there exists an uniformizing parameter π of L / K such that $\pi^{e} t^{-1} \in k^{\prime}$. If π is an uniformizing parameter of L, then $\pi^{e} t^{-1}$ has valuation 1 and since $O^{\prime \times} / O^{\prime \times e} \simeq k^{\prime \times} / k^{\prime \times e}$, there exists $a \in O^{\prime \times}$ such that $(a \pi)^{e} g^{-1} \in k^{\prime}$. Therefore we can take an uniforming parameter π of L such that $\pi^{e}=u t$ with $u \in k^{\prime}$. With Hensel's lemma, we can compute easily the norm group $N_{L / K}\left(L^{\times}\right)$up to $U_{1}=\operatorname{Ker}\left(O^{\times} \rightarrow k^{\times}\right)$, which is sufficient because one has $U_{1} \subset K^{\times 2}$.
Lemma 4. $\quad N_{L / K}\left(L^{\times}\right)=\mathbb{Z}\left\langle N_{k^{\prime} / k}\left((-1)^{e+1} u\right) t^{f},\left(N_{k^{\prime} / k}\left(k^{\prime \times}\right)\right)^{e}\right\rangle \bmod$ U_{1}.

In order to use the hypothesis q_{L} hyperbolic, we write the functoriality of M ilnor's residue maps for the extensions $K \subset K^{\prime} \subset L$.

where $\rho=0$ if e is even and $\rho=\mathrm{id}_{W\left(k^{\prime}\right)}$ if e is odd. Since L / K splits the q_{i} 's, the diagram shows that the $q_{i, k}$'s are hyperbolic forms.
(i) 1st Case. e Is Even. Lemma 4 shows that $N_{L / K}\left(L^{\times}\right) \subset$ $\mathbb{Z}\left\langle N_{k^{\prime} / k}(-u) t^{f}\right\rangle . K^{\times 2}$. It is sufficient to show that f is even and that $N_{k^{\prime} / k}(-u) \in \operatorname{hyp}\left(q_{i},\langle 1,-a\rangle, \psi\right) \cdot k^{\times 2}$. One has $q_{L}=\langle\langle t,-a\rangle\rangle \perp \psi=$ $\left\langle\left\langle u \pi^{e},-a\right\rangle\right\rangle \perp \psi=\langle\langle u,-a\rangle\rangle \perp \psi=j\left(\langle\langle u,-a\rangle\rangle_{k^{\prime}} \perp \psi_{k^{\prime}}\right)$. Then $q_{L}=$ $j\left(\langle\langle u,-a\rangle\rangle_{k^{\prime}} \perp \psi_{k^{\prime}}\right)$ and since $q_{L}=0 \in W(L)$, it follows

$$
\begin{equation*}
0=\langle\langle u,-a\rangle\rangle_{k^{\prime}} \perp \psi_{k^{\prime}} \in W\left(k^{\prime}\right) . \tag{**}
\end{equation*}
$$

The hypothesis (C) implies that $f=\left[k^{\prime}: k\right]=2^{s}>1$ and f is even. It remains to show that $N_{k^{\prime} / k}(-u) \in \operatorname{hyp}\left(\left(q_{i}\right),\langle 1,-a\rangle, \psi\right) . k^{\times 2}$. If $\left[k^{\prime}: k(u)\right]$ $=2^{r}>1$, one has $N_{k^{\prime} / k}(-u) \in k^{\times 2}$ and there is nothing to do. We can assume that $k^{\prime}=k(u)$. Let us denote $k_{1}=k\left(u^{2}\right) \subset k^{\prime}=k_{1}(u)$ which is a quadratic extension and let us consider the following diagram of quadratic extensions:

Lemma 2 applied to the extension $k^{\prime} / k_{1}=k_{1}(u) / k_{1}$ and the identity $\langle 1, u\rangle \otimes\langle 1,-a\rangle_{k^{\prime}}=\langle-1\rangle \otimes \psi_{k^{\prime}}(* *)$ yields

$$
N_{k^{\prime} / k_{1}}(u) \in G\left(\langle 1, a\rangle_{k_{1}}\right) \cap G\left(\psi_{k_{1}}\right) .
$$

Then $N_{k^{\prime} / k_{1}}(u)=N_{k^{\prime} / k_{1}}(-u) \in N_{k_{1}(\sqrt{a}) / k_{1}}\left(k_{1}(\sqrt{a})^{\times}\right)$. On the other hand, since $k_{1}(u)=k^{\prime}$ and $k_{1}(\sqrt{a})$ are two quadratic extensions of k_{1}, it is
known (Lemma 1.4 of [7]) that

$$
N_{k^{\prime} / k_{1}}\left(k^{\prime \times}\right) \cap N_{k_{1}(\sqrt{a}) / k_{1} 1}\left(k_{1}(\sqrt{a})^{\times}\right)=N_{k^{\prime}(\sqrt{a}) / k_{1}}\left(k^{\prime}(\sqrt{a})^{\times}\right) \cdot k_{1}^{\times 2} .
$$

