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1 Introduction

Let {ξi}i∈Z be a sequence of centered, non essentially constant and square integrable real
valued random variables. Let {an,i , −kn ≤ i ≤ kn} be a triangular array of real numbers
such that for all n ∈ N,

∑kn
i=−kn

a2
n,i > 0. We are interested in the behaviour of linear

triangular arrays of the form

Xn,i = an,i ξi , n = 0, 1, . . . , i = −kn, . . . , kn , (1.1)

where (kn)n≥1 is a nondecreasing sequence of positive integers satisfying kn −−−−−→
n→+∞

+∞. We

work under a weak dependence condition introduced in Dedecker et al. (2007). We first prove
a central limit theorem for linear triangular arrays of type (1.1) (Theorem 3.1 of Section 3).
Applying this result, we then prove a central limit theorem for the partial sums of weakly
dependent sequences sampled by a transient Z-valued random walk (Theorem 4.1 of Section 4).
This result extends the results obtained by Guillotin-Plantard & Schneider (2003). Peligrad
& Utev (1997) derive a central limit theorem for triangular arrays of type (1.1) under mixing
conditions. Unfortunately, mixing is a rather restrictive condition, and many simple Markov
chains are not mixing. For instance, Andrews (1984) proved that if (εi)i≥1 is independent
and identically distributed with marginal B (1/2), then the stationary solution (ξi)i≥0 of the
equation

ξn =
1
2
(ξn−1 + εn) , ξ0 independent of (εi)i≥1 (1.2)

is not α-mixing in the sense of Rosenblatt (1956). We have indeed α(σ(ξ0), σ(ξn)) = 1/4 for
any n. For any y ∈ R, let [y] denote the integer part of y. The chain satisfying (1.2) is the
Markov chain associated to the dynamical system generated by the map T (x) = 2x − [2x]
on the space [0, 1], equipped with the Lebesgue measure, and it is well known that such
dynamical systems are not α-mixing in the sense that α(σ(T ), σ(Tn)) does not tend to zero as
n tends to infinity. Withers (1981) proves triangular central limit theorems under a so-called
l-mixing condition, which generalizes the classical notions of mixing (such as strong mixing,
absolute regularity, uniform mixing introduced respectively by Rosenblatt (1956), Rozanov
& Volkonskii (1959) and Ibragimov (1962)). The idea of l-mixing requires the asymptotic
decoupling of the ’past’ and the ’future’. The dependence setting used in the present paper
(introduced in Dedecker et al., 2007) follows the same idea. In Section 5 we give lots of
pertinent examples satisfying our dependence conditions. Coulon-Prieur & Doukhan (2000)
proves a triangular central limit theorem under a weaker dependence condition. However, they
assume that the random variables ξi are uniformly bounded. Their proof is a variation on
Lindeberg-Rio’s method developed by Rio (1996,1997). Also using a variation on Lindeberg-
Rio’s method, Bardet et al. prove a triangular central limit theorem, requiring moments of
order 2 + δ, δ > 0. In Section 2, we introduce the dependence setting under which we work
in the sequel. Models for which we can compute bounds for our dependence coefficients are
presented in Section 5. At least, we give an application to parametric estimation by random
sampling in Section 6.

2 Definitions

In this section, we recall the definition of the dependence coefficients which we will use in the
sequel. They have first been introduced in Dedecker et al. (2007).
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On the Euclidean space Rm, we define the metric

d1(x, y) =
m∑

i=1

|xi − yi|.

Let Λ =
⋃

m∈N∗ Λm where Λm is the set of Lipschitz functions f : Rm → R with respect to
the metric d1. If f ∈ Λm, we denote by Lip(f) := supx 6=y

|f(x)−f(y)|
d1(x,y) the Lipschitz modulus of

f . The set of functions f ∈ Λ such that Lip(f) ≤ 1 is denoted by Λ̃.

Definition 2.1 Let ξ be a Rm-valued random variable defined on a probability space (Ω,A, P),
assumed to be square integrable. For any σ-algebra M of A, we define the θ2-dependence
coefficient

θ2(M, ξ) = sup{‖E(f(ξ)|M)− E(f(ξ))‖2 , f ∈ Λ̃} . (2.3)

We now define the coefficient θk,2 for a sequence of σ-algebras and a sequence of R-valued
random variables.

Definition 2.2 Let (ξi)i∈Z be a sequence of square integrable random variables valued in R.
Let (Mi)i∈Z be a sequence of σ-algebras of A. For any k ∈ N∗ ∪ {∞} and n ∈ N, we define

θk,2(n) = max
1≤l≤k

1
l

sup{θ2(Mp, (ξj1 , . . . , ξjl
)), p + n ≤ j1 < . . . < jl}

and
θ2(n) = θ∞,2(n) = sup

k∈N∗
θk,2(n) .

Definition 2.3 Let (ξi)i∈Z be a sequence of square integrable random variables valued in R.
Let (Mi)i∈Z be a sequence of σ-algebras of A. The sequence (ξi)i∈Z is said to be θ2-weakly
dependent with respect to (Mi)i∈Z if θ2(n) −−−−−→

n→+∞
0.

Remark:
Replacing the ‖ · ‖2 norm in (2.3) by the ‖ · ‖1 norm, we get the θ1 dependence coefficient
first introduced by Doukhan & Louhichi (1999). This weaker coefficient is the one used in
Coulon-Prieur & Doukhan (2000).

3 Central limit theorem for triangular arrays of dependent
random variables

Let {Xn,i, n ∈ N, −kn ≤ i ≤ kn} be a triangular array of type (1.1). We are interested in
the asymptotic behaviour of the following sum

Σn =
kn∑

i=−kn

Xn,i =
kn∑

i=−kn

an,i ξi .

Let (Mi)i∈Z be the sequence of σ-algebras of A defined by

Mi = σ (ξj , j ≤ i) , i ∈ Z .

In the sequel, the dependence coefficients are defined with respect to the sequence of σ-algebras
(Mi)i∈Z. We denote by σ2

n the variance of Σn.

