Operads and Rewritings (Lyon 02.11.2011-04.11. 2011)

Identities for skew-symmetric n-algebras

Askar Dzhumadil'daev

November 11, 2011

Algebra

- Vector space
- Multiplication

Multiplication (in a free magma) $=$ binary tree

$$
x_{1}^{x_{3}}{ }^{x_{2}}=x_{1} \cdot\left(x_{3} \cdot x_{2}\right)
$$

Polynomial identity

Let $f=f\left(t_{1}, \ldots, t_{k}\right)$ be an element of free magma (non-commutative non-associative polynomial)
$f=0$ is a polynomial identity of A if

$$
f\left(a_{1}, \ldots, a_{k}\right)=0
$$

for any substitution $t_{i}:=a_{i} \in A$.
Example. Associative algebra is an algebra with identity ass $=0$, where

$$
=\left(t_{1} t_{2}\right) t_{3}-t_{1}\left(t_{2} t_{3}\right)
$$

Commutator

If $A=(A, \circ)$ is an associative algebra and

$$
[a, b]=a \circ b-b \circ a
$$

then $\left(A^{-}=(A,[]\right.$,$) is Lie,$

$$
\begin{gathered}
{[a, b]=-[b, a]} \\
{[[a, b], c]+[[b, c], a]+[[c, a], b]=0}
\end{gathered}
$$

Let Diff $_{n}$ be an associative algebra of differential operators on $K\left[x_{1}, \ldots, x_{n}\right]$ endowed by a composition operation. Let Vect ${ }_{n}=\operatorname{Diff}_{n}^{[1]}$ be its subspace of differential operators of first order (vector fields on n-dimensional manifold).
(Lie) Vect(n) is not close under composition, but under commutator Vect(n) is a Lie algebra.

Lie commutator in a coordinate form

$$
\left[u \partial_{i}, v \partial_{j}\right]=u \partial_{i}(v) \partial_{j}-v \partial_{j}(u) \partial_{i}
$$

Poisson commutator is defined on $K\left[x_{1}, \ldots, x_{2 n}\right]$ by

$$
\{a, b\}=\sum_{i=1}^{n} \partial_{i}(a) \partial_{i+n}(b)-\partial_{i+n}(a) \partial_{i}(b)
$$

Lie and Poisson commutators are compatible.
Let $D_{a}=\sum_{i=1}^{n} \partial_{i}(a) \partial_{i+n}-\partial_{i+n}(a) \partial_{i}$. Then

$$
\left[D_{a}, D_{b}\right]=D_{\{a, b\}},
$$

for any $a, b \in K\left[x_{1}, \ldots, x_{2 n}\right]$.
Our aim: Construct three kinds of n-ary generalisations of these commutators.

n-Algebra

- Vector space
- n-Multiplication

A n-Multiplication is a n-ary multilinear map $\omega: A \times \cdots \times A \rightarrow A$ A n-Multiplication ω is skew-symmetric if

$$
\omega\left(a_{1}, \ldots, a_{n}\right)=\operatorname{sign} \sigma \omega\left(a_{\sigma(1)}, \ldots, a_{\sigma(n)}\right), \quad \forall a_{1}, \ldots, a_{n} \in A .
$$

A n-Multiplication ω is symmetric if

$$
\omega\left(a_{1}, \ldots, a_{n}\right)=\omega\left(a_{\sigma(1)}, \ldots, a_{\sigma(n)}\right), \quad \forall a_{1}, \ldots, a_{n} \in A
$$

n-Polynomial identity

For n-ary monomial given by n-ary tree say that it has ω-degree k if number of inner vertices is k.
For $f=f\left(t_{1}, t_{2}, \ldots\right) \in \operatorname{Magma}\left(t_{1}, t_{2}, \ldots\right)$ say that it has ω-degree k if f is a linear combination of monomials of ω-degree k.
Definition. $f=0$ is an identity on n-ary algebra $A=(A, \alpha)$ if $f\left(a_{1}, a_{2}, \ldots\right)=0$ for any substitutions $t_{i}:=a_{i} \in A$ where $\omega:=\alpha$.
Example.

