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Let k be a field of characteristic # 2 and k, a separable closure of k.
We say that an algebraic variety X /k is stably k-rational if there exist two
affine spaces A7, A% and a k-rational map A™ X X = A". Merkurjev [9]
gave a criterion of stable k-rationality for the adjoint classical groups with
absolute rank < 3, which covers the case of the variety PSO(g) for any
quadratic form g /k of rank < 6. This criterion gives examples of field &
and quadratic form ¢ of rank 6 with non-trivial signed discriminant such
that the variety PSO(q) is not stably k-rational. The main result of this
paper is the following:

THEOREM. There exist a field k of characteristic 0 with cohomological
dimension 3 and a quadratic form q/k with rank 8 and trivial signed
discriminant such that the variety PSO(q) is not stably k-rational.

This is the first example of the quadratic form with trivial signed
discriminant such that the variety PSO(q) is not stably k-rational and since
[9], the 8-dimension is minimal. This example is an adjoint group which is
an inner form of the split adjoint group of type D, [22] and it is the first
example of an adjoint semisimple group which is an inner form and which
is not a stably k-rational variety. In Section 3, we give another proof of the
theorem with cd(k) = 6 which is more elementary because we don’t use
the Index Reduction Theory.

I thank J.-P. Tignol for answering my question about multiquadratic
extensions (cf. Proposition 3) and the referee for pointing out a mistake in
the first version of the paper.

Notations. We denote by G, = Spec(Z[t,1/t]), A" = Spec(Z[t,,

ty,...,t,]) and for any scheme X, we denote by G, x = G,, Xspeez) X
and A% = A" X5..z) X the affine space of rank n on X (n € N). Let
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X' — X be afinite locally free morphism of schemes. We can write [4] the
NX’ X
exact sequence of X-tori 1 — R},/XGm - Ry ,xG, 5 G, x—1

where Ry, xG,, is the restriction from X' to X of the X'-torus G, .

Let X be a k-variety geometrically irreducible. We say that X is a
k-rational variety if there exist an affine space A, and a k-birational map
X = A’. We say that X is a stably rational k-variety if there exist two
affine spaces A™, A" and a k-birational map A™ X X = A". One defines
the norm group of X which is denoted N, (k) as the subgroup of k*
generated by the N, ,,(L*) for any finite field extension L /k such that
X(L) is not empty.

If A/k is a central simple algebra, there exists a division algebra T /k
and an integer r (Wedderburn’s theorem) such that 4 — M(T) and the
integer r and T are well defined. Then we denote ind/(D) =
Vdim,(T) € Z and deg(A) = y/dim,(A) € Z. If A/k, B/k are two
central simple algebras, we say that .4 and B are similar and we denote
A ~ B if there exist some integers m, n such that M, (A4) = M, (B). If
a,b € k*, we denote by (a,b), the standard quaternion algebra. We
assume that all quadratic forms will be regular. If gq/k, q'/k are two
guadratic forms, we denote by g L g’ their orthogonal sum, by ¢ ® g’
their tensor product, and by rk(g) the rank of g. We denote by C(q) the
Clifford algebra of ¢ and by C,(q) the even Clifford algebra of ¢g. We
denote by W(k) the Witt ring of the field &, by I(k) the fundamental ideal
generated by forms with even rank, and by disc: I(k) = k*/k*? the
morphism of signed discriminant. We will identify often a quadratic form ¢g
and its class [¢g] € W(k). If g is a k-quadratic form and E/k a field
extension, we denote by g, the quadratic form extended to E.

If (a)_, , is afamily of elements k*, we denote by <a,,4a,,...,qa,)
''''' ,a; X2 and by {{aj,a,,...,a,)) the n-fold
Pfister form {1,a,) ® {1,a,) ® --- ® {1,4a,). We denote by H = (1, —1)
the standard hyperbolic form of rank 2.

We recall that a central simple algebra D/k is a k-biquaternionic
algebra if D /k is isomorphic to an algebra (a, b) ®, (¢, d) with a,b,c,d €
k™ [7]. We can associate to this isomorphism the Albert form {a, b, —ab,
—c¢, —d, cd). Although this Albert form {a, b, —ab, —c, —d, cd) is not
canonical, its similarity class is well defined and depends only on D. We
said that a quadratic form ¢ is an Albert form for D if ¢ is similar to
{a,b, —ab, —c, —d, cd). We recall that D is a division algebra iff the
form {a, b, —ab, —c, —d, cd) is anisotropic, and that a k-form ¢ with
rank 6 and a trivial signed discriminant is an Albert form for some central
simple algebra which is similar to C(¢).

If ¢ is a quadratic form with even rank, we denote by SO(q) (resp.
PSO(q)) the special orthogonal group of g (resp. projective special orthog-
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onal) and by G(q) the group of similarity factors of g, i.e.,, G(g) = {a €
k| aq = q}. 1t is well known that G((1, —a)) = Nk(w—)/k(k(\/g)x). If

a € k*, we will denote sometimes N, (a) = Nk(ﬁ)(k(\/g)x).

We denote by cd(k) the cohomological dimension of a field k [19] and
by u(k) the wu-invariant of k, i.e., the supremum in N U {x} of the
dimensions of anisotropic k-quadratic forms. If P c k* is a subset of k*,
we denote by Z{ P) the subgroup of k* generated by P.