3



Theorem 3.1
Assume that the following conditions are satisfied :

(A1) (i) lim infn→+∞
σ2

nPkn
i=−kn

a2
n,i

> 0,

(ii) limn→+∞ σ−1
n max−kn≤i≤kn |an,i| = 0.

(A2) {ξ2
i }i∈Z is an uniformly integrable family.

(A3) θξ
2(·) is bounded above by a non-negative function g(·) such that

x 7→ x3/2 g(x) is non-increasing,

∃ 0 < ε < 1 ,

∞∑
i=0

2
3i
2 g(2iε) < ∞.

Then, as n tends to infinity, Σn
σn

converges in distribution to N (0, 1).

Remark:

• Theorem 2.2 (c) in Peligrad & Utev (1997) yields a central limit theorem for strongly
mixing linear triangular arrays of type (1.1). They assume that {|ξi|2+δ} is uniformly
integrable for a certain δ > 0. Such an assumption is also required for Theorem 2.1 in
Withers (1981) for l-mixing arrays. In Coulon-Prieur & Doukhan (2000), the random
variables ξi are assumed to be uniformly bounded.

• The proof of Theorem 2.2 (c) in Peligrad & Utev (1997) relies on a variation on Theorem
4.1 in Utev (1990) (see Theorem B in Peligrad & Utev, 1997). The proof of Theorem
3.1, which is postponed to the Appendix, also makes use of a variation on Theorem 4.1
in Utev (1990) (see also Utev, 1991).

• If θξ
2(n) = O (n−a) for some positive a, condition (A3) holds for a > 3/2.

4 Central limit theorem for the sum of dependent random
variables sampled by a transient random walk

4.1 The main result

Let (E, E , µ) be a probability space, and T : E 7→ E a bijective bimeasurable transformation
preserving the probability µ. We define the stationary sequence (ξi)i∈Z = (T i)i∈Z from (E,µ)
to E. Let (Xi)i≥1 be a sequence of independent and identically distributed random variables
defined on a probability space (Ω,A, P) with values in Z and

Sn =
n∑

i=1

Xi, n ≥ 1, S0 ≡ 0 .

For f ∈ L1(µ) and ω ∈ Ω, we are interested in the sampled ergodic sum

n−1∑
k=0

f ◦ ξSk(ω) .
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By applying Birkhoff’s ergodic Theorem to the skew-product:

U : Ω× E → Ω× E
(ω, x) 7→ (σω, Tω1x)

where σ is the shift on the path space Ω = ZN, we obtain that for every function f ∈ L1(µ),
the sampled ergodic sum converges P⊗ µ-almost surely. A natural question is to know if the
random walk is universally representative for Lp, p > 1 in the following sense: there exists
a subset Ω0 of Ω of probability one such that for every ω ∈ Ω0, for every dynamical system
(E, E , µ, T ), for every f ∈ Lp, p > 1, the sampled ergodic average converges µ-almost surely.
The answer can be found in Lacey et al. (1994) if the Xi’s are square integrable: The random
walk is universally representative for Lp, p > 1 if and only if the expectation of X1 is not
equal to 0 which corresponds to the case where the random walk is transient. In that case,
it seems natural to study the fluctuations of the sampled ergodic averages around the limit.
From Lacey’s theorem (1991), for any H ∈ (0, 1), there exists some function f ∈ L2(P ⊗ µ)
such that the finite-dimensional distributions of the process

1
nH

[nt]−1∑
k=0

f ◦ Uk(ω, x)

converge to the finite dimensional distributions of a self-similar process. Unfortunately, this
convergence on the product space does not imply the convergence in distribution for a given
path of the random walk. A first answer to this question is given in Guillotin-Plantard &
Schneider (2003) where the technique of martingale differences is used. Let us recall that
this method consists (under convenient conditions) of decomposing the function f as the sum
of a function g generating a sequence of martingale differences and a cocycle h − h ◦ T . In
the standard case, the central limit theorem for the ergodic sum is deduced from central
limit theorems for the sums of martingale differences, the term corresponding to the cocycle
being negligeable in probability. In Guillotin-Plantard & Schneider (2003), only functions
f generating a sequence of martingale differences are considered. In this section, where we
prove a central limit theorem for θ2-weakly dependent random variables sampled by a transient
random walk, this reasoning does not hold anymore. We apply Theorem 3.1 of Section 3.

In the sequel, the random walk (Sn)n≥0 is assumed to be transient. In particular, for every
x ∈ Z, the Green function

G(0, x) =
+∞∑
k=0

P(Sk = x)

is finite. For example, it is the case if the random variable X1 is assumed with finite absolute
mean and nonzero mean. It is also possible to choose the random variables (Xi)i≥1 centered
and for every x ∈ R,

P(n−1/αSn ≤ x) −−−−−→
n→+∞

Fα(x) ,

where Fα is the distribution function of a stable law with index α ∈ (0, 1). Stone (1966) has
proved a local limit theorem for this kind of random walks from which the transience can be
deduced. The expectation with respect to the measure µ (resp. with respect to P, P⊗µ) will
be denoted in the sequel by Eµ (resp. by EP, E).
For every function f ∈ L2(µ) such that Eµ(f) = 0, we define

σ2(f) = 2
∑
x∈Z

G(0, x)Eµ(ff ◦ T x)− Eµ(f2) .

5



Let us now state our main result whose proof is deferred to Subsection 4.3.

Theorem 4.1
Let f be a function in L2(µ) such that Eµ(f) = 0. Assume that (f◦T x)x∈Z satisfies assumption
(A3) of Theorem 3.1. Assume that σ2(f) is finite and positive.
Then, for P-almost every ω ∈ Ω,

1√
n

n∑
k=0

f ◦ TSk(ω) −−−−−→
n→+∞

N (0, σ2(f)) in distribution.