The extension $k^{\prime}(\sqrt{a})$ splits the forms $\langle 1,-a\rangle, \psi_{k^{\prime}}=\langle-1,-u\rangle$ $\langle 1,-a\rangle_{k^{\prime}}$ and the q_{i}^{\prime} s. Therefore one has $N_{k^{\prime} / k_{1}}(-u) \in$ hyp $\left(\left(q_{i}, k_{1}\right),\langle 1,-a\rangle_{k_{1}}, \psi_{k_{2}}\right) \cdot k_{1}^{\times 2}$. Applying Lemma $1(\mathrm{c})$ to the extension k_{1} / k, it follows that $N_{k^{\prime} / k}(u)=N_{k_{1} / k}\left(N_{k^{\prime} / k_{1}}(-u)\right) \in \operatorname{hyp}\left(\left(q_{i}\right)\right.$, $\langle 1,-a\rangle, \psi) \cdot k^{\times 2}$. We showed this case.
(ii) 2 nd Case. e Is Odd. With the diagram of M ilnor's residue maps, we see that the form $\langle 1,-a\rangle_{k^{\prime}}=\partial_{\pi}\left(q_{L}\right)$ is hyperbolic. M oreover, $0=q_{L}=$ $j\left(\langle 1,-a\rangle_{k^{\prime}} \perp \psi_{k^{\prime}}\right)$. Then the form $\psi_{k^{\prime}}$ is hyperbolic. Since ψ is not hyperbolic, according to Springer's theorem for odd extensions [17, p. 62], the integer $f=\left[k^{\prime}: k\right]$ is even. Hence, one has $N_{L / K}\left(L^{\times}\right) \subset$ $N_{k^{\prime}, k}\left(k^{\prime \times}\right) \cdot K^{\times 2}$. The forms $q_{i, k^{\prime}}, \psi_{k^{\prime}}$ and $\langle 1,-a\rangle_{k^{\prime}}$ are hyperbolic and then it yields $N_{k^{\prime}} / k\left(k^{\prime \times}\right) \subset \operatorname{hyp}\left(\left(q_{i}\right), \psi,\langle 1,-a\rangle\right)$ and $N_{L / K}\left(L^{\times}\right) \subset$ hyp $\left.\left.\left(q_{i}\right),\langle 1,-a\rangle, \psi\right)\right) . K^{\times 2}$. 【
Theorem 2. Let $a \in k^{\times} \backslash k^{\times 2}$ and D / k be a biquaternion algebra and let ψ / k be an Albert form associated with D which represents -1. Denote $K=k((t))$. Let us define the k-form q_{0} and the K-form q by

$$
\langle 1,-a\rangle \perp \psi=q_{0} \perp \mathbb{H}
$$

and

$$
\langle\langle-a, t\rangle\rangle \perp \psi=q \perp \mathbb{H} .
$$

One has $\mathrm{rk}_{k}\left(q_{0}\right)=6, \operatorname{disc}_{ \pm}\left(q_{0}\right)=(a), \mathrm{rk}_{K}\left(q_{0}\right)=8$, and disc ${ }_{ \pm}(q)=1$.
(a) If $\operatorname{ind}\left(D_{k(\sqrt{a})}\right) \neq 1$, there exists a natural isomorphism

$$
G\left(q_{0}\right) / \operatorname{hyp}\left(q_{0}\right) \cdot k^{\times 2} \xrightarrow[\rightarrow]{\sim} G\left(q_{K}\right) / \operatorname{hyp}\left(q_{K}\right) \cdot K^{\times 2} .
$$

(b) If $\operatorname{ind}\left(D_{k(\sqrt{a})}\right)=4$, there exists a field extension E / k such that $G\left(q_{K \otimes_{k} E}\right) / \operatorname{hyp}\left(q_{K \otimes_{k} E}\right) \cdot\left(K \otimes_{k} E\right)^{\times 2} \neq 1$ and such that the variety $\mathrm{PSO}(q)$ is not stably K-rational.

Proof. Due to Lemma 1(a), we can do the proof with $q_{0}=\langle 1,-a\rangle \perp \psi$ and $q=\langle\langle-a, t\rangle\rangle \perp \psi$.
(a) We will apply the preceding proposition to the form q and we have to check hypothesis (C). Let $b \in k^{\times}$be such that $\langle\langle-a, b\rangle\rangle \perp \psi=$ $0 \in W(k)$. Then the form $\psi_{k(\sqrt{a})}$ is hyperbolic and the algebra $D_{k(\sqrt{a})}$ is split, which is a contradiction for the hypothesis $\operatorname{ind}\left(D_{k(\sqrt{a})}\right)>1$. The
hypothesis (C) is checked and the proposition yields

$$
G\left(q_{K}\right)=(G(\langle 1,-a\rangle) \cap G(\psi)) \cdot K^{\times 2}
$$

and

$$
\operatorname{hyp}\left(q_{K}\right) \cdot K^{\times 2}=\operatorname{hyp}(\langle 1,-a\rangle, \psi) \cdot K^{\times 2} .
$$

Due to Lemma $1(e)$, one has $G\left(q_{0}\right)=G(\langle 1,-a\rangle) \cap G(\psi)$ and $\operatorname{hyp}\left(q_{0}\right) \cdot k^{\times 2}=N_{k(\sqrt{a}) / k}\left(\operatorname{hyp}\left(\psi_{k(\sqrt{a})}\right)\right) \cdot k^{\times 2}$. Then we have an isomorphism

$$
G\left(q_{0}\right) / \operatorname{hyp}\left(q_{0}\right) \cdot k^{\times 2} \xrightarrow[\rightarrow]{\sim} G\left(q_{K}\right) / \operatorname{hyp}\left(q_{K}\right) \cdot K^{\times 2} .
$$

(b) Since ind $\left(D_{k(\sqrt{a})}\right)=4$, Theorem 1 shows the existence of a field extension E / k such that $a \notin E^{\times 2}$, ind $\left(D_{E(\sqrt{a})}\right)=4$, and $G\left(q_{0, E}\right) /$ $\operatorname{hyp}\left(q_{0, E}\right) \cdot E^{\times 2} \neq 1$. Hence $G\left(q_{K \otimes_{,} E}\right) / \operatorname{hyp}\left(q_{K \otimes_{k} E}\right) \cdot\left(K \otimes_{k} E\right)^{\times 2} \neq 1$ and the variety $\operatorname{PSO}\left(q_{K}\right)$ is not stably K-rational.