1. PRELIMINARIES

1.1. Norm Groups and R-Equivalence [9, 10]

For any quadratic space (g, V) of even rank n, we denote by hyp(g) the
subgroup of k™ generated by the N, ,,(L*) for any finite field extension
L /k such that g, is hyperbolic. This condition can be written in another
way. Indeed, let X, be the variety of totally isotropic subspaces of }” with
dimension n/2. It is known that X, is a k-projective smooth variety
which has a k-rational point iff ¢ =0 € W(k), i.e., g is an hyperbolic
form. Then we have hyp(g) = N, (k). This invariant is connected with the
study of R-equivalence on the group PSO(g). Recall the definition of
R-equivalence.

Let G/k be a connected linear algebraic group. We recall that two
rational points g,, g, € G(k) are directly R-equivalent if there exists
g(®) € G(k(1)) such that g(0) =g, and g(1) = 1 and that the R-equiv-
alence is the equivalence relation generated by this elementary relation. It
is known [3] that the group G(k)/R is trivial if the variety of the group
G/k is stably k-rational. Merkurjev gave a formula which computes
G(k)/R for the adjoint classical groups. In the case of a group PSO(g), we
have

PSO(q)(k)/R > G(q)/hyp(q).k*?.

Moreover, the invariant G(k)/R (on suitable extensions of k) allows us to
determine if an adjoint semisimple classical group with absolute rank < 3
is (or is not) a stably k-rational variety. More precisely, in the case of
PSO(g) with a quadratic form g of rank < 6. Merkurjev’s criterion is the
following:

THEOREM 1[9]. Let q/k be a quadratic form with rank 2m (m = 2 or 3)
and signed discriminant (d) € k™ /k™?.

@ If d €k*?® the variety PSO(q) is k-rational and one has
G(q)/hyp(q).k*? = 1.
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(b) Ifd & k*?, we denote by L = k(d) and Cy(q) the even Clifford
algebra of q which is a central simple algebra over L. One has the following
alternative:

() If ind,(Cy(q) =1 or 2, then the variety PSO(q) is stably
k-rational and G(q) /hyp(q).k*? = 1.

(i) 1f Ind,;(Cy(q)) = 4, then there exists a field extension E /k such
that G(q,)/hyp(q).E*? # 1 and the variety PSO(q) is not stably k-ra-
tional.

Case (ii) can appear only if rk(g) = 6. The proof of the theorem uses in
a crucial way the Index Reduction theory (cf. [11, 18, 21]).

Remark 1. If k is a field (car(k) # 2) with cohomological dimension 1,
it is well known that any group PSO(gq) is a quasi-split group and a
k-rational variety. For illustrating case (ii) of the theorem, it is necessary to
assume cd(k) > 2. We will show that cd(k) = 2 is sufficient.

The construction by Merkurjev [12] for any integer n (n > 2) of a field
with u-invariants (cf. Notations) equal to 2n from a division algebra D /k
is functorial in k. More precisely, if D /k is isomorphic to O, ®, 0, - ®,
Q,_, where the Q;’s are quaternion algebras, one associates a field
F(k, D) with cohomological dimension 2 satisfying ind(D ;. ) =2"""*
and u(F(k, D)) = 2n. Moreover, if k’/k is a field extension satisfying
ind(D,.) = ind(D,), one has a natural embedding F(k, D) < F(k', D,.).
Let us apply this remark. We fix a field k of characteristic zero, D/k
a division algebra which is a tensor product of 2 quaternion algebras,
and a proper quadratic field extension k' = k(yd) satisfying ind(D,) =
ind(D,.) = 4. For example, we can take k = Q(X}, X,,..., X,, ;), O; =
(X, Xpi) for i=1,...,n—1 and k' =k(;/X;). Then we denote
F = F(k,D) and F' = F(k', D,.). One has a natural embedding F — F’
and since ind(Dy.) = 4, one has ind(Dg/;,) = 4. Denote L = F(Jd). Let
us fix an Albert form ¢ for D which represents —1 and let us define the
k-form g with rank 6 and signed discriminant d by {1, —d) 1 sy =¢q 1L H.
Then Cy(q); ~ D, ,cd(F) = 2, and g is an example of the quadratic form
of case (ii) such that the variety PSO(g) is not stably F-rational.

1.2. Norm Group of a Family of Quadratic Forms

For any family of quadratic forms (¢,),_, ., with even rank, we denote
by hyp(q;, g5, ---,4,,) the subgroup of k* generated by the N, ,,(L*)
such that the forms ¢, , are hyperbolic (i = 1,...,m). Let X; be the
variety of totally isotropic subspaces of ¢; with dimension dim(g;)/2. Then
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by definition, we have

hyp( g1, Gz -+ @) = Nx,xx,- xx, (k) Ck*.
LEmMMA 1. Let (q;/k);_, ., be a family of quadratic forms with even

rank and q /k a quadratic form with even rank.

(@ G LH=G({.

@) hyp(q,,qs,--.2q,,q L H) =hyp(qy, qr---1q,, Q)
(b) hyp(QDqZ""IQm) C Nio1 . wmhyp(g).