Remark:
1. In the particular case where (f ◦T x)x∈Z is a sequence of martingale differences, we recognize
Theorem 3.2 of Guillotin-Plantard & Schneider (2003). Indeed, assumptions are satisfied using
orthogonality of the f ◦ T x’s and then, σ2(f) = (2G(0, 0)− 1)Eµ(f2).
2. The stationarity assumption on the sequence (ξi)i∈Z can be relaxed by a stationarity
assumption of order 2, that is:

∀ i ∈ Z , Var ξi = Var ξ1 and

∀ i < j , Cov(ξi, ξj) = Cov(ξ1, ξ1+j−i) .

4.2 Computation of the variance

The random walk (Sn)n≥0 is defined as in the previous section. The local time of the random
walk is then defined for every x ∈ Z by

Nn(x) =
n∑

i=0

1{Si=x} .

The self-intersection local time is defined for every x ∈ Z by

α(n, x) =
n∑

i,j=0

1{Si−Sj=x}

and can be rewritten using the definition of the local time as

α(n, x) =
∑
y∈Z

Nn(y + x) Nn(y) .

Let f be a function in L2(µ) such that Eµ(f) = 0. For every ω ∈ Ω,

n∑
k=0

f ◦ TSk(ω) =
∑
x∈Z

Nn(x)(ω)f ◦ T x .

In order to apply results of Theorem 3.1, we need to study, for any fixed ω ∈ Ω, the asymptotic
behaviour of the variance of this sum, namely

σ2
n(f) = Eµ

∣∣∣∣∣
n∑

k=0

f ◦ TSk(ω)

∣∣∣∣∣
2
 .
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The variable ω will be omitted in the next calculations. We have

σ2
n(f) = Eµ

∣∣∣∣∣∑
x∈Z

Nn(x)f ◦ T x

∣∣∣∣∣
2

=
∑

x,y∈Z
Nn(x)Nn(y)Eµ(f ◦ T x−y f)

=
∑

y,z∈Z
Nn(y + z)Nn(y)Eµ(f ◦ T z f)

=
∑
z∈Z

α(n, z)Eµ(f ◦ T z f) .

We are now able to prove the following proposition:

Proposition 4.1 If
∑

x∈Z G(0, x)Eµ(f f ◦ T x) < +∞, then

σ2
n(f)
n

P-a.s.−−−−−→
n→+∞

σ2(f) .

Proof of Proposition 4.1:
Let us assume first that the function f is positive. For every 0 ≤ m < n, we denote by Wm,n

the random variable

−
n∑

i,j=m

∑
x∈Z

1{Si−Sj=x}Eµ(f f ◦ T x) .

Then, since f is positive, for every k, m, n such that 0 ≤ k < m < n,

Wk,n ≤ Wk,m + Wm,n ,

that is (Wm,n)m,n≥0 is a subadditive sequence. Then,

EP(W0,n) = −
n∑

i,j=0

EP

(∑
x∈Z

1{Si−Sj=x}Eµ(f f ◦ T x)
)

= −
n∑

i,j=0

∑
x∈Z

P(Si − Sj = x)Eµ(f f ◦ T x), by Fubini Theorem

= −
(
(n + 1)Eµ(f2) + 2

n∑
i=1

i−1∑
j=0

∑
x∈Z

P(Si−j = x)Eµ(f f ◦ T x)
)

= −
(
(n + 1)Eµ(f2) + 2

n∑
i=1

i∑
j=1

∑
x∈Z

P(Sj = x)Eµ(f f ◦ T x)
)

.

Now, using that

lim
i→+∞

i∑
j=1

∑
x∈Z

P(Sj = x)Eµ(f f ◦ T x) =
∑
x∈Z

G(0, x)Eµ(f f ◦ T x)− Eµ(f2),

we conclude that

lim
n→+∞

EP(W0,n)
n

= Eµ(f2)− 2
∑
x∈Z

G(0, x)Eµ(f f ◦ T x) < ∞ .
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So the sequence (Wm,n)m,n≥0 satisfies all the conditions of Theorem 5 in Kingman (1968).
Hence

W0,n

n

P-a.s.−−−−−→
n→+∞

Eµ(f2)− 2
∑
x∈Z

G(0, x)Eµ(f f ◦ T x) .

By remarking that W0,n = −σ2
n(f), Proposition 4.1 follows for positive functions f . If the

function f is not positive, we can decompose it as

f = f1{f≥0} − (−f)1{f<0}

and, for all x ∈ Z, f ◦ T x as

f ◦ T x = f ◦ T x1{f◦T x≥0} − (−f ◦ T x)1{f◦T x<0} .

Then, a simple calculation yields

Eµ(f f ◦ T x) = Eµ(f f ◦ T x 1{f≥0;f◦T x≥0}) + Eµ((−f)(−f ◦ T x)1{f<0;f◦T x<0})
− Eµ(f (−f ◦ T x) 1{f≥0;f◦T x<0})− Eµ((−f) (f ◦ T x) 1{f<0;f◦T x≥0}) .

By applying the previous reasoning at each of the four positive terms of the right-hand side,
Proposition 4.1 follows. 4
Remark:
Let us consider the unsymmetric random walk on nearest neighbours with p > q. Then, for
x ≥ 0,

G(0, x) = (p− q)−1 ,

and for x ≤ −1,

G(0, x) = (p− q)−1

(
p

q

)x

.

A simple calculation gives

σ2(h−h◦T ) = 2
∑
x∈Z

[2G(0, x)−G(0, x + 1)−G(0, x− 1)] Eµ(h h◦T x)−2Eµ(h2)+2Eµ(h h◦T )

= −2
p− 1

p
Eµ(h2) + 2Eµ(h h ◦ T )− 2

(p− q)
pq

∑
x≥1

(
q

p

)x

Eµ(h h ◦ T x) .

4.3 Proof of Theorem 4.1

Let us define Mn = max
0≤k≤n

|Sk|. First note that

n∑
k=0

f ◦ TSk =
∑

|x|≤Mn

Nn(x)f ◦ T x .