Remark 1 yields a field k with cohomological dimension 2, a quadratic field extension $L=k(\sqrt{a})$, and an Albert form ψ which represents -1 and satisfies ind $\left(C_{0}(\psi)_{L}\right)=4$. We showed the result claimed in the Introduction.

Theorem 3. There exist a field k of characteristic 0 , with cohomological dimension 3 and a quadratic form q with rank 8 and signed discriminant 1 such that the variety $\mathrm{PSO}(q) / k$ is not stably k-rational.

Due to Theorem 1, the dimension 8 is minimal for such an example with trivial signed discriminant. On the other hand, we don't know if there exists such an example with $\operatorname{cd}(k)=2$. The method used here brings nothing if $\operatorname{cd}(k)=2$. In this case, due to the M erkurjev-Suslin theorem, the G alois symbol yields an isomorphism $I^{2}\left(k^{\prime}\right) \xrightarrow[\rightarrow]{\sim} B r_{2}\left(k^{\prime}\right)$ for any finite extension k^{\prime} / k (cf. [1]). For any quadratic form q with trivial signed discriminant and Clifford algebra $C(q) / k$, one has $k^{\times}=\operatorname{Nrd}\left(C(q)^{\times}\right) \cdot k^{\times 2}$ $=\operatorname{hyp}(q) \cdot k^{\times 2}=G(q)$ and the invariant $G\left(q_{k}\right) / h y p\left(q_{k}\right) \cdot k^{\times 2}$ is trivial on k.
We have to underline that we used the Index R eduction Theory (through [9]) for giving proof of our result. We shall see that with cohomological dimension 6 instead 3, we can show the same result without the Index Reduction Theory and thus we can produce explicit elementary examples of non-rational adjoint groups built from an iteration of Proposition 1 with a field of iterated formal power series. This method contains some analogies with Platonov's counterexample [15] to the K neser-Tits conjecture, showing the existence of simply connected semisimple groups defined over a field k, which are not k-rational varieties.

3. SUMS OF QUATERNIONIC FORMS

First, we introduce an invariant related to the multiquadratic extensions. This invariant will be used for computing some group $\operatorname{PSO}(q) / R$.

Definition 1. Let $\mathrm{A}=\left(a_{i}\right)_{i=1, \ldots, m}$ be a family of elements of k^{\times}. Denote $k_{i}=k[t] /\left(t^{2}-a_{i}\right)$ for $i=1, \ldots, m$ and $M=k_{1} . \otimes k_{2} \otimes_{k} \cdots \otimes_{k}$ k_{m}. One defines the group

$$
\Lambda(\mathrm{A} / k)=\left(\bigcap_{i=1, \ldots, m} N_{k}\left(a_{i}\right)\right) / N_{M / k}\left(M^{\times}\right) \cdot k^{\times 2} .
$$

Proposition 2. Let $\mathrm{A}=\left(a_{i}\right)_{i=1, \ldots, m}$ be a family of elements of k^{\times}and M / k as in the definition. The following assertions hold.
(a) $\operatorname{hyp}\left(\left(\left\langle 1,-a_{i}\right\rangle\right)_{i=1, \ldots, m}\right) \cdot k^{\times 2}=N_{M / k}\left(M^{\times}\right) \cdot k^{\times 2}$.
(b) Let T be the k-torus defined by the equations

$$
N_{k_{1} / k}\left(y_{1}\right)=N_{k_{2} / k}\left(y_{2}\right)=\cdots=N_{k_{m} / k}\left(y_{m}\right) \neq 0 .
$$

Then, we have a natural isomorphism $T(k) / R \xrightarrow{\sim} \Lambda(\mathrm{~A} / k)$.
Proof. We denote by $G=\operatorname{Gal}(M / k)$ the Galois group of $k_{1} \cdot k_{2} \ldots$ k_{m} / k and by $G_{i} \subset G$ the subgroup which fixes $\sqrt{a_{i}}(i=1, \ldots, m)$. One can assume that $a_{i} \notin k^{\times 2}$ for $i=1, \ldots, m$ and let us denote by σ_{i} the generator of $G / G_{i}=\mathrm{Gal}\left(k_{i} / k\right)$. One has an injective morphism $j: T \subset$ $\Pi_{i=1, \ldots, m} R_{k_{i} / k} \mathbb{G}_{m}$ and a morphism $q=N_{k_{1} / k^{\circ} j: T \rightarrow \mathbb{G}_{m} \text { whose kernel }}$ is denoted by $T^{\prime}=\prod_{i=1, \ldots, m} R_{k_{i} / k}^{1} \mathbb{G}_{m}$. We define a surjective morphism of k-tori

$$
p: R_{M / k} \mathbb{G}_{m} \times \mathbb{G}_{m} \times \prod_{i=1, \ldots, m} R_{k_{i} / k}^{1} \mathbb{G}_{m} \rightarrow T \subset \prod_{i=1, \ldots, m} R_{k_{i} / k} \mathbb{G}_{m},
$$

where

$$
\left[p\left(y, x, y_{1}, \ldots, y_{m}\right)\right]_{i}=N_{M / k_{i}}(y) \cdot x \cdot y_{i} / \sigma_{i}\left(y_{i}\right) \quad \text { for } i=1, \ldots, m .
$$

Let us denote by $E=R_{M / k} \mathbb{G}_{m} \times \mathbb{G}_{m} \times \prod_{i=1, \ldots, m} R_{k_{i} / k} \mathbb{G}_{m}$, by $S=$ Ker (p) the torus kernel of p, and by \hat{S}^{0} the Galois module of cocharacters of S, i.e., $\hat{S}^{0}=\operatorname{Hom}_{g r}\left(\mathbb{G}_{m}, S\right)$. The following lemma is easy to show.