(¢) If L/kis a finite field extension, one has

NL/k(hyp(ql,L’QZ,L ----- 4 1)) <hyp(q:, 45, -, Gm) -

(d) Let L/k be a finite splitting field extension for the forms
(g)i-1

NL/k(hyp(CIL)) chyp(q1. 92,1 Gm» q)-

(e) (respectively [5, 9]). Denote (d) = disc _(q) € k*/k*?. Then
G(q) =G((1,-d)) N G(q L (1, —dy)

and

hyp(q1, 92+ 4nr q)
=hyp(q1. 95+ Gy, (1, —d), q L {1, —=d))

= Nk(‘/d—)/k(hyp(ql,k(\/zj)' 92, kJa) - D, k() ‘Ik(\/i)))-

() Let G be a subgroup of the profinite Galois group Gal(k,/k) and
k = k8. Then

hyp( g1 7 @2.%r -+ A7) = U~hyp(611,k': Qo ks s Qi)
k'ck

where the union is taken on the extensions k' C k of finite degree over k.

Remark 2. The main result of this paper is based on examples of
guadratic forms for which the inclusion (b) is strict. For (e), Merkurjev’s
Theorem 1 shows that the inclusion Nz, (G(q, 7)) < G(q) is strict
in general. For a quadratic form with rank 6 and signed discriminant d,
one has indeed G(q)/hyp(q).k*?* = G(q)/Nyyay,(hyp(qp ja))-k*% =
G(q)/Nk(\/,7)/,((G(qk(‘/,7))).kX2 and this group is not trivial in general.
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Proof. The assertion (a) is a straightforward result of Witt's theorem.
The assertions (b), (c), and (d) are direct consequences of the definition
and of the functoriality of norm maps for a tower of field extensions. Let
us show the assertion (e). It is clear that we can assume d € k*\ k™2,
First, the inclusion G({1, —d)) N G(g L {1, —d)) € G(g) is obvious.
Conversely, if a € G(g), one has {1, —a) ®q = 0 € W(k) and since g =
{1, —d) mod I?(k), one has {1, —a) ® {1, —d) = 0 mod I3(k) and it is
known [17, p. 88, Theorem 14.3] that {1, —a) ® {1, —d) = 0 € W(k).
Hence {1, —a) ® (¢ L {1, —d)) =0 W(k)and a € G(1, —d)) N G(q
11, =d).

The second formula of (e) is simpler and results from the following fact:
any field extension L /k such that g, is hyperbolic satisfies d € L*? and
then contains a subfield isomorphic to k(Vd).

() This identity is formal. There exists a variety X/k such that
hyp(qy 1+ o k- - @, i) = Nx(k) and it is not difficult to show that Ny (k)
= U <t Ny(k') for any variety Y/k. Then one has the formula. ||

Let us give an application of Scharlau’s transfer map [17, Sect. 5] which
will be useful for showing Proposition 1.

LEMMA 2. Let q,q' be k-quadratic forms and k' = k(x) /k a finite field
extension with degree [k’ : k]. Assume that ¢ = {1,x) ® q' € W(k").

@ If [k':k] is even, then one has (1, —Nk,/k(x)> ® q =
(L, =Ny 1 (%)) ® ' = 0 € W(k), i.e., N, K(x) € G(g) N G(g").

(b) If [k':k]is odd, then one has q = {1, Nk,/k(x)> ® q' € W(k).

Proof. Denote r = [k’ : k]. In the two cases, we apply Scharlau’s trans-
fer s, : W(k(x)) — W(k) associated with the linear form s:k(x) — k
defined by s(1) = 1, s(x) = s(x?) = --- = s(x""1) = 0. One has a projec-
tion formula s.(¢, ® ) = ¢ ® 5, () for any ¢ € W(k), y € W(k')
which reduces the calculation to s, ({1)) and s, ({x)).

(@ If r iseven, one has s, ({1)) = (1, =N, ,,(x)) and 5, ((x)) = 0.
Applying s, to g, one has (1, =N, ,(x)) ® g =<1, =N, ,(x)) ® ¢' €
W(k). Moreover, since {(x) ® g =<1, x) ® q' € W(k'), it follows
(LN (x)) ® ¢' =0 € W(k)and (1, =N, ,(x)) ® g = 0 € W(k).

(b) If r is odd, one has s5,({1)) = (1) and s, ((x)) = {N;. . (x)).
Applying s, to g, we obtain g = {1, N, (x)) ® q¢' € W(k). 1

1.3. Milnor’s Residue Maps (cf. [17, p. 207])
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We denote by K = k((¢)) the field of formal series with valuation ring
O = k[[t]]. Recall that there exists an exact sequence of groups

0 - W(k) > W(K) S W(k) - 0.

The map i is the restriction of k to K and let us describe the map 4,. A
K-quadratic form ¢ can be diagonalized in {u,,...,u,,, tv,,...,t,) where
u;,v; € O*. Then d(q) =<0,,...,0,) where 7, € k*=(0/t)*. Let us
give an application for similarity factors.

LEMMA 3. Let vy be a k-quadratic form.

(@ If y is not hyperbolic, then G(vy;) = G(y).K*2.
(b) One has GK{t)) ® y) = 7{t).G(y).K*%.