$$
n l i e=\omega\left(t_{1}, \ldots, t_{n-1}, \omega\left(t_{n}, \ldots, t_{2 n-1}\right)\right)-
$$

$$
\sum_{i=1}^{n}(-1)^{i+n} \omega\left(t_{n}, \ldots, \widehat{t_{n+i-1}}, \ldots, t_{2 n-1}, \omega\left(t_{1}, \ldots, t_{n-1}, t_{n+i-1}\right)\right)
$$

An algebra with identity nlie $=0$ is called n-Lie-Filippov.

n-Lie-Filippov algebras

Proposition. A is n-Lie-Filippov, iff the adjoint map

$$
\operatorname{ad}\left\{a_{1}, \ldots, a_{n-1}\right\}: b \mapsto\left[a_{1}, \ldots, a_{n-1}, b\right]
$$

is a derivation for any $a_{1}, \ldots, a_{n-1} \in A$.
Theorem. A n-ary Vector products algebra

$$
\left[e_{1}, \ldots, \hat{e}_{i}, \ldots, e_{n}\right]=(-1)^{i} e_{i}, \quad i=1, \ldots, n+1
$$

is n-Lie-Filippov.

n-Lie-Filippov algebras under Jacobian

Theorem. Let $A=\left(K\left[x_{1}, \ldots, x_{n}\right]\right.$ and

$$
\begin{gathered}
j a c^{S}\left(a_{1}, \ldots, a_{n}\right)=\left|\begin{array}{cccc}
\partial_{1}\left(a_{1}\right) & \partial_{1}\left(a_{2}\right) & \cdots & \partial_{1}\left(a_{n}\right) \\
\partial_{2}\left(a_{1}\right) & \partial_{2}\left(a_{2}\right) & \cdots & \partial_{2}\left(a_{n}\right) \\
\vdots & \vdots & \cdots & \vdots \\
\partial_{n}\left(a_{1}\right) & \partial_{n}\left(a_{2}\right) & \cdots & \partial_{n}\left(a_{n}\right)
\end{array}\right| \\
\operatorname{jac}^{W}\left(a_{1}, \ldots, a_{n}\right)=\left\lvert\, \begin{array}{cccc}
a_{1} & a_{2} & \cdots & a_{n} \\
\partial_{1}\left(a_{1}\right) & \partial_{1}\left(a_{2}\right) & \cdots & \partial_{1}\left(a_{n}\right) \\
\vdots & \vdots & \cdots & \vdots \\
\partial_{n-1}\left(a_{1}\right) & \partial_{n-1}\left(a_{2}\right) & \cdots & \partial_{n-1}\left(a_{n}\right)
\end{array}\right.
\end{gathered}
$$

Then jacs and jac ${ }^{W}$ are satify the identity nlie $=0$.

n-Associative algebra

Define n-ary polynomials ass $i, 0<i<n$, of ω-degree 2 by

$$
\begin{gathered}
\text { ass }_{i}=\omega\left(t_{1}, \ldots, t_{i-1}, t_{i}, \omega\left(t_{i+1}, \ldots, t_{i+n}\right), t_{i+n+1}, \ldots, t_{2 n-1}\right)- \\
\omega\left(t_{1}, \ldots, t_{i-1}, \omega\left(t_{i}, t_{i+1}, \ldots, t_{i+n-1}\right), t_{i+n}, \ldots, t_{2 n-1}\right)
\end{gathered}
$$

Definition. A n-ary algebra is called totally associative if ass $_{i}=0$ is a n-polynomial identity for any $0<i<n$.
Example. If A is binary associative, and $\alpha\left(a_{1}, \ldots, a_{n}\right)=a_{1} \cdots a_{n}$, then (A, α) is totally associative. If a n-ary totally associative algebra has unit, then it can be imbedded to a such algebra (Kurosh, Polin).
Remark. There are other kinds of n-associativity (Gnedbaye).