We want to apply Theorem 3.1 to the triangular array{
Xn,i =

Nn(i)√
n

f ◦ T i, n ∈ N, −Mn ≤ i ≤ Mn

}
. (4.4)
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As f belongs to L2(µ), the family
{(

f ◦ T i
)2}

i∈Z
is uniformly integrable as it is stationary.

It remains to prove that assumption (A1) of Theorem 3.1 is satisfied for the triangular array
defined by (4.4).
Proof of (A1)(i):
First, by Proposition 3.1. in Guillotin-Plantard & Schneider (2003),

∑Mn
i=−Mn

a2
n,i = α(n,0)

n
converges P-almost surely to 2G(0, 0)− 1 as n goes to infinity. Then, by Proposition 4.1, we
know that σ2

n(f)/n converges to σ2(f), which is assumed to be positive. Hence (A1)(i) is
satisfied. 4
Proof of (A1)(ii):
Now, by Proposition 3.2. in Guillotin-Plantard & Schneider (2003), we know that for every
ρ > 0,

max
−Mn≤i≤Mn

|an,i| =
1√
n

max
i∈Z

Nn(i) = o
(
nρ− 1

2

)
P− almost surely.

So
√

n
σ2

n(f)
max−Mn≤i≤Mn |an,i| tends to zero P−almost surely and assumption (A1)(ii) is

satisfied. 4
Hence Theorem 3.1 applied to

∑Mn
i=−Mn

an,i f ◦ T i, Proposition 4.1 and Slutsky Lemma
yield the result. 4

5 Examples

In this section, we present examples for which we can compute upper bounds for θ2(n) for any
n ≥ 1. We refer to Chapter 3 in Dedecker & al (2007) and references therein for more details.

5.1 Example 1: causal functions of stationary sequences

Let (E, E , Q) be a probability space. Let (εi)i∈Z be a stationary sequence of random variables
with values in a measurable space S. Assume that there exists a real valued function H defined
on a subset of SN, such that H(ε0, ε−1, ε−2, . . . , ) is defined almost surely. The stationary
sequence (ξn)n∈Z defined by ξn = H(εn, εn−1, εn−2, . . .) is called a causal function of (εi)i∈Z.

Assume that there exists a stationary sequence (εi
′)i∈Z distributed as (εi)i∈Z and in-

dependent of (εi)i≤0. Define ξ∗n = H(εn
′, εn−1

′, εn−2
′, . . .). Clearly, ξ∗n is independent of

M0 = σ(ξi , i ≤ 0) and distributed as ξn. Let (δ2(i))i>0 be a non increasing sequence such
that

‖E (|ξi − ξ∗i | |M0)‖2 ≤ δ2(i) . (5.5)

Then the coefficient θ2 of the sequence (ξn)n≥0 satisfies

θ2(i) ≤ δ2(i) . (5.6)

Let us consider the particular case where the sequence of innovations (εi)i∈Z is absolutely
regular in the sense of Volkonskii & Rozanov (1959). Then, according to Theorem 4.4.7 in
Berbee (1979), if E is rich enough, there exists (ε′i)i∈Z distributed as (εi)i∈Z and independent
of (εi)i≤0 such that

Q(εi 6= ε′i for some i ≥ k | F0) =
1
2

∥∥Qε̃k|F0
−Qε̃k

∥∥
v
,
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where ε̃k = (εk, εk+1, . . .), F0 = σ(εi , i ≤ 0), and ‖ · ‖v is the variation norm. In particular
if the sequence (εi)i∈Z is idependent and identically distributed, it suffices to take ε′i = εi for
i > 0 and ε′i − ε′′i for i ≤ 0, where (ε′′i )i∈Z is an independent copy of (εi)i∈Z.
Application to causal linear processes:
In that case, ξn =

∑
j≥0 ajεn−j , where (aj)j≥0 is a sequence of real numbers. We can choose

δ2(i) ≥ ‖ε0 − ε′0‖2

∑
j≥i

|aj |+
i−1∑
j=0

|aj |‖εi−j − ε′i−j‖2 .

From Proposition 2.3 in Merlevède & Peligrad (2002), we obtain that

δ2(i) ≤ ‖ε0 − ε′0‖2

∑
j≥i

|aj |+
i−1∑
j=0

|aj |
(
22

∫ β(σ(εk,k≤0),σ(εk,k≥i−j))

0
Q2

ε0
(u)
)1/2

du,

where Qε0 is the generalized inverse of the tail function x 7→ Q(|ε0| > x).

5.2 Example 2: iterated random functions

Let (ξn)n≥0 be a real valued stationary Markov chain, such that ξn = F (ξn−1, εn) for some
measurable function F and some independent and identically distributed sequence (εi)i>0 in-
dependent of ξ0. Let ξ∗0 be a random variable distributed as ξ0 and independent of (ξ0, (εi)i>0).
Define ξ∗n = F (ξ∗n−1, εn) . The sequence (ξ∗n)n≥0 is distributed as (ξn)n≥0 and independent of
ξ0. Let Mi = σ(ξj , 0 ≤ j ≤ i). As in Example 1, define the sequence (δ2(i))i>0 by (5.5). The
coefficient θ2 of the sequence (ξn)n≥0 satisfies the bound (5.6) of Example 1.

Let µ be the distribution of ξ0 and (ξx
n)n≥0 be the chain starting from ξx

0 = x. With these
notations, we can choose δ2(i) such that

δ2(i) ≥ ‖ξi − ξ∗i ‖2 =
(∫ ∫

‖|ξx
i − ξy

i ‖
2
2µ(dx)µ(dy)

)1/2

.

For instance, if there exists a sequence (d2(i))i≥0 of positive numbers such that

‖ξx
i − ξy

i ‖2 ≤ d2(i)|x− y|,

then we can take δ2(i) = d2(i)‖ξ0 − ξ∗0‖2. For example, in the usual case where ‖F (x, ε0) −
F (y, ε0)‖2 ≤ κ|x− y| for some κ < 1, we can take d2(i) = κi.

An important example is ξn = f(ξn−1) + εn for some κ-Lipschitz function f . If ξ0 has a
moment of order 2, then δ2(i) ≤ κi‖ξ0 − ξ∗0‖2 .