Lemma 5. $\quad H^{1}\left(H, \hat{S}^{0}\right)=0$ for any subgroup $H \subset G$.
In other words, the morphism p defines an exact sequence of k-tori

$$
1 \rightarrow S \rightarrow E \xrightarrow{p} T \rightarrow 1
$$

which is a flasque resolution of the torus T (cf. [3]) and then the boundary map $\partial: T(k) \rightarrow H^{1}(k, S)$ induces an isomorphism $T(k) / R \simeq H^{1}(k, S)$. Since $H^{1}(k, E)=1$ [20, chap. X], one has an isomorphism $T(k) / p(E(k))$ $\simeq H^{1}(k, S)$. We consider the following commutative exact diagram

Since the torus $T^{\prime}=\Pi_{i=1, \ldots, m} R_{k_{i} / k}^{1} \mathbb{G}_{m}$ is a rational variety, the map $T(k) \rightarrow T(k) / R$ factorizes by p and then one has an isomorphism $T(k) / R=T(k) / p(E(k)) \simeq q(T(k)) / q \circ p(E(k))=\Lambda(\mathrm{A} / k)$.
Remark 3. Following [8], if k is a number field, the invariant $\Lambda(A / k)$ is always trivial, and Colliot-Thélène and Sansuc showed that the group $T(k) / R$ is finite for any torus defined over a field of finite type over the prime field [3]. Therefore, if the field k is of finite type over the prime field, the group $\Lambda(A / k)$ is finite.

We know that $n=2$ yields $\Lambda(\mathrm{A} / k)=1$ [7, Lemma 1.4]. We can show this with the proposition (b). The torus T is indeed an open subset of a quadric having a rational point which is a rational variety, hence $1=T(k) / R=\Lambda(\mathrm{A} / k)$.

For $n=3$, we can deduce the non-triviality of the invariant Λ of Proposition 2.4 of [8]. M ore precisely, one has the following nice result of Tignol which connects the invariant N_{1} of a triquadratic extensions and Λ.

Proposition 3 (Tignol, unpublished). Let $\mathrm{A}=\{a, b, c\}$ be a family k^{\times}. Denote $M=k(\sqrt{a}, \sqrt{b}, \sqrt{c})$ and $E=k(\sqrt{c})$. Then there exists an isomorphism of groups
$N_{1}(a, b, c)=\frac{k^{\times} \cap N_{E}(a) \cdot N_{E}(b)}{\left(k^{\times} \cap N_{E}(a)\right) \cdot\left(k^{\times} \cap N_{E}(b)\right)} \xrightarrow[\rightarrow]{\sim} \frac{N_{k}(a) \cap N_{k}(b) \cap N_{k}(c)}{N_{M / k}\left(M^{\times}\right) \cdot k^{\times 2}}$.

Proof. If the extension E / k is not proper, the two groups are trivial. We can assume that E / k is a proper extension and we denote by $h \rightarrow \bar{h}$ the action of $\mathrm{Gal}(E / k)$ on E. One defines the map between the two quotients with the following map θ. If $f=N_{E(\sqrt{a}) / E}(x) \cdot N_{E(\sqrt{b}) / E}(y) \in k^{\times}$,
we define

$$
\begin{aligned}
\theta(f) & =\left[N_{E(\sqrt{a}) / k}(x)\right]=\left[f^{2} N_{E(\sqrt{b}) / k}(y)\right] \\
& \in N_{k}(a) \cap N_{k}(b) \cap N_{k}(c) \quad \bmod N_{M / k}\left(M^{\times}\right) \cdot k^{\times 2} .
\end{aligned}
$$

Let us show that the element $\theta(f)$ is well defined. Indeed, if $f=$ $N_{E(\sqrt{a}) / E}\left(x^{\prime}\right) N_{E(\sqrt{b}) / E}\left(y^{\prime}\right)$, one has

$$
\begin{aligned}
N_{E(\sqrt{a}) / E}\left(x x^{\prime-1}\right) & =N_{E(\sqrt{b}) / E}\left(y y^{\prime-1}\right) \\
& \in N_{E}(a) \cap N_{E}(b)=N_{M / E}\left(M^{\times}\right) \cdot E^{\times 2}
\end{aligned}
$$

using again Lemma 1.4 of [7]. Hence $N_{E(\sqrt{a}) / k}\left(x x^{\prime-1}\right) \in N_{M / k}\left(M^{\times}\right) . k^{\times 2}$. On the other hand, if $f \in\left(k^{\times} \cap N_{E}(a)\right)$. $\left.k^{\times} \cap N_{E}(b)\right)$, then we can assume $N_{E(\sqrt{a}) / E}(x) \in k^{\times}$and hence $N_{E(\sqrt{a}) / k}(x) \in k^{\times 2}$. Denoting again the quotient map by θ, we define a morphism of groups

$$
\theta: \frac{k^{\times} \cap N_{E}(a) \cdot N_{E}(b)}{\left(k^{\times} \cap N_{E}(a)\right) \cdot\left(k^{\times} \cap N_{E}(b)\right)} \rightarrow \frac{N_{k}(a) \cap N_{k}(b) \cap N_{k}(c)}{N_{M / k}(M U \times) \cdot k^{\times 2}} .
$$