Vector fields and Lie commutator

A vector field is a differential operator of first order. A composition of operators is a natural operation on a space of differential operators. Space of vector fields is not close under composition.
(S. Lie) Vect(n) is close under Lie commutator,

$$
\left[D_{1}, D_{2}\right]=D_{1} D_{2}-D_{2} D_{1}
$$

$$
\begin{gathered}
X_{1}, X_{2} \in \operatorname{Vect}(n) \Rightarrow X_{1}=u_{i} \partial_{i}, X_{2}=v_{j} \partial_{j} \Rightarrow \\
X_{1} X_{2}=u_{i} \partial_{i}\left(v_{j}\right) \partial_{j}+u_{i} v_{j} \partial_{i} \partial_{j}, \quad X_{2} X_{1}=v_{j} \partial_{j}\left(u_{i}\right) \partial_{i}+v_{j} u_{i} \partial_{j} \partial_{i} \Rightarrow \\
{\left[X_{1}, X_{2}\right]=u_{i} \partial_{i}\left(v_{j}\right) \partial_{j}-v_{j} \partial_{j}\left(u_{i}\right) \partial_{i} \in \operatorname{Vect}(n)}
\end{gathered}
$$

Generalisation of Lie commutator

Let $\mathcal{D}_{n, p}$ be a space of differential operators with n variables of differential degree p.
Example. $\mathcal{D}_{n, 1}$ coincides with a space of vector fields on n-dimensional manifold $\operatorname{Vect}(n)$.
Example. Laplacian $\Delta=\sum_{i=1}^{n} u_{i} \partial_{i}^{2}$ belongs to $\mathcal{D}_{n, 2}$.
Let us define N-commutator of diferential operators as a skew-symmetric sum of N ! compositions

$$
s_{N}\left(D_{1}, \ldots, D_{N}\right)=\sum_{\sigma \in S_{N}} \operatorname{sign} \sigma D_{\sigma(1)} \cdots D_{\sigma(N)}
$$

N -commutator on differential operators

Theorem. For any positive integers n and p there exists $N=N(n, p)$ such that N-commutator is well-defined on a space of differential operators $\mathcal{D}_{n, p}$. The N-algebra $\left(\mathcal{D}_{n, p}, s_{N}\right)$ is left-commutative.

Warning. Might be that $s_{N}=0$ will be identity.
For $p=1$ this result can be improved.
Theorem. If, $N=n^{2}+2 n-2$, then N-commutator is well-defined on $\operatorname{Vect}(n)$ and $s_{N+1}=0$ is identity on $\operatorname{Vect}(n)$.

Are there another N such that s_{N} is well-defined on $\operatorname{Vect}(n)$? For $n=3$ there is another one: $N=10$. List of N-commutators on $\operatorname{Vect}(n)$ for small n

$$
(n, N)=(1,2),(2,2),(2,6),(3,2),(3,10),(3,13)
$$

N -commutator on quadratic differential operators

If $p=2, N$-commutator can be presented in a nice form.
Theorem. If $p=2$ and $n=1$ then $2 n$-commutator is well defined on $\mathcal{D}_{1,2}$

Example. 4-commutator of four differential operators of second order on the line can be calculated by wronskians
$s_{4}\left(u_{1} \partial^{2}, u_{2} \partial^{2}, u_{3} \partial^{2}, u_{4} \partial^{2}\right)=-2\left|\begin{array}{cccc}u_{1} & u_{2} & u_{3} & u_{4} \\ \partial\left(u_{1}\right) & \partial\left(u_{2}\right) & \partial\left(u_{3}\right) & \partial\left(u_{4}\right) \\ \partial^{2}\left(u_{1}\right) & \partial^{2}\left(u_{2}\right) & \partial^{2}\left(u_{3}\right) & \partial^{2}\left(u_{4}\right) \\ \partial^{3}\left(u_{1}\right) & \partial^{3}\left(u_{2}\right) & \partial^{3}\left(u_{3}\right) & \partial^{3}\left(u_{4}\right)\end{array}\right| \partial^{2}$.

sh-Lie structure on $\operatorname{Vect}(n)$

Theorem. $\left(\operatorname{Vect}(n), s_{2}, s_{n^{2}+2 n-2}\right)$ is Sh-Lie.
In other words,

$$
\begin{gathered}
{\left[s_{2}, s_{2}\right]=0,} \\
{\left[s_{2}, s_{n^{2}+2 n-2}\right]=0,} \\
{\left[s_{n^{2}}+2 n-2, s_{n^{2}+2 n-2}\right]=0 .}
\end{gathered}
$$

5-commutator on Vecto(2)

Theorem. If s_{N} is N-commutator on $\operatorname{Vect}_{0}(2)$, then $N=2,5$ and $\left(\operatorname{Vect}(2), s_{2}, s_{5}\right)$ is Sh-Lie.