5.3 Example 3: dynamical systems on [0, 1]

Let I = [0, 1], T be a map from I to I and define Xi = T i. If µ is invariant by T , the sequence
(Xi)i≥0 of random variables from (I, µ) to I is strictly stationary.

For any finite measure ν on I, we use the notations ν(h) =
∫
I h(x)ν(dx). For any finite

signed measure ν on I, let ‖ν‖ = |ν|(I) be the total variation of ν. Denote by ‖g‖1,λ the
L1-norm with respect to the Lebesgue measure λ on I.
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Covariance inequalities. In many interesting cases, one can prove that, for any BV function
h and any k in L1(I, µ),

|Cov(h(X0), k(Xn))| ≤ an‖k(Xn)‖1(‖h‖1,λ + ‖dh‖) , (5.7)

for some nonincreasing sequence an tending to zero as n tends to infinity.

Spectral gap. Define the operator L from L1(I, λ) to L1(I, λ) via the equality∫ 1

0
L(h)(x)k(x)dλ(x) =

∫ 1

0
h(x)(k ◦ T )(x)dλ(x) where h ∈ L1(I, λ) and k ∈ L∞(I, λ).

The operator L is called the Perron-Frobenius operator of T . In many interesting cases, the
spectral analysis of L in the Banach space of BV -functions equiped with the norm ‖h‖v =
‖dh‖+‖h‖1,λ can be done by using the Theorem of Ionescu-Tulcea and Marinescu (see Lasota
and Yorke (1974) and Hofbauer and Keller (1982)). Assume that 1 is a simple eigenvalue of
L and that the rest of the spectrum is contained in a closed disk of radius strictly smaller
than one. Then there exists a unique T -invariant absolutely continuous probability µ whose
density fµ is BV , and

Ln(h) = λ(h)fµ + Ψn(h) with ‖Ψn(h)‖v ≤ Kρn‖h‖v. (5.8)

for some 0 ≤ ρ < 1 and K > 0. Assume moreover that:

I∗ = {fµ 6= 0} is an interval, and there exists γ > 0 such that fµ > γ−1 on I∗. (5.9)

Without loss of generality assume that I∗ = I (otherwise, take the restriction to I∗ in what
follows). Define now the Markov kernel associated to T by

P (h)(x) =
L(fµh)(x)

fµ(x)
. (5.10)

It is easy to check (see for instance Barbour et al. (2000)) that (X0, X1, . . . , Xn) has the same
distribution as (Yn, Yn−1, . . . , Y0) where (Yi)i≥0 is a stationary Markov chain with invariant
distribution µ and transition kernel P . Since ‖fg‖∞ ≤ ‖fg‖v ≤ 2‖f‖v‖g‖v, we infer that,
taking C = 2Kγ(‖dfµ‖+ 1),

Pn(h) = µ(h) + gn with ‖gn‖∞ ≤ Cρn‖h‖v. (5.11)

This estimate implies (5.7) with an = Cρn (see Dedecker & Prieur, 2005).

Expanding maps: Let ([ai, ai+1[)1≤i≤N be a finite partition of [0, 1[. We make the same
assumptions on T as in Collet et al (2002).

1. For each 1 ≤ j ≤ N , the restriction Tj of T to ]aj , aj+1[ is strictly monotonic and can
be extented to a function T j belonging to C2([aj , aj+1]).

2. Let In be the set where (Tn)′ is defined. There exists A > 0 and s > 1 such that
infx∈In |(Tn)′(x)| > Asn.

3. The map T is topologically mixing: for any two nonempty open sets U, V , there exists
n0 ≥ 1 such that T−n(U) ∩ V 6= ∅ for all n ≥ n0.

11



If T satisfies 1.,2. and 3.,then (5.8) holds. Assume furthermore that (5.9) holds (see Morita
(1994) for sufficient conditions). Then, arguing as in Example 4 in Section 7 of Dedecker
& Prieur (2005), we can prove that for the Markov chain (Yi)i≥0 and the σ-algebras Mi =
σ(Yj , j ≤ i), there exists a positive constant C such that θ2(i) ≤ Cρi.

Remark:
In examples 2 and 3, the sequences are indexed by N and not by Z. However, using existence
Theorem of Kolmogorov (see Theorem 0.2.7 in Dacunha-Castelle & Duflo, 1983), if (Xi)i∈N
is a stationary process indexed by N, there exists a stationary sequence (Yi)i∈Z indexed by Z
such that for any k ≤ l ∈ Z, both marginals (Yk, . . . , Yl) and (X0, . . . , Xl−k) have the same
distribution. Moreover, in examples 2 and 3, the sequences are Markovian, hence θY

2 (n) =
θX
2 (n) for any n ≥ 1. We then apply Theorem 4.1 to the sequence (Yi)i∈Z. The limit variance

can be rewritten as

σ2(f) = 2
∑
x∈Z

G(0, x) Cov(f(X0), f(X|x|))−Var(f(X0)) .

6 Application to parametric estimation by random sampling

We investigate in this section the problem of parametric estimation by random sampling for
second order stationary processes. We assume that we observe a stationary process (ξi)i∈N at
random times Sn, n ≥ 0, where (Sn)n≥0 is a non negative increasing random walk satisfying
the assumptions of Section 4. In the case where the marginal expectation of the process (ξi)i∈N,
m, is unknown, Deniau et al. estimate it using the sampled empirical mean m̂n = 1

n

∑n
i=1 ξSi .

They measure the quality of this estimator by considering the following quadratic criterion
function:

a(S) = lim
n→+∞

(n Var m̂n) .

In the case where (Cov(ξ1, ξn+1))n∈N is in l1, we have

a(S) =
+∞∑

k=−∞
Cov(ξS1 , ξS|k|+1

) < ∞ .

We then get Corollary 6.1 below, which gives the asymptotic behaviour of the estimate
m̂n after centering and normalization.