Let us show the injectivity of θ. If $N_{E(\sqrt{a}) / k}(x)=g^{2} N_{M / k}(z)$ with $g \in k^{\times}, z \in M^{\times}$, then

$$
N_{E / k}\left(N_{E(\sqrt{a}) / E}(x)\right)=N_{E / k}\left(g N_{M / E}(z)\right) .
$$

Hence by [20, chap. X], $N_{E(\sqrt{a}) / E}(x)=g N_{M / k}(z) h \bar{h}^{-1}$ with $h \in E$. Then $N_{E(\sqrt{a}) / E}(x)=(g h \bar{h})\left(\bar{h}^{-2} N_{M / E}(z)\right)$. One has

$$
\bar{h}^{-2} N_{M / E}(z) \in E^{\times 2} \cdot N_{M / E}\left(M^{\times}\right)=N_{E}(a) \cap N_{E}(b) .
$$

Then the preceding equality shows that $g h \bar{h} \in k^{\times} \cap N_{E}(a)$. On the other hand, since $f=N_{E(\sqrt{a}) / E}(x) N_{E(\sqrt{b}) / E}(y)$, one has

$$
f=(g h \bar{h}) \cdot\left(\bar{h}^{-2} N_{M / E}(z) N_{E(\sqrt{b}) / E}(y)\right) .
$$

The second term is an element of $N_{E}(b)$ but has to be also an element of k^{\times}, then $f \in\left(k^{\times} \cap N_{E}(a)\right)$. $\left.k^{\times} \cap N_{E}(b)\right)$.

Let us show the surjectivity of θ for finishing the proof. If $t \in N_{k}(a) \cap$ $N_{k}(b) \cap N_{k}(c)$, we can choose $u \in E^{\times}$such that $t=N_{E / k}(u)$. Since $t \in$ $N_{k}(a)$, one has $u \in k^{\times} . N_{E}(a)$; in the same way, one has $u \in k^{\times} . N_{E}(b)$ because $t \in N_{k}(b)$. Then

$$
u=g N_{E(\sqrt{\bar{a}}) / E}(x)=h N_{E(\sqrt{\bar{a}}) / E}\left(y^{-1}\right),
$$

and $g^{-1} h=N_{E(\sqrt{a}) / E}(x) \cdot N_{E(\sqrt{a}) / E}(y) \in k^{\times} \cap N_{E}(a) N_{E}(b)$ has for image by $\theta, N_{E(\sqrt{a}) / k}(x)=g^{-2} N_{E / k}(u)=t \bmod k^{\times 2}$.
Remark 4. We denote by \mathbb{Q}_{2} the 2 -adic completion of \mathbb{Q}. If $k \in \mathbb{Q}_{2}(x)$ (or $\mathbb{Q}(x)$), it is shown in [16, Sect. 5.4] that $N_{1}(x+4, x+1, x) \neq 1$. Then for $\mathrm{A}=\{x+4, x+1, x\}$, the group $\Lambda\left(\mathrm{A} / \mathbb{Q}_{2}(x)\right)$ is not trivial. Let us give an explicit element of $\Lambda\left(A / \mathbb{Q}_{2}(x)\right)$. Due to Theorem 5.1 of [16], we know that the class of 2 in $N_{1}(x+4, x+1, x)$ is not trivial. If θ denotes the isomorphism $N_{1}(x+4, x+1, x) \simeq \Lambda\left(\mathrm{A} / \mathbb{Q}_{2}(x)\right)$ given by the proposition, one computes easily $\theta(2)=-x$. Hence the class of $-x$ is not trivial in $\Lambda\left(\mathrm{A} / \mathbb{Q}_{2}(x)\right)$. There exists an example of non-trivial invariant Λ with the base field $\mathbb{C}\left(t_{1}, t_{2}\right)$ which has cohomological dimension 2 [16].

Theorem 4. Assume that the base field k has characteristic 0 . Let m be an integer, $m \geq 2$, and $\mathrm{A}=\left(a_{i}\right)_{i=1, \ldots, m}$ a family of elements in $k^{\times} \backslash k^{\times 2}$ such that $a_{i} / a_{i-1} \notin k^{\times 2}$ for $i=2, \ldots, m$. Denote $k_{i}=k\left(\sqrt{a_{i}}\right)$ for $i=$ $1_{1}, \ldots, m$ and $M=k_{1} \cdot k_{2} \cdots k_{m}$. Let $\left(c_{i}\right)_{i=1, \ldots, m}$ be a family of elements of k^{\times}and $\left(X_{i}\right)_{i=1, \ldots, m}$ a family of indeterminates on k. Denote $F_{0}=k$, $F_{i}=k\left(\left(X_{1}\right)\right)\left(\left(X_{2}\right)\right) \cdots\left(\left(X_{i}\right)\right)(i=1, \ldots, m), F=F_{m}$, and

$$
\begin{aligned}
\Phi & =\left\langle c_{1}\right\rangle \otimes\left\langle\left\langle-a_{1}, X_{1}\right\rangle\right\rangle \perp\left\langle c_{2}\right\rangle \otimes\left\langle\left\langle-a_{2}, X_{2}\right\rangle\right\rangle \cdots \\
& \perp\left\langle c_{m}\right\rangle \otimes\left\langle\left\langle-a_{m}, X_{m}\right\rangle\right\rangle .
\end{aligned}
$$

Then one has

$$
G\left(\Phi_{F}\right)=\left(\bigcap_{i=1, \ldots, m} N_{k}\left(a_{i}\right)\right) \cdot F^{\times 2}, \quad \operatorname{hyp}\left(\Phi_{F}\right) \cdot F^{\times 2}=N_{M / k}\left(M^{\times}\right) \cdot F^{\times 2}
$$

and

$$
\Lambda(\mathrm{A} / k) \xrightarrow{\sim} G\left(\Phi_{F}\right) / \operatorname{hyp}\left(\Phi_{F}\right) \cdot F^{\times 2} .
$$

In order to apply Proposition 1, we have to check the validity of condition (C).