Any divergenceless vector field in two variables can be presented in a form $X=D_{1,2}(u)=\partial_{1}(u) \partial_{2}-\partial_{2}(u) \partial_{1}$.

$$
\begin{gathered}
s_{5}\left(D_{12}\left(u_{1}\right), D_{12}\left(u_{2}\right), D_{12}\left(u_{3}\right), D_{12}\left(u_{4}\right), D_{12}\left(u_{5}\right)\right) \\
=-3 D_{12}\left(\left[u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right]\right)
\end{gathered}
$$

where $\left[u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right]$ is the following determinant

$$
\left[u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right]=\left\lvert\, \begin{array}{ccccc}
\partial_{1} u_{1} & \partial_{1} u_{2} & \partial_{1} u_{3} & \partial_{1} u_{4} & \partial_{1} u_{5} \\
\partial_{2} u_{1} & \partial_{2} u_{2} & \partial_{2} u_{3} & \partial_{2} u_{4} & \partial_{2} u_{5} \\
\partial_{1}^{2} u_{1} & \partial_{1}^{2} u_{2} & \partial_{1}^{2} u_{3} & \partial_{1}^{2} u_{4} & \partial_{1}^{2} u_{5} \\
\partial_{1} \partial_{2} u_{1} & \partial_{1} \partial_{2} u_{2} & \partial_{1} \partial_{2} u_{3} & \partial_{1} \partial_{2} u_{4} & \partial_{1} \partial_{2} u_{5} \\
\partial_{2}^{2} u_{1} & \partial_{2}^{2} u_{2} & \partial_{2}^{2} u_{3} & \partial_{2}^{2} u_{4} & \partial_{2}^{2} u_{5}
\end{array}\right.
$$

6-commutator on Vect(2)

Theorem. If s_{N} is N-commutator on $\operatorname{Vect(2),~then~} N=2,6$ and $\left(\operatorname{Vect}(2), s_{2}, s_{6}\right)$ is Sh-Lie.

Let $X_{i}=u_{i, 1} \partial_{1}+u_{i, 2} \partial_{2}, i=1, \ldots, 6$. Then $s_{6}\left(X_{1}, \ldots, X_{6}\right)$ can be presented as a sum of fourteen 6×6 determinants. For example,

$$
s_{6}\left(\partial_{1}, \partial_{2}, x_{1} \partial_{1}, x_{2} \partial_{1}, x_{2} \partial_{2}, x_{1}^{2} \partial_{2}\right)=-6 \partial_{2}
$$

N-commutators of simple Lie algebras

Theorem.

- G_{2} has 2- and 10-commutator.
- $s l_{n}$ has N-commutators for $N=2,4, \ldots, 2 n-2$.
- so_{n} has N-commutators for $N=2,5,6,9, \ldots, 2 n-2$.
- $s p_{2 n}$ has N-commutators for

$$
N=2,5,6,9,10, \ldots, 4 n-3,4 n-2 .
$$

Lists of N -commutators are final. Identities:

$$
\begin{gathered}
s_{k} \star s_{p}=0 \text { if } k, p \text { are even, } \\
s_{k} \star s_{p}=k s_{k+p-1} \text { if } p \text { is odd, } \\
s_{k} \star s_{p}=s_{k+p-1} \text { if } k \text { is odd and } p \text { is even }
\end{gathered}
$$

Super-derivations

D is odd super-derivation if

$$
D(a \circ b)=D(a) \circ b+(-1)^{q(a)} a \circ D(b) .
$$

$$
D=\text { odd deriation } \Rightarrow D^{2}=\text { derivation }
$$

Is it possible similar situation for $N>2$

$$
D=\text { odd deriation } \Rightarrow D^{N}=\text { derivation ? }
$$

Answer. Yes. Take in algebra of super-lagrangians $N=n^{2}+2 n-2$.