Corollary 6.1 Let us keep the assumptions of Section 4 on the random walk (Sn)n∈N and on
the process (ξi)i∈N. Assume moreover that S0 = 0 and that (Sn+1−Sn)n∈N takes its values in
N∗. Then, for P-almost every ω ∈ Ω,

√
n (m̂n −m) −−−−−→

n→+∞
N (0, a(S)) .

Proof of Corollary 6.1:
Corollary 6.1 can be deduced from Theorem 4.1 of Section 4 applied to f = Id−m. We have
indeed σ2(f) = a(S). 4

Let κ ∈ R+, κ ≥ 1. A κ-optimal law for the step Sn+1 − Sn is a distribution which
minimizes a(S) under the constraint E(Sn+1−Sn) ≤ κ. We say that the sampling rate is less
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or equal to 1/κ. Deniau et al. (1988) give sufficient conditions for the existence of a κ-optimal
law of the step Sn+1 − Sn. In the case of an A.R.(1) model ξn = ρξn−1 + εn, |ρ| < 1, with ε a
white noise, we know from Taga (1965) that there exists a unique κ-optimal law L0 given by :

• L0 = δ1 if ρ < 0 (the sampled process is the process itself),

• L0 = [1− (κ− [κ])] δ[κ] + (κ− [κ]) δ[κ]+1 if ρ > 0 ([·] denotes the integer part).

7 Appendix

This section is devoted to the proof of Theorem 3.1 of Section 3.
Proof of Theorem 3.1:
In order to prove Theorem 3.1, we first use a classical truncation argument. For any M > 0,
we define :

ϕM :

{
R → R
x 7→ ϕM (x) = (x ∧M) ∨ (−M)

and

ϕM :

{
R → R
x 7→ ϕM (x) = x− ϕM (x) .

We now prove the following Lindeberg condition :

σ−2
n

kn∑
i=−kn

E
(
(ϕεσn(Xn,i))

2
)
−−−−−→
n→+∞

0 . (7.12)

We have, for n large enough,

σ−2
n

∑kn
i=−kn

E
(
(ϕεσn(Xn,i))

2
)

≤ σ−2
n

∑kn
i=−kn

a2
n,iE

(
ξ2
i 1|ξi||an,i|>εσn

)
≤ σ−2

n

∑kn
i=−kn

a2
n,iE

(
ξ2
i 1|ξi|>εσn/ maxj |an,j |

)
.

The last right hand term in the above inequalities is bounded by

max
−kn≤i≤kn

(
E
(
ξ2
i 1|ξi|>εσn/ maxj |an,j |

))
σ−2

n

kn∑
i=−kn

a2
n,i , (7.13)

which tends to zero as n goes to infinity, by assumptions (A1) and (A2).
By (7.13) we find a sequence of positive numbers (εn)n≥1 such that εn −−−−−→

n→+∞
0, and

max
−kn≤i≤kn

(
E
(
ξ2
i 1|ξi|>εnσn/ maxj |an,j |

))
σ−2

n

kn∑
i=−kn

a2
n,i −−−−−→n→+∞

0 . (7.14)

Let us now prove that (7.14) yields

σ−2
n Var

 kn∑
i=−kn

ϕεnσn(Xn,i)

 −−−−−→
n→+∞

0 . (7.15)

To prove (7.15), we need the following Lemma :
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Lemma 7.1 Assume that (ηi)i∈Z is centered and satisfies conditions (A2) and (A3) of Theo-
rem 3.1, then for any reals −kn ≤ a ≤ b ≤ kn,

Var

(
b∑

i=a

an,iηi

)
≤ C

b∑
i=a

a2
n,i ,

with C = supi∈Z
(
Eη2

i

)
+ 2
√

supi∈Z
(
Eη2

i

) ∑∞
l=1 θ1,2(l).

Before proving Lemma 7.1, we finish the proof of (7.15).
For any fixed n ≥ 0, and any −kn ≤ i ≤ kn such that an,i 6= 0, define :

Vn,i = ϕεnσn/|an,i|(ξi)− E
(
ϕεnσn/|an,i|(ξi)

)
.

If an,i = 0, let Vn,i = 0. As for any fixed n ≥ 0, −kn ≤ i ≤ kn, the function

x 7→ ϕεnσn/|an,i|(x)− E
(
ϕεnσn/|an,i|(ξi)

)
is 1-Lipschitz, we have for all l ≥ 1, for all k ≥ 1,

θ
V·,n
k,2 (l) ≤ θξ

k,2(l) ,

where V·,n = (Vn,i)−kn≤i≤kn and ξ = (ξi)i∈Z. Hence, for any fixed n, the sequence
(Vn,i)−kn≤i≤kn satisfies assumptions (A2) and (A3) of Theorem 3.1. Moreover, as

an,iϕ
εnσn/|an,i|(ξi) = ϕεnσn(an,iξi),

applying Lemma 7.1 yields

σ−2
n Var

( kn∑
i=−kn

ϕεnσn(an,iξi)
)
≤ Cnσ−2

n

kn∑
i=−kn

a2
n,i , (7.16)

with Cn = sup−kn≤i≤kn

(
EV 2

n,i

)
+ 2
√

sup−kn≤i≤kn

(
EV 2

n,i

) ∑∞
l=1 θξ

1,2(l). It remains to prove

that the right hand term in (7.16) converges to 0 as n goes to infinity.
We have, for n large enough,

EV 2
n,i ≤ E

(
ξ2
i 1|ξi|>εnσn/ maxj |an,j |

)
. (7.17)

Hence we conclude with (7.14).

Proof of Lemma 7.1:

Var
( b∑

j=a

an,jηj

)
=

b∑
j=a

a2
n,j Var(ηj) +

b∑
i=a

b∑
j=a;j 6=i

an,i an,j Cov(ηi, ηj)

≤
b∑

j=a

a2
n,j Var(ηj) +

b∑
i=a

a2
n,i

b∑
j=a;j 6=i

|Cov(ηi, ηj)|
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by remarking that |an,i| |an,j | ≤ 1
2(a2

n,i + a2
n,j).