Lemma 6. Let m, Φ, \ldots as in Theorem 4. Denote

$$
\begin{aligned}
\Phi^{m-1} & =\left\langle c_{1}\right\rangle \otimes\left\langle\left\langle-a_{1}, X_{1}\right\rangle\right\rangle \perp\left\langle c_{2}\right\rangle \otimes\left\langle\left\langle-a_{2}, X_{2}\right\rangle\right\rangle \perp \cdots \\
& \perp\left\langle c_{m-1}\right\rangle \otimes\left\langle\left\langle-a_{m-1}, X_{m-1}\right\rangle\right\rangle .
\end{aligned}
$$

Then for any $b \in F_{m-1}^{\times}$, one has

$$
\left\langle\left\langle-a_{m}, b\right\rangle\right\rangle \perp\left\langle c_{m}^{-1}\right\rangle \Phi^{m-1} \neq 0 \in W\left(F_{m-1}\right) .
$$

Proof of the Lemma. We denote by $v_{X_{m-1}}: F_{m-1}^{\times} \rightarrow \mathbb{Z}$ the valuation associated to the uniformizing parameter X_{m-1}^{m-1}. We apply the residue map $\partial_{X_{m-1}}: W\left(F_{m-1}\right) \rightarrow W\left(F_{m-2}\right)$ to a relation $\left\langle\left\langle-a_{m}, b\right\rangle\right\rangle \perp\left\langle c_{m}^{-1}\right\rangle \otimes \Phi^{m-1}$ $=0 \in W\left(F_{m-1}\right)$ where $b \in F_{m-1}^{\times}$. If $v_{X_{m-1}}(b)$ is even, then $\left\langle c_{m-1}\right\rangle \otimes$ $\left\langle 1,-a_{m-1}\right\rangle=0 \in W\left(F_{m-2}\right)$ and $a_{m-1} \in k^{\times} \cap F_{m-2}^{\times 2}=k^{\times 2}$, which is wrong by hypothesis. Then $v_{X_{m-1}}(b)$ is odd and the map $\partial_{X_{m-1}}$ yields $\left\langle c_{m}\right\rangle \otimes\left\langle 1,-a_{m}\right\rangle \perp\left\langle c_{m-1}\right\rangle \otimes\left\langle 1,-a_{m-1}\right\rangle=0 \in W\left(F_{m-2}\right)$. Taking the signed discriminant, we have $a_{m} / a_{m-1} \in k^{\times} \cap F_{m-2}^{\times 2}=k^{\times 2}$, which is wrong by hypothesis. We showed the lemma.

W ith this lemma, we can apply Proposition 1. Let us show by induction on $m \geq 2$ the equalities
(1) $G\left(\Phi_{F}\right)=\left(\bigcap_{i=1, \ldots, m} N_{k}\left(a_{i}\right)\right) \cdot F^{\times 2}$ and
(2) $\operatorname{hyp}\left(\left(q_{j, F}\right), \Phi_{F}\right) \cdot F^{\times 2}=\operatorname{hyp}\left(\left(q_{j}\right),\left\langle 1,-a_{1}\right\rangle, \ldots,\left\langle 1,-a_{m}\right\rangle\right) \cdot F^{\times 2}$ for any finite family $\left(q_{j}\right)$ of k-forms.
$m=2$. Due to Proposition 1 applied to the base field of F_{2} and forms $\left\langle\left\langle a_{2}, X_{2}\right\rangle\right\rangle, \psi=\Phi^{1}=\left\langle c_{1}\right\rangle \otimes\left\langle\left\langle-a_{1}, X_{1}\right\rangle\right\rangle$ and the uniformizing parameter X_{2}, one has

$$
G\left(\Phi_{F_{2}}\right)=\left(G\left(\left\langle\left\langle-a_{1}, X_{1}\right\rangle\right\rangle_{F_{1}}\right) \cap G\left(\left\langle 1,-a_{2}\right\rangle_{F_{1}}\right)\right) \cdot F_{2}^{\times 2} .
$$

A pplying Lemma 3 with the uniformizing parameter X_{1}, it produces

$$
G\left(\left\langle 1,-a_{2}\right\rangle_{F_{1}}\right)=G\left(\left\langle 1,-a_{2}\right\rangle\right) \cdot F_{1}^{\times 2} .
$$

Since $k^{\times} \cap G\left(\left\langle 1,-a_{2}\right\rangle\right) . F_{1}^{\times 2}=G\left(\left\langle 1,-a_{2}\right\rangle\right)$, one has

$$
G\left(\Phi_{F_{2}}\right)=\left(\bigcap_{i=1,2} G\left(\left\langle 1,-a_{i}\right\rangle\right)\right) \cdot F_{2}^{\times 2}=\left(\bigcap_{i=1,2} N_{k}\left(a_{i}\right)\right) \cdot F_{2}^{\times 2} .
$$