Power of super-derivations

Theorem. Let η_{i} are odd, ∂_{i} are even and

$$
D=\sum_{i=1}^{n} \eta_{i} \partial_{i}
$$

is odd derivation. Then

$$
D^{n^{2}+2 n-2} \text { is a derivation. }
$$

Moreover,

$$
\begin{gathered}
D^{n^{2}+2 n-1}=0, \\
D^{n^{2}+2 n-2}=-\operatorname{Div} D D^{n^{2}+2 n-3} .
\end{gathered}
$$

Left-symmetric power of super-derivations

$$
a \partial_{i} \bullet b \partial_{j}=a b \partial_{i} \partial_{j} \text { bullet multiplication }
$$

$a \partial_{i} \circ b \partial_{j}=a \partial_{i}(b) \partial_{j}$ left-symmetric multiplication

$$
a \partial_{i} \cdot b \partial_{j}=a \partial_{i} \circ b \partial_{j}+a \partial_{i} \bullet b \partial_{j}
$$

Theorem. For $N=n^{2}+2 n-2$,

$$
D^{N}=D^{\circ N} .
$$

where

$$
D^{\circ k}=D \circ(D \circ \cdots(D \circ D) \cdots)
$$

- is left-symmetric multiplication.

N-commutator under left-symmetric multiplication

Another formulation
Theorem $N=n^{2}+2 n-2$. For any $X_{1}, \ldots, X_{N} \in \operatorname{Vect}(n)$,

$$
s_{N}\left(X_{1}, \ldots, X_{N}\right)=s_{N}^{\circ}\left(X_{1}, \ldots, X_{N}\right)
$$

where $s_{N}^{\circ}\left(X_{1}, \ldots, X_{N}\right)$ is calculated in terms of left-symmetric multiplication ○,

$$
s_{k}^{\circ}\left(t_{1}, \ldots, t_{k}\right)=\sum_{\sigma \in \text { Sym }_{k}} \operatorname{sign} \sigma t_{\sigma(1)} \circ\left(\cdots\left(t_{\sigma(k-1)} \circ t_{\sigma(k)}\right) \cdots\right)
$$

How to calculate powers of super-derivations ?

Use super-tree calculus.
Tree is a graph without cycle
Rooted tree is a tree with a distinguished vertex called root Orientation towards to root.
All vertices except root are labeled by super variables.
A tree is called super-tree if no vertex has two equal sub-branches with odd degree.

Example. Super-trees with no more 5 vertices:

Power of super-trees

Let Q^{k} be its k-th associative power of super-tree Q. Then
$Q=!$,
$Q^{2}=!$,

Power of super-trees

Left-symmetric multiplication and bullet-multiplication

In addition to composition we introduce new operations

$$
u \partial_{i} \circ v \partial^{\alpha}=u \partial_{i}(v) \partial^{\alpha}
$$

(left-symmetric multiplication)

$$
u \partial_{i} \bullet v \partial^{\alpha}=u v \partial_{i} \partial^{\alpha}
$$

(bullet-multiplication)

$$
D_{1} \cdot D_{2}=D_{1} \circ D_{2}+D_{1} \bullet D_{2}
$$

Key observation: Composition of (super)-differential operators can be expressed in terms of left-symmetric and bullet multiplications. In particular, power of (super)-differential operators can be presented in terms of left-symmetric and bullet-powers.

Set partitions and product of derivations

Let $D_{i}=a_{i} \partial_{i}$ be a derivation. For a set of integers
$A=\left\{i_{s}, \ldots, i_{1}\right\}, i_{1} \leq i_{2} \leq \cdots i_{s}$, set

$$
D_{A}=D_{i_{s}} \cdots D_{i_{2}} \circ D_{i_{1}}=D_{i_{s}} \cdots D_{i_{2}}\left(a_{i_{1}}\right) \partial_{i_{1}}
$$

Theorem.

$$
D_{n} \cdots D_{1}=\sum_{[n]=A_{1} \cup \cdots \cup A_{k}} D_{A_{1}} \bullet \cdots \bullet D_{A_{k}}
$$

Corollary

$$
D^{n}=\sum_{\lambda \vdash n} k_{\lambda}\left(D^{\lambda_{1}-1} \circ D\right) \bullet \cdots \bullet\left(D^{\lambda_{l}-1} \circ D\right)
$$

Here λ is a partition of n with length $/$ and k_{λ} is a number of partitions of the set [n] with type λ.