Then for any j > i, using Cauchy-Schwarz inequality, we obtain that

|Cov(ηi, ηj)| = |E (ηi E (ηj |Mi))|
≤ ||ηi||2 ||E (ηj |Mi)||2
≤ ||ηi||2 θ1,2(j − i).

As (ηi)i∈Z is centered, and as (η2
i )i∈Z is uniformly integrable, we deduce that

Var
( b∑

j=a

an,jηj

)
≤ C

b∑
j=a

a2
n,j ,

with C = supi∈Z
(
Eη2

i

)
+ 2
√

supi∈Z
(
Eη2

i

) ∑∞
l=1 θ1,2(l) which is finite from assumptions (A2)

and (A3). 4

Define Zn,i by

ϕεnσn(Xn,i)− E (ϕεnσn(Xn,i))√
Var

(∑kn
i=−kn

ϕεnσn(Xn,i)
) ≡ ϕεnσn(Xn,i)− E (ϕεnσn(Xn,i))

σ′n
.

By (7.15) we conclude that, to prove Theorem 3.1, it is enough to prove it for the truncated
sequence (Zn,i)n≥0,−kn≤i≤kn

, that is to show that

kn∑
i=−kn

Zn,i
D−−−−−→

n→+∞
N (0, 1) . (7.18)

The proof is now a variation on the proof of Theorem 4.1 in Utev (1990). Let

dt(X, Y ) =
∣∣EeitX − EeitY

∣∣ .

To prove Theorem 3.1, it is enough to prove that for all t,

dt

 kn∑
i=−kn

Zn,i, η

 −−−−−→
n→+∞

0 ,

with η the standard normal distribution. We first need some simple properties of the distance
dt. Let X, X1, X2, Y1, Y2 be random variables with zero means and finite second moments.
We assume that the random variables Y1, Y2 are independent and that the distribution of Xj

coincides with that of Yj , j = 1, 2. We define At(X) = dt

(
X, η

√
EX2

)
. We have then the

following inequalities :

Lemma 7.2 (Lemma 4.3 in Utev, 1990)

At(X) ≤ 2
3
|t|3E|X|3,

At(Y1 + Y2) ≤ At(Y1) + At(Y2),
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dt(X1 + X2, X1) ≤
t2

2

(
EX2

2 + (EX2
1EX2

2 )1/2
)

,

dt(ηa, ηb) ≤ t2

2
|a2 − b2|.

We next need the following lemma :

Lemma 7.3 Let 0 < ε < 1. There exists some positive constant C(ε) such that for all a ∈ Z,
for all v ∈ N∗, At

(∑a+v
i=a+1 Zn,i

)
is bounded by

C(ε)

|t|3h2/ε
a+v∑

i=a+1

E
(
|Zn,i|3

)
+ t2

h
ε−1
2 +

∑
j :2j≥h1/ε

2
3j
2 g(2jε)

σ′
−2
n

a+v∑
i=a+1

a2
n,i

 ,

where h is an arbitrary positive natural number and with g introduced in Assumption (A3) of
Theorem 3.1.

Before proving Lemma 7.3, we achieve the proof of Theorem 3.1. By Lemma 7.3, we have

dt

 kn∑
i=−kn

Zn,i, η

 = At

 kn∑
i=−kn

Zn,i

 ≤ C(t, ε)

h2/ε
kn∑

i=−kn

E(|Zn,i|3) + δ(h)

 ,

with δ(h) =
(
h

ε−1
2 +

∑
j :2j≥h

1
ε

2
3j
2 g(2jε)

)
σ′−2

n

∑kn
i=−kn

a2
n,i.

From (7.15) we deduce that σn/σ′n −−−−−→n→+∞
1.

Hence using assumptions (A1)(i) and (A3) we get δ(h) −−−−→
h→+∞

0.

On the other hand we have
kn∑

i=−kn

E(|Zn,i|3) ≤ 2
εnσn

σ′n

kn∑
i=−kn

Var(Zn,i). (7.19)

For any fixed n ≥ 0, and any −kn ≤ i ≤ kn such that an,i 6= 0, define :

Wn,i = ϕεnσn/|an,i|(ξi)− E
(
ϕεnσn/|an,i|(ξi)

)
.

If an,i = 0, let Wn,i = 0. As for any fixed n ≥ 0, −kn ≤ i ≤ kn, the function

x 7→ ϕεnσn/|an,i|(x)− E
(
ϕεnσn/|an,i|(ξi)

)
is 1-Lipschitz, we have for all l ≥ 1, for all k ≥ 1,

θ
W·,n
k,2 (l) ≤ θξ

k,2(l) ,

where W·,n = (Wn,i)−kn≤i≤kn and ξ = (ξi)i∈Z. Hence, arguing as for the proof of Lemma 7.1,
we prove that for any fixed n, the sequence (Wn,i)−kn≤i≤kn satisfies assumptions (A2) and
(A3) of Theorem 3.1. Therefore, for any reals −kn ≤ a ≤ b ≤ kn,

Var

(
b∑

i=a

Zn,i

)
≤ Cσ′

−2
n

b∑
i=a

a2
n,i (7.20)
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with C = supi∈Z
(
2Eξ2

i

)
+2
√

supi∈Z
(
2Eξ2

i

) ∑∞
l=1 θ1,2(l) which is finite from assumptions (A2)

and (A3). Applying (7.20) with a = b, we get that the right hand term of (7.19) is bounded

by 2 εn
σn
σ′

n

∑kn
i=−kn

Ca2
n,i

σ′2
n

, which tends to zero as n tends to infinity, using assumption (A1)(i)
and the fact that εn −−−−−→

n→+∞
0.

Consequently

inf
h≥1

h2/ε
kn∑

i=−kn

E(|Zn,i|3) + δ(h)

 −−−−−→
n→+∞

0.