For the other equality, Proposition 1 shows that

$$
\begin{aligned}
& \operatorname{hyp}\left(\left(q_{j, F_{2}}\right), \Phi_{F_{2}}\right) \cdot F_{2}^{\times 2} \\
& \quad=\operatorname{hyp}\left(\left(q_{j, F_{2}}\right),\left\langle c_{1}\right\rangle \otimes\left\langle\left\langle-a_{1}, X_{1}\right\rangle\right\rangle_{F_{2}} \perp\left\langle c_{2}\right\rangle \otimes\left\langle\left\langle-a_{2}, X_{2}\right\rangle\right\rangle\right) \cdot F_{2}^{\times 2} \\
&=\operatorname{hyp}\left(\left(q_{j, F_{1}}\right),\left\langle 1,-a_{1}\right\rangle_{F_{1}},\left\langle 1,-a_{2}\right\rangle_{F_{1}}\right) \cdot F_{2}^{\times 2} \\
&=\operatorname{hyp}\left(\left(q_{j}\right),\left\langle 1,-a_{1}\right\rangle,\left\langle 1,-a_{2}\right\rangle\right) \cdot F_{2}^{\times 2} \quad \text { (Lemma 3). }
\end{aligned}
$$

$m \geq 3$. Let us denote $\Phi^{m-1}=\left\langle c_{1}\right\rangle \otimes\left\langle\left\langle-a_{1}, X_{1}\right\rangle\right\rangle \perp\left\langle c_{2}\right\rangle \otimes$ $\left\langle\left\langle-a_{2}, X_{2}\right\rangle\right\rangle \perp \cdots \perp\left\langle c_{m-1}\right\rangle \otimes\left\langle\left\langle-a_{m-1}, X_{m-1}\right\rangle\right\rangle$. Lemma 6 allows
us to apply Proposition 1 with the uniformizing parameter X_{m} and it yields

$$
G\left(\Phi_{F_{m}}\right)=\left(G\left(\Phi_{F_{m-1}}^{m-1}\right) \cap G\left(\left\langle 1,-a_{m}\right\rangle_{F_{m-1}}\right)\right) \cdot F_{m}^{\times 2} .
$$

The induction hypothesis yields

$$
G\left(\Phi_{F_{m-1}}^{m-1}\right)=\left(\bigcap_{i=1, \ldots, m-1} G\left(\left\langle 1,-a_{i}\right\rangle\right)\right) \cdot F_{m-1}^{\times 2}
$$

and with an iteration of Lemma 3(b), one has

$$
G\left(\left\langle 1,-a_{m}\right\rangle_{F_{m-1}}\right)=G\left(\left\langle 1,-a_{m}\right\rangle\right) \cdot F_{m-1}^{\times 2} .
$$

Since $k^{\times} \cap G\left(\left\langle 1,-a_{m}\right\rangle\right) \cdot F_{m-1}^{\times 2}=G\left(\left\langle 1,-a_{m}\right\rangle\right)$, we have

$$
\begin{aligned}
G\left(\Phi_{F_{m}}\right) & =\left(G\left(\left\langle 1,-a_{m}\right\rangle\right) \cap \bigcap_{i=1, \ldots, m-1} G\left(\left\langle 1,-a_{i}\right\rangle\right)\right) \cdot F_{m}^{\times 2} \\
& =\left(\bigcap_{i=1, \ldots, m} N_{k}\left(a_{i}\right)\right) \cdot F_{m}^{\times 2} .
\end{aligned}
$$

For the equality (2), Proposition 1 shows that

$$
\begin{aligned}
& \operatorname{hyp}\left(\left(q_{j, F_{m}}\right), \Phi_{F_{m}}\right) \cdot F_{m}^{\times 2} \\
& \quad=\operatorname{hyp}\left(\left(q_{j, F_{m-1}}\right), \Phi_{F_{m-1}}^{m-1},\left\langle 1,-a_{m}\right\rangle_{F_{m-1}}\right) \cdot F_{m}^{\times 2} \\
& \quad=\operatorname{hyp}\left(\left(q_{j}\right),\left\langle 1,-a_{1}\right\rangle,\left\langle 1,-a_{2}\right\rangle, \ldots,\left\langle 1,-a_{m}\right\rangle\right) \cdot F_{m}^{\times 2}
\end{aligned}
$$

due to the induction hypothesis applied with $m-1$ and the set of k-forms $\left(\left(q_{j}\right),\left\langle 1,-a_{m}\right\rangle\right)$. We showed by induction the two equalities. Taking $q_{j}=0$ in the equality (2), we have

$$
\operatorname{hyp}\left(\Phi_{F_{m}}\right) \cdot F_{m}^{\times 2}=\operatorname{hyp}\left(\left\langle 1,-a_{1}\right\rangle, \ldots,\left\langle 1,-a_{m}\right\rangle\right) \cdot F_{m}^{\times 2}=N_{M / k}\left(M^{\times}\right) \cdot F_{m}^{\times 2} .
$$

Since $k^{\times} \cap F^{\times 2}=k^{\times 2}$, it is easy to check that one has an isomorphism

$$
\Lambda(\mathrm{A} / k) \xrightarrow{\sim} G\left(\Phi_{F}\right) / \operatorname{hyp}\left(\Phi_{F}\right) \cdot F^{\times 2} .
$$

Application. Let a_{1}, a_{2}, a_{3} be in k^{\times}such that $a_{1} / a_{2}, a_{2} / a_{3} \notin k^{\times 2}$ and let us denote $\left.F=k\left(\left(X_{1}\right)\right)\left(\left(X_{2}\right)\right)\right)\left(\left(X_{3}\right)\right)$ and $M=k\left(\sqrt{a_{1}}, \sqrt{a_{2}}, \sqrt{a_{3}}\right)$. Let us apply Theorem 4 to the quadratic form

$$
\begin{aligned}
\Phi & =\left\langle\left\langle-a_{1}, X_{1}\right\rangle\right\rangle \perp\langle-1\rangle \otimes\left\langle\left\langle-a_{2}, X_{2}\right\rangle\right\rangle \perp\left\langle a_{1}\right\rangle \otimes\left\langle\left\langle-a_{3}, X_{3}\right\rangle\right\rangle \\
& =q \perp \mathbb{H} \perp \mathbb{H} .
\end{aligned}
$$