Proof. () The inclusion G(y).K*? c G(v,) is obvious. Conversely, let
x be in G(yg). Then x = t%’ with a € KX, a € k¥, and d =0 or 1. If
d=1o0nehas 0 =91, —x)® y) = — a) ® y< W(k) then vy is hy-
perbolic and d = 0. Hence a € G(y,) N k™. It follows 0 = ({1, —a) ®
Yk =i{1, —a) ® y). Hence 0 =<1, —a) ® y € W(k), a« € G(y), and
x € G(y).K*2.

(b) If the form v is hyperbolic, then the assertion is obvious. We can
assume that y is not hyperbolic. The inclusion Z{t).G(y).K*?* c G(¢y) is
obvious. Conversely, let x be in G(gg). Then x = t*®@a’a with a € O*
and a € G(gg) N k*. Applying the residue map ¢:W(K) — W(k), it
yields 0 =01, —a) ® o) = (L, —a) @ {L,t) ® y) =<1, —a) ® y
€ W(k). Hence a € G(y) and x € Z{t).G(y).K*2. 1

2. PROOF OF THE MAIN RESULT
The main result is a direct consequence of the following proposition and
Merkurjev's Theorem 1.

PROPOSITION 1. Let k be a field of characteristic zero. Let (q;);_, be

..... m

satisfying the following condition
(C) Forany b € k*, the form {{ —a, b)) L  is not hyperbolic.

We denote by K = k((¢)) the field of formal series power with valuation
ring O = k[[¢]] and

g=<{{—a,t)) L.
Then

G(gqx) = (G({1, —a)) N G(¥)).K*?
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and

m, 4x)-K*% = hyp((q;), <1, —ay, ¥).K**.

Proof. First, we observe that the condition (C) implies that the form
is not hyperbolic.

st Step. The first equality. The inclusion (G((1, —a)) N G()).K*?
c G(q,) is obvious. Conversely, let x € G(gx). Then x = t8%b with
BeK*, d=0or 1 and bek* If d=1, applying the residue map
d:W(K) - W(k), one has 0= d(1, —bt)y ® q) = d({{ — bt,t, —a))
1< =bt)y ® ) = = b, t, —ay) LKL, —bt) ® §p) = { — b, —a))
L{=b)® e Wk). Since —be GK{—b,—a))), it yields {{ —
b, —ay) 1L =0 € W(k), which is a contradiction for the hypothesis (C).
It follows that d = 0 and b € G(q,) N k*. Applying again the map 4,,
one can see easily that b € G({1, —a)) and since g = {{t)) ® {1, —a) L
Y, one has b € G({1, —a)) N G() and x € (G(1, —a)) N G()).K*2.

2nd Step. Reduction to the case where the base field k has no proper
odd extension. For the second equality, we will show that we can assume
that the base field & has no proper odd extension. First, let us check that
the condition (C) stays when we extend the scalars with an odd field
extension. If k'/k is a finite odd extension and if there exists b’ €
k' such that (( —a,b’)) L ¢y =0¢€ W(k'), since [k':k(b")] is odd,
Springer’s theorem for odd extensions [17, p. 62] yields ({ — a,b’)) 1L ¢ =
0 € W(k(b")) and Lemma 2 implies {{ —a, Ny, (b)) L y=0€
W(k), which is a contradiction for the hypothesis (C).
Let G C Gal(k,/k) be a 2-Sylow subgroup of the profinite Galois group

Gal(k,/k), k = k6 and K = K ®, k and let us assume that

hyp((‘]i,[()izl

hyp((4;. 7). az)-K®% = hyp((q:.7). <1, —adz, y).K*2.

Due to Lemma 1(f), one has

hyp((q..7). (1, =)z, yr). K2

= U~hyp((qi,k’)'<1' —a)y, ‘ﬂk')-(K & k,)le
k'ck

where the reunion is taken on the subextensions k' C k finite over k.
Now, we can show the equality

o4 )- K% = hyp((gq,), (1, —a), ¥).K*?,

where the inclusion O is obvious. For the inverse inclusion, let x be in

hyp((qi,K)i=l

.....
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hyp((q; x)i—1. . mrqx)-K*?. Since the inclusion

hyp((qz‘,K)i=1 ..... m’QK)'KXZ - hyp((‘li,[?)ﬂl?)jzxz’

there exists a finite odd extension k' /k such that

x e hyp((g; 1) {1, —adi, g ) (K ®, k')

Hensel’s lemma allows us to assume that x € k*. If [k': k] = 2p + 1, one
has N, ,(x) = x.x?”? and Lemma 1(c) yields x € Hyp((q)),
(1, —a), §).K*%

3rd Step. The Second Equality. We can assume that the field k& has
no proper odd extensions. The inclusion

hyp((‘li)l (1, —ay, ‘l’)-KXZ - hyp((qz',K)i=1 mvCIK)-KXZ

is obvious. For the inverse inclusion, we have to show for any finite
extension L/K splitting g and the g/s that N, (L*) < hyp((q,),
(1, —a), ¥).K*?. Let L/K be such a finite extension with valuation ring
O, , residue field k', ramification index e, and residual index f. Let us
denote by K’ /K the maximal non-ramified extension of K with valuation
ring O’. Since k has characteristic zero, the field K’ is k-isomorphic to
k'((¢)). Therefore we can assume that K' = k'((¢)).