It achieves the proof of Theorem 3.1. 4

Proof of Lemma 7.3: Let h ∈ N∗. Let 0 < ε < 1. In the following, C, C(ε) denote constants
which may vary from line to line. Let κε be a positive constant greater than 1 which will be
precised further. Let v < κε h

1
ε . We have

At

(
a+v∑

i=a+1

Zn,i

)
≤ 2

3
|t|3E

∣∣∣∣∣
a+v∑

i=a+1

Zn,i

∣∣∣∣∣
3

≤ 2
3

κ2
ε |t|3 h2/ε

a+v∑
i=a+1

E(|Zn,i|3) (7.21)

since |x|3 is a convex function.

Let now v ≥ κε h
1
ε . Without loss of generality, assume that a = 0. Let δε = (1−ε2+2ε)/2.

Define then
m = [vε], B =

{
u ∈ N : 2−1(v − [vδε ]) ≤ um ≤ 2−1v

}
,

A =

u ∈ N : 0 ≤ u ≤ v,

(u+1)m∑
i=um+1

a2
n,i ≤ (m/v)ε

v∑
i=1

a2
n,i

 .

Following Utev (1991) we prove that, for 0 < ε < 1, A ∩B is not wide for v greater than κε.
We have indeed

|A ∩B| = |B| − |A ∩B| ≥ |B| − |A| ≥ v(1−ε2)/2

2

(
1− 4v−(1−ε)2/2

)
− 3

2
,

where A denotes the complementary of the set A. We can find κε large enough so that |A∩B|
be positive.

Let u ∈ A ∩B. We start from the following simple identity

Q ≡
v∑

i=1

Zn,i

=
um∑
i=1

Zn,i +
(u+1)m∑
i=um+1

Zn,i +
v∑

i=(u+1)m+1

Zn,i

≡ Q1 + Q2 + Q3. (7.22)

By Lemma 7.2,

dt(Q,Q1 + Q3) = dt(Q,Q−Q2) ≤
t2

2

(
EQ2

2 + (EQ2
2EQ2)1/2

)
. (7.23)
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Using (7.23) and (7.20), we get

dt(Q,Q1 + Q3) ≤ Ct2v
(ε−1)ε

2 σ′
−2
n

v∑
i=1

a2
n,i. (7.24)

Now, given the random variables Q1 and Q3, we define two independent random variables g1

and g3 such that the distribution of gi coincides with that of Qi, i = 1, 3. We have

dt(Q1 + Q3, g1 + g3) =
∣∣E(eitQ1 − 1)(eitQ3 − 1)− E(eitQ1 − 1)E(eitQ3 − 1)

∣∣
≤

∥∥E(eitQ1 − 1)
∥∥

2

∥∥E (eitQ3 − 1− E(eitQ3 − 1) |Mum

)∥∥
2

≤ 2|t| ‖
∑um

i=1 Zn,i‖2 v |t| σ′−1
n

(∑v
i=(u+1)m+1 |an,i|

)
θξ
2(m + 1)

≤ C t2 v3/2 σ′−2
n

(∑v
i=1 a2

n,i

)
g(vε),

by (7.20), Definition 2.2 and Assumption (A3) of Theorem 3.1. Hence

dt(Q1 + Q3, g1 + g3) ≤ Ct2f(v)σ′−2
n

v∑
i=1

a2
n,i, (7.25)

where f(v) = v3/2 g(vε) is non-increasing by assumption (A3) of Theorem 3.1.
We also have by Lemma 7.2

At(g1 + g3) ≤ At(g1) + At(g3). (7.26)

Finally, still by Lemma 7.2, and using Definition 2.2, we have

dt

(
η
√

E(Q2), η
√

E ((g1 + g3)2)
)

≤ t2

2

∣∣E(Q2)− E
(
(g1 + g3)2

)∣∣
≤ t2

2

∣∣E(Q2
2) + 2E(Q1Q2) + 2E(Q2Q3) + 2E(Q1Q3)

∣∣
≤ Ct2

(
v

(ε−1)ε
2 + f(v)

)
σ′
−2
n

v∑
i=1

a2
n,i. (7.27)

Combining (7.24)-(7.27), we get the following recurrent inequality :

At (
∑v

i=1 Zn,i) ≤ At (
∑um

i=1 Zn,i) + At

(∑v
i=(u+1)m+1 Zn,i

)
+ Ct2

(
v

(ε−1)ε
2 + f(v)

)
σ′−2

n

∑v
i=1 a2

n,i

for v ≥ κε h
1
ε ≥ κε.

We then need the following Lemma, which is a variation on Lemma 1.2. in Utev (1991).

Lemma 7.4 For every ε ∈ ]0, 1[, denote δε = (1− ε2 + 2ε)/2. Let a non-decreasing sequence
of non-negative numbers a(n) be specified, such that there exist non-increasing sequences of
non-negative numbers ε(k), γ(k) and a sequence of naturals T (k), satisfying conditions

T (k) ≤ 2−1(k + [kδε ]),
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a(k) ≤ max
k0≤s≤k

(a(T (s)) + γ(s))

for any k ≥ k0 with an arbitrary k0 ∈ N∗. Then

a(n) ≤ a(n0) + 2
∑

k0≤2j≤n

γ(2j) ,

for any n ≥ k0, where one can take n0 = 2c with c > 2−δε
1−δε

.

Proof of Lemma 7.4: The proof follows essentially the same lines as the proof of Lemma
1.2. in Utev (1991) and therefore is omitted here. 4

We now apply Lemma 7.4 above with

? k0 = κε h
1
ε ,

? for k ≥ k0, T (k) = max {ukmk, k − ukmk −mk} where uk and mk are defined from k as
u and m from v (see the proof of A ∩B not wide),

? c < ln(κε)
ln(2) (we may need to enlarge κε),

? for s ≥ k0, γ(s) = C t2
(
s

ε(ε−1)
2 + f(s)

)
,

? for s ≥ k0, a(s) = sup
l∈Z

max
k0≤i≤s

At

(∑l+i
j=l+1 Zn,j

)
σ′−2

n

∑l+i
j=l+1 a2

n,j

.

Applying Lemma 7.4 yields the statement of Lemma 7.3. 4
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