Example.

$$
\begin{aligned}
D^{0} & =\bullet \\
D^{1} & =\emptyset \star D^{0}=\quad \\
D^{2} & =\emptyset \star D^{1}+D^{0} \star D^{0}=\quad \bullet+ \\
D^{3}= & \emptyset \star D^{2}+3 D^{0} \star D^{1}+D^{0} \star D^{0} \star D^{0}= \\
& \vdots \\
& \vdots+!+3
\end{aligned}
$$

Set super-partitions and Super-Faa di Bruno formula

$\lambda \vdash n$ is odd super-partition of n if no more one block has odd number of elements.
Example. 5 has 4 odd super-partitions: 5, 14, 23, 122
Theorem. If D_{1}, \ldots, D_{n} are odd super-derivations, then

$$
D_{n} \cdots D_{1}=\sum_{[n]=\bar{A}_{1} \cup \cdots \cup \bar{A}_{l}} D_{\bar{A}_{1}} \bullet \cdots \bullet D_{\bar{A}_{l}}
$$

Corollary For odd super-derivation D,

$$
D^{n}=\sum_{\bar{\lambda} \vdash n} \bar{k}_{\lambda}\left(D^{\bar{\lambda}_{1}-1} \circ D\right) \bullet \cdots \bullet\left(D^{\bar{\lambda}_{I}-1} \circ D\right) .
$$

Here $[n]=\bar{A}_{1} \cup \cdots \cup \bar{A}_{\text {}}$, is super-partition of [n], i.e., numbers of elements of blocks $\left|A_{i}\right|$, except might be one are even, and $\bar{\lambda} \vdash n$ is a super-partition, $\bar{k}_{\bar{\lambda}}$ is a number of super-partitions of $[n]$ with type $\bar{\lambda}$.

Super Bell numbers

Note that $\bar{\lambda}$ is super-partition of length $/$, iff $\bar{\lambda}=1^{\alpha_{1}} \cdots n^{\alpha_{n}}$, i.e., $\sum_{i} \alpha_{i} i=n, \sum_{i} \alpha_{i}=l$ and $\sum_{i \equiv 1(\bmod 2)} \alpha_{i} \leq 1$.

Number of super-partitions of [n] with super-type $\bar{\lambda}$

$$
\bar{k}_{\bar{\lambda}}=\frac{1}{\alpha_{1}!\ldots \alpha_{n}!}(\underbrace{\lfloor 1 / 2\rfloor \ldots\lfloor 1 / 2\rfloor}_{\alpha_{1}} \cdots \underbrace{\lfloor n / 2\rfloor}_{\alpha_{n}} \ldots\lfloor n / 2\rfloor)
$$

where $\bar{\lambda}=1^{\alpha_{1}} \cdots n^{\alpha_{n}}$.

Number of super-partitions

$$
\bar{p}(n)=\left\{\begin{array}{l}
p(\lfloor n / 2\rfloor), \text { if } n \text { is even } \\
\sum_{i=0}^{\lfloor n / 2\rfloor} p(i), \text { if } n \text { is odd }
\end{array}\right.
$$

Super-Binomial coefficients

Binomial coefficients

$$
\begin{gathered}
C_{n}^{i}=C_{n-1}^{i}+C_{n-1}^{i-1}, \text { if } n>0 \\
C_{0}^{0}=1
\end{gathered}
$$

Generating function for binomial coefficients

$$
\sum_{i=0}^{n} C_{n}^{i} x^{i}=(x+1)^{n}
$$

Newton formula

$$
(x+y)^{n}=\sum_{i} C_{n}^{i} x^{i} y^{n-i}
$$

where x and y are commuting variables.