The form q has rank 8 and signed discriminant 1 , and with the notations of the theorem above, one has

$$
\Lambda(\mathrm{A} / k) \xrightarrow{\sim} G\left(\Phi_{F}\right) / \operatorname{hyp}\left(\Phi_{F}\right) \cdot F^{\times 2} \xrightarrow{\sim} G\left(q_{F}\right) / \operatorname{hyp}\left(q_{F}\right) \cdot F^{\times 2} .
$$

Then, for the field $F=\mathbb{Q}_{2}(x)\left(\left(X_{1}\right)\right)\left(\left(X_{2}\right)\right)\left(\left(X_{3}\right)\right)$, which has cohomological dimension 6, or for the field $F=\mathbb{Q}(x)\left(\left(X_{1}\right)\right)\left(\left(X_{2}\right)\right)\left(\left(X_{3}\right)\right)$, following Remark 4 and taking $a_{1}=x+4, a_{2}=x+1, a_{3}=x$, we have $G\left(q_{F}\right) / \operatorname{hyp}\left(q_{F}\right) . F^{\times 2} \neq 1$ and the variety $\operatorname{PSO}(q) / F$ is not F-stably rational. M ore precisely, in this case we have

$$
\begin{aligned}
\Phi & =\left\langle\left\langle-(x+4), X_{1}\right\rangle\right\rangle \perp\langle-1\rangle \otimes\left\langle\left\langle-(x+1), X_{2}\right\rangle\right\rangle \\
& \perp\langle x+4\rangle \otimes\left\langle\left\langle-x, X_{3}\right\rangle\right\rangle \\
& =q \perp \mathbb{H} \perp \mathbb{H},
\end{aligned}
$$

and $-x$ is a similarity factor of q_{F} such that $-x \notin \operatorname{hyp}\left(q_{F}\right) \cdot F^{\times 2}$.

REFERENCES

1. E. Bayer-Fluckiger and R. Parimala, Galois cohomology of the classical groups of cohomological dimension ≤ 2, Invent. Math. 122 (1995), 195-229.
2. V.I. Chernousov, The group of similarity ratios of a canonical quadratic form, and the stable rationality of the variety PSO, Math. Zametki 55, No. 4 (1994), 114-119; Math. Notes 55, N os. 3-4 (1994), 413-416.
3. J.-L. Colliot-Thélène and J.-J. Sansuc, La R-équivalence sur les tores, Ann. Sci. École Norm. Sup. 10 (1977), 175-230.
4. J.-L. Colliot-Thélène and J.-J. Sansuc, Principal homogeneous spaces under flasque tori: A pplications, J. Algebra 106 (1987), 148-205.
5. J. Dieudonné, Sur les multiplicateurs des similutudes, Rend. Circ. Mat. Palermo 3 (1954), 398-408.
6. P. Gille, R-équivalence et principe de norme en cohomologie galoisienne, C.R. Acad. Sci. Paris 316 (1993), 315-320.
7. M.-A. K nus, T. Y. Lam, D. B. Schapiro, and J.-P. Tignol, Discriminants of involutions on biquaternion algebras, Proc. Sympos. Pure Math. 58, No. 2 (1995), 279-303.
8. D. B. Leep and A. R. Wadsworth, The transfer ideal of quadratic forms and a Hasse norm theorem mod squares, Trans. Amer. Math. Soc. 315 (1989), 415-431.
9. A. S. M erkurjev, R-equivalence and rationality problem for algebraic groups, to appear.
10. A.S. M erkurjev, A norm principle for algebraic groups, Algebra i Analiz 7 (1996), 77-105; St. Petersburg Math. J. 7, No. 2 (1996), 243-264.
11. A. S. M erkurjev, K-theory of simple algebras, Proc. Sympos. Pure Math. 58, No. 1 (1995), 65-83.
12. A . S. M erkurjev, Simple algebras and quadratic forms, Izv. Akad. Nauk SSSR 55 (1991), 218-224; Math. USSR-Isv. 38 (1992), 215-221.
13. A. S. M erkurjev, The norm residue homomorphism in degree 3, Dokl. Akad. Nauk SSSR 261 (1981), 542-547; Soviet Math. Dokl. 24 (1981), 546-551.
14. A. S. M erkurjev and J.-P. Tignol, The multipliers of similitudes and the Brauer group of homogeneous varieties, J. Reine Angew. Math. 461 (1994), 13-47.
15. V. P. Platonov, On the Tannaka-A rtin problem, Soviet Math. Dokl. 16 (1975), 467-472.
16. D. B. Schapiro, J.-P. Tignol, and A. R. Wadsworth, Witt rings and Brauer groups under multiquadratic extensions, J. Algebra 78 (1972), 58-90.
17. W. Scharlau, "Quadratic and Hermitian Forms," Springer-V erlag, New Y ork, 1985.
18. A. H. Schofield and M.Van den Bergh, The index of a Brauer class on a Severi-Brauer variety, Trans. Amer. Math. Soc. 333 (1992), 729-739.
19. J.-P. Serre, C ohomologie galoisienne, in "Lecture N otes in M ath," V ol. 5, Springer-V erlag, New Y ork/Berlin, 1994.
20. J.-P. Serre, "Corps locaux," 2nd ed., H ermann, Paris, 1968.
21. J.-P. Tignol, Réduction de l'indice d'une algèbre simple centrale sur une quadrique, Bull. Soc. Math. Belg. Sér. A 42 (1990), 735-742.
22. J. Tits, Classification of algebraic semisimple groups, Proc. Sympos. Pure Math. 9, No. 1 (1966), 33-62.