L
|e
K’
|f
K

We recall that there exists an uniformizing parameter 7 of L /K such that
m‘t™* € k'. If 7 is an uniformizing parameter of L, then 7¢ ! has
valuation 1 and since O /0" = k'*/k'*¢, there exists a € O’ such
that (am)’g™! € k’. Therefore we can take an uniforming parameter 7 of
L such that 7¢ = ut with u € k’. With Hensel’s lemma, we can compute
easily the norm group N, (L) up to U, = Ker(O*— k*), which is
sufficient because one has U, ¢ K*?.

LEMMA 4. N, (L) = Z<Nk’/k((_l)e+lu)tf’(Nk'/k(klx))e> mod
U,.
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In order to use the hypothesis g, hyperbolic, we write the functoriality
of Milnor’s residue maps for the extensions K ¢ K’ C L.

0— Wk —5 WK 2 Wk —0

Resil Res’,@l lResﬁ,'

0— WK) —5 WK) —% Wk) —0 (%)

R

0— WK) — WL -2 Wk) —0

where p = 0 if e is even and p = idy,,, if e is odd. Since L /K splits the
g;'s, the diagram shows that the g; ,’s are hyperbolic forms.

(i) 1st Case. e Is Even. Lemma 4 shows that N, ,(L*) C
Z{N;. ,, (=t ). K*?. 1t is sufficient to show that f is even and that
Ny, (=u) € hyp(g;, <1, —a), y).k**. One has ¢, = (t,—a)) L ¢ =
Kume, —ay) L= u, —ay) L ¢ =ju, —a))r L ). Then q, =
Jj({u, —ay) L ) and since g, = 0 € W(L), it follows

0=u, —a)r L, € W(k'). (%)

The hypothesis (C) implies that f=[k’:k]=2°> 1 and f is even. It
remains to show that N,. ,(—u) € hyp((¢), <1, —a), y).k** 1f [k": k(u)]
=2">1, one has N, ,,(—u) € k** and there is nothing to do. We can
assume that k' = k(u). Let us denote k, = k(u®) C k' = k,(u) which is a
guadratic extension and let us consider the following diagram of quadratic
extensions:

k'(Va)
k' =k1(u)/ \kl(‘/;)
" e

Lemma 2 applied to the extension k’'/k, = k(u)/k, and the identity
(Liuy ® (L, —ay = { — 1) ® .. (x =) yields

Ne s (u) € G({1,a)k,) N G(wkl).

Then N, ,, () = Ny, (=1) € N (a1 (ky(Ya)*). On the other hand,
since k,(u) = k' and k,(Va) are two quadratic extensions of k,, it is
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known (Lemma 1.4 of [7]) that

Ne sl k™) 0 Ny o (V@) ™) = N (K (V)™ ) e

The extension k’'(Va) splits the forms (1, —a), Voo =< =1, —uy
(1, —a),» and the g;/'s. Therefore one has N, (-u) €
hyp((q;, k1), <1, —a)k,, lpkl).klxz. Applying Lemma 1(c) to the extension
k,/k, it follows that N, () = N, (N, (—u)) € hyp((g),
(1, —a), ¥).k™%. We showed this case.

(ii) 2nd Case. e Is Odd. With the diagram of Milnor’s residue maps, we
see that the form (1, —a), = d_(q,) is hyperbolic. Moreover, 0 = g, =
jK1, —=a)y L ). Then the form ¢, is hyperbolic. Since ¢ is not
hyperbolic, according to Springer’s theorem for odd extensions [17, p. 62],
the integer f = [k':k] is even. Hence, one has N, (L*) C
N, (k'™).K*?. The forms g, ;. ¢ and <1, —a), are hyperbolic and
then it vyields Nk,/k(k’x) < hyp((g)), ¥, <1, —a)) and NL/K(LX) c
hyp((g), (1, —a), ¥).K*2. 11

THEOREM 2. Leta € k*\ k*? and D /k be a biquaternion algebra and let
y/k be an Albert form associated with D which represents —1. Denote
K = k((#)). Let us define the k-form q, and the K-form q by

(1,—a) Lp=q, L H
and

{—a,t)) Lp=q L H.
One has rk,(q,) = 6, disc . (gy) = (a),rk(q,) = 8, and disc ,(q) = 1.

(@ If ind(Dy 7)) # 1, there exists a natural isomorphism

G(40) /hyp(qo) k2 > G(qx) /hyp(qx) - K*2.

(b) If ind(Dy( 7)) = 4, there exists a field extension E/k such that
G(qge,£)/NYP(qxe ) (K & E)*? # 1 and such that the variety PSO(q) is
not stably K-rational.

Proof. Due to Lemma 1(a), we can do the proof with ¢, = {1, —a) L ¢
and g = { —a,t)) L .

(@) We will apply the preceding proposition to the form ¢ and we
have to check hypothesis (C). Let b € k™ be such that ({( —a, b)) L =
0 € W(k). Then the form ¢, is hyperbolic and the algebra D,z is
split, which is a contradiction for the hypothesis ind(Dy ;) > 1. The
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hypothesis (C) is checked and the proposition yields

G(qx) = (G({1, —a)) N G(¥)).K*?

and
hyp(gx).-K*? = hyp(<1, —a), ). K*2.

Due to Lemma 1(e), one has G(g,) = GK1, —a)) N G(¥) and
hyp(g,).k*% = Nk(‘/a—)/k(hyp(l//k(ﬁ))).kx2. Then we have an isomorphism

G(q0) /hyp(q0) k* = G(qx) /hyp(qx) - K*?.

(b) Since ind(Dy ;) = 4, Theorem 1 shows the existence of a field
extension E/k such that a & E*?, ind(Dy ;) =4, and G(qq )/
hyp(qo, £)-E*? # 1. Hence G(qgez)/hyp(qxs £)(K ® E)** # 1 and the
variety PSO(gy ) is not stably K-rational. [

Remark 1 yields a field k with cohomological dimension 2, a quadratic
field extension L =k(Ja), and an Albert form ¢ which represents
—1 and satisfies ind(Cy(¢/),) = 4. We showed the result claimed in the
Introduction.

THEOREM 3. There exist a field k of characteristic 0, with cohomological
dimension 3 and a quadratic form q with rank 8 and signed discriminant 1
such that the variety PSO(q)/k is not stably k-rational.

Due to Theorem 1, the dimension 8 is minimal for such an example with
trivial signed discriminant. On the other hand, we don’'t know if there
exists such an example with cd(k) = 2. The method used here brings
nothing if cd(k) = 2. In this case, due to the Merkurjev—Suslin theorem,
the Galois symbol yields an isomorphism I2(k’) S Br,(k’) for any finite
extension k'/k (cf. [1]). For any quadratic form ¢ with trivial signed
discriminant and Clifford algebra C(q)/k, one has k™= Nrd(C(q)™).k*?
= hyp(¢).k*? = G(g) and the invariant G(q,)/hyp(q,).k*? is trivial on k.

We have to underline that we used the Index Reduction Theory (through
[9] for giving proof of our result. We shall see that with cohomological
dimension 6 instead 3, we can show the same result without the Index
Reduction Theory and thus we can produce explicit elementary examples
of non-rational adjoint groups built from an iteration of Proposition 1 with
a field of iterated formal power series. This method contains some analo-
gies with Platonov’s counterexample [15] to the Kneser—Tits conjecture,
showing the existence of simply connected semisimple groups defined over
a field k, which are not k-rational varieties.
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3. SUMS OF QUATERNIONIC FORMS

First, we introduce an invariant related to the multiquadratic extensions.
This invariant will be used for computing some group PSO(q)/R.

k,,. One defines the group

MAK) =[N N )N () 1

PROPOSITION 2. Let A =(a,);_, ., bea family of elements of k* and
M /k as in the definition. The following assertions hold.

@ hyp(L, —a; )iy )K" = Ny (M¥).k72
(b) Let T be the k-torus defined by the equations

Nejk(¥1) =N, ji(y2) = = =N i(y,,) # 0.

Then, we have a natural isomorphism T(k) /R S5 ACA k).

Proof. We denote by G = Gal(M/k) the Galois group of k,.k, -
k, /k and by G, € G the subgroup which fixes ‘/a—i (i=1,...,m). One
can assume that a; & k% for i =1,...,m and let us denote by o, the
generator of G /G, = Gal(k,/k). One has an injective morphism j:T C

IT,_1, . w Ry, kG, and a morphism g = N, .o j:T - G, whose kernel
is denoted by 7" =1I1,_, Ri,./ka- We define a surjective morphism
of k-tori
p:]eM/k(]:{jmX([?Dm>< 1_[ Riv/ka_)TC 1_[ Rk/ka’
i=1,....om i=1,....m
where

[Py X,y ¥a) ] = Ny (¥) xyi/oi(y) fori=1,...,m.

Let us denote by E =Ry G, XG, XII,_; ., R G, by S=
Ker( p) the torus kernel of p, and by S° the Galois module of cocharacters
of §,ie, §°=Hom,(G,, S). The following lemma is easy to show.

LEMMA 5. H(H, §°) = 0 for any subgroup H C G.

In other words, the morphism p defines an exact sequence of k-tori

15S>ELT 51,
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which is a flasque resolution of the torus T (cf. [3]) and then the boundary
map ¢: T(k) - H(k,S) induces an isomorphism T(k)/R = H(k, S).
Since H'(k, E) = 1[20, chap. X], one has an isomorphism T(k)/p(E(k))
= H(k, S). We consider the following commutative exact diagram

T

l

Ek) -2 T(k) —> T(k)/R —> 1.

o]

k< = Kk~

Since the torus 7' =1T11,_; Rk ,«G,, is a rational variety, the map
T(k) —» T(k)/R factorizes by p and then one has an isomorphism
T(k)/R = T(k)/p(E(k)) = q(T(k))/q > p(E(k)) = A(A/k).

Remark 3. Following [8], if k is a number field, the invariant ACA/k)
is always trivial, and Colliot-Théléne and Sansuc showed that the group
T(k)/R is finite for any torus defined over a field of finite type over the
prime field [3]. Therefore, if the field k is of finite type over the prime
field, the group A(A/k) is finite.

We know that n = 2 yields A(A/k) = 1 [7, Lemma 1.4]. We can show
this with the proposition (b). The torus T is indeed an open subset
of a quadric having a rational point which is a rational variety, hence
1=T(k)/R = ACA/k).

For n = 3, we can deduce the non-triviality of the invariant A of
Proposition 2.4 of [8]. More precisely, one has the following nice result of
Tignol which connects the invariant N, of a triquadratic extensions and A.

ProposITION 3 (Tignol, unpublished). Let A = {a, b, ¢} be a family k*.
Denote M = k(Ya ,Vb,Vc) and E = k(). Then there exists an isomor-
phism of groups

KO No(a) No(b) < N(@) N N(b) N Ni(c)
(kN Ny(a)).(k* 0 Np(b)) Nyt 1 (M) 172

Ny(a,b,c) =

Proof. If the extension E /k is not proper, the two groups are trivial.
We can assume that E /k is a proper extension and we denote by 4 — &
the action of Gal(E/k) on E. One defines the map between the two
quotients with the following map 6. If f = Ng &), £(X).Ng 5y, £(y) € k7,
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we define

0(f) = [NE(\/E)/k(x)] = [szE(\/b_)/k(y)]
€ Ni(a) N N,(b) N Ni(c)  mod N, (M*).k*2.
Let us show that the element 6(f) is well defined. Indeed, if f=
Necjary X ) Ngyy £(y"), one has
Neqjare (6" ™1) = Ny (39" )
€ Ny(a) N Ng(b) = Ny ,z(M*).E*?

using again Lemma 1.4 of [7]. Hence Ny 7, ,(xx' ™) € Ny, (M*).k*?.
On the other hand, if f € (k*N N(a)).(k* N N (b)), then we can assume
Ny e(x) € k* and hence Ny ), (x) € k2. Denoting again the quo-
tient map by 0, we define a morphism of groups

KN Np(a) Ny(b) Ny(a) N N(b) N N,(¢)
S AN @) (N N(B)) Ny o (MU X) K2

Let us show the injectivity of 6. If Np ;) (x) = g°Ny ,1(2) with
g Ek*, z e M*, then

NE/k(NE(‘/a_)/E(x)) = NE/k(gNM/E(Z))'

Hence by [20, chap. X1, Ny @) £(x) = 8Ny, (2)hh~" with h € E. Then
Ni( iy £(x) = (ghh)Xh 2Ny, , (2)). One has

h™ 2Ny ,z(z) € EX*.Ny ,s(M*) = Ng(a) N Ng(b).

Then the preceding equality shows that ghi € kN N,(a). On the other
hand, since f = Ng( @), e(*)Ng( ), £(¥), one has

f= (gh;l)-(fl_zNM/E(Z)NE(\/F)/E()’))-

The second term is an element of N_(b) but has to be also an element of
k*, then f e (kXN Ng(a).(k*N Ng(b)).

Let us show the surjectivity of 6 for finishing the proof. If t € N,(a) N
N (b) N Ni(c), we can choose u € E* such that t = N ,,(u). Since ¢ €
N.(a), one has u € k*.Ny(a); in the same way, one has u € k*.N;(b)
because ¢ € N, (b). Then

u = gNpqa,p(x) = hNpa, (¥ ),



NON-RATIONAL ADJOINT GROUPS 743

and g~ h = Ny oy, £(O)-Ni( jay, £(y) € kN Np(a)Ni(b) has for image by
0, NE(‘/E)/k(x) = gszE/k(u) =t mod k*2. |

Remark 4. We denote by Q, the 2-adic completion of Q. If £ € Q,(x)
(or @(x)), it is shown in [16, Sect. 5.4] that N,(x + 4, x + 1,x) # 1. Then
for A ={x + 4, x + 1, x}, the group A(A/Q,(x)) is not trivial. Let us give
an explicit element of A(A/Q,(x)). Due to Theorem 5.1 of [16], we know
that the class of 2 in Ny(x + 4, x + 1, x) is not trivial. If 6 denotes the
isomorphism N,(x + 4, x + 1, x) = ACA/Q,(x)) given by the proposition,
one computes easily 6(2) = —x. Hence the class of —x is not trivial in
A(A/Q,(x)). There exists an example of non-trivial invariant A with the
base field C(¢,, t,) which has cohomological dimension 2 [16].

THEOREM 4. Assume that the base field k has characteristic 0. Let m be
an integer, m > 2, and A = (a;);_, a family of elements in k™\ k™?
such that a;/a;_, € k™ for i=2,..., m. Denote k; = k(/a;) for i =
1,....m and M =k,.k, -+ k. Let (¢);_, ., be a family of elements
of k* and (X;),_, ., a family of indeterminates on k. Denote F, = k,
F, = k(X)X (X)) G =1,...,m), F=F,, and

b = <C;|_> ® << - a1:X1>> L <Cz> ® << - a21X2>>
L, —a,, X,

Then one has

G(Pp) = (»_10 Nk(ai)).FXZ, hyp(®y).F*? = Ny ;1 (M*).F*?,

and

A(A/K) > G(®y) /hyp(Pp).F*2,

In order to apply Proposition 1, we have to check the validity of
condition (C).

LEMMA 6. Let m, ®,... as in Theorem 4. Denote

D"t =) @ —ay, X)) L{cy) ® {{ —ay, X,)) L -
1 <Cm71> ® << - amfllefl>>'

Then for any b € F_,, one has

{—=a, by L{c,Y®dm" *+0e W(F,_,).
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Proof of the Lemma. We denote by vy @ F;_, — Z the valuation

associated to the uniformizing parameter X,,,_,. " We apply the residue map
dx . W(F,_,) - W(F,_,) to a relation << —a,, b)) L<{c ® ®d""
~be W(F _,) where "be FX_ I vy (b) is even, then (c,_,) ®

m-—1°

{1, -a,_,»y=0e€ W(F,_,) and a,_, " kXN FX2, =k*2 which is
wrong by hypothesis. Then vy (b) "is odd and the map dy  vields
(¢,» ®(1, —a,) L, ) ®(1, —a,_,»=0¢e W(F,_,). Taking the
signed discriminant, we have a,, /a,,_, € k*N F}?, = k™%, which is wrong
by hypothesis. We showed the lemma. |

With this lemma, we can apply Proposition 1. Let us show by induction
on m > 2 the equalities

1 G@p) = A N Nk(a)).FXZ and

@ hyp(q, ;) )P hyp((,), (L, —a),..., (1, —a,)).F*2
for any finite family (g;) of k-forms.

m = 2. Due to Proposition 1 applied to the base field of F, and
forms ({a,, X,)>, ¢ = ®* = {¢;) ® ({ —a,, X;)) and the uniformizing
parameter X,, one has

G((I)FZ) = (G((( —ay, X))r,) N G({1, —a2>p1)).F§2.
Applying Lemma 3 with the uniformizing parameter X, it produces
G({1, —ay)r) = G(41, —a,)).F 2.

Since k*N G({1, —a,).F;?* = G({1, —a,)), one has

G(®;.) =( N G(<1,—a,.>)).F;2 =( N Nk(ai)).FZXZ.

i=1,2 i=1,2
For the other equality, Proposition 1 shows that
hyp((‘];,pz)nq)Fz)-szz
= hyp((qj,F2)7<Cl> ® (- ale1>>F2 L <C2> ® (( — (lz,X2>>).F2X2
= hyp((q,,Fl): <1v _a1>F1| <1| _a2>F1).F2><2

= hyp((g;). <1, —a;), {1, —a,)).F;*  (Lemma3).

m > 3. Let us denote ®" ! = (c;) ® ({ —ay, X)) L {c,) ®
K =ay,, X0y L -+ L<4e,_1p®—a,_;,X,_,)) Lemma 6 allows
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us to apply Proposition 1 with the uniformizing parameter X,, and it yields

G(®y,) = (G(®F 1) N G(L ~a,)r, ) E2

1

The induction hypothesis yields

Gep )= N 6@ -a))Ee,
i=1,..., m—1
and with an iteration of Lemma 3(b), one has
G({1, —a,)r, ,) = G(1, —a,)).F;?,.

Since k*N G({1, —a,,)).F}?, = G(K1, —a,,)), we have

(@) = (G(A=a)n N Gl =a))| B

i=1,..., m—

(N N B

For the equality (2), Proposition 1 shows that
hyp((qj',Fm)'(I)Fm)'Fr;;z
=hyp((q;r, ) P71 AL —a,0n, ) F
= hyp((g;), <L, —a), <L, —az),..., (L, —a,)).F*

due to the induction hypothesis applied with m — 1 and the set of k-forms
(g, <1, —a,,»). We showed by induction the two equalities. Taking g, = 0
in the equality (2), we have

hyp(®;. ).Fx? = hyp({1, —ayp),..., (1, =a,»).F 2 = Ny, (M*).F;?.
Since kXN F*2 = k*2 it is easy to check that one has an isomorphism

A(A/K) = G(®y) /hyp(®p).F*2.

Application. Let a;, a,, a; be in k™ such that a,/a,, a,/a; & k™* and

let us denote F = k(X )(X,)N(Xy) and M = k(y/ay ,\/a,,+/as). Let

us apply Theorem 4 to the quadratic form

o = << _a11X1>> L < _1> ® << _02|X2>> L <al> ® << —a3,X3>>
=gl HLH.



746 PHILIPPE GILLE

The form ¢ has rank 8 and signed discriminant 1, and with the notations

of

the theorem above, one has

A(A/k) = G(®p) /hyp(®p) . F*2 > G(qz) /hyp(qr) . F*2.

Then, for the field F = Q,(x)(X)(X,)({(X3)), which has cohomo-

logical dimension 6, or for the field F = Q(x)((X ) X,)N(X};)), follow-
ing Remark 4 and taking a, =x +4, a,=x+1, a;=x, we have
G(q;)/hyp(q).F*? % 1 and the variety PSO(q)/F is not F-stably ratio-
nal. More precisely, in this case we have

D= —-(x+4), X )LD —-(x+1),X,»
1x+4) 0 —x,X3))
=q L1l HLH,

and —x is a similarity factor of g, such that —x & hyp(q,).F*?.

10.

11.

12.
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