Super-Binomial coefficients

Super-Binomial coefficients

$$
\begin{gathered}
\bar{C}_{n}^{i}=\bar{C}_{n-1}^{i}+(-1)^{(n-1) i} \bar{C}_{n-1}^{i-1}, \text { if } n>0, \\
\bar{C}_{0}^{0}=1 .
\end{gathered}
$$

$n \backslash i$	0	1	2	3	4	5	6	7
0	1							
1	1	1						
2	1	0	1					
3	1	1	1	1				
4	1	0	2	0	1			
5	1	1	2	2	1	1		
6	1	0	3	0	3	0	1	
7	1	1	3	3	3	3	1	1

Super-Newton formula

Super-Newton formula

$$
(x+y)^{n}=\sum_{i=0}^{n} \bar{C}_{n}^{i} x^{i} y^{n-i}
$$

where x, y are anti-commuting variables $x y=-y x$.

$$
\begin{gathered}
(x+y)^{n}=\sum_{i=0}^{n}\binom{\lfloor n / 2\rfloor}{\lfloor i / 2\rfloor} x^{i} y^{n-i} . \\
\bar{C}_{n}^{i}=\binom{\lfloor n / 2\rfloor}{\lfloor i / 2\rfloor}
\end{gathered}
$$

Super-Bell polynomials

For super variables x_{1}, x_{2}, \ldots, such that $x_{i} x_{j}=(-1)^{i j} x_{j} x_{i}$,

$$
\begin{array}{cccccc}
c & \bar{Y}_{n+1}\left(x_{1}, \ldots, x_{n+1}\right)= \\
& \bar{C}_{n}^{0} x_{1} & \bar{C}_{n}^{1} x_{2} & \bar{C}_{n}^{2} x_{3} & \cdots & \bar{C}_{n}^{n-1} x_{n} \\
-1 & \bar{C}_{n-1}^{0} x_{1} & \bar{C}_{n-1}^{1} x_{2} & \cdots & \bar{C}_{n}^{n} x_{n+1} \\
0 & -1 & \bar{C}_{n-2}^{0} x_{1} & \cdots & \bar{C}_{n-2}^{n-1} x_{n-1} & \bar{C}_{n-1}^{n-1} x_{n} \\
\bar{C}_{n-2}^{n-2} x_{n-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & -1 & \bar{C}_{0}^{0} x_{1}
\end{array}
$$

Example. $n=3$

$$
\bar{Y}_{3}\left(x_{1}, x_{2}, x_{3}\right)=\left|\begin{array}{ccc}
x_{1} & 0 & x_{3} \\
-1 & x_{1} & x_{2} \\
0 & -1 & x_{1}
\end{array}\right|=x_{1} x_{2}+x_{3}
$$

Determinants are calculated by column expansion.

Super Bell Polynomials and powers of super-derivations

Coefficients of $\bar{Y}_{n}\left(x_{1}, \ldots, x_{n}\right)$ are super-Bell set partition numbers,

$$
\bar{Y}_{n}\left(x_{1}, \ldots, x_{n}\right)=\sum_{\bar{\lambda} \vdash n} \bar{k}_{\bar{\lambda}} x_{\lambda} .
$$

Change in $\bar{Y}_{n}\left(x_{1}, \ldots, x_{n}\right)$

- the variable x_{i} to $D^{i-1} \circ D$
- super-multiplication to

Then we obtain formula for D^{n}.

Shuffle permutations and n-polynomials

Let

$S_{k, I}=\left\{\sigma \in S_{y m} m_{k+I} \mid \sigma(1)<\ldots<\sigma(k), \sigma(k+1)<\cdots<\sigma(k+I)\right\}$

$$
\begin{gathered}
S_{n-1, n-1, n}=\left\{\sigma \in \text { Sym }_{3 n-2} \mid \sigma(1)<\ldots<\sigma(n-1)\right. \\
\sigma(n)<\cdots<\sigma(2 n-2), \quad \sigma(2 n-1)<\cdots<\sigma(3 n-2)\}
\end{gathered}
$$

$$
S_{n-2, n, n}=\left\{\sigma \in S_{y m} m_{3 n-2} \mid \sigma(1)<\ldots<\sigma(n-2)\right.
$$

$$
\sigma(n-1)<\cdots<\sigma(2 n-2), \quad \sigma(2 n-1)<\cdots<\sigma(3 n-2)
$$

$$
\sigma(n-1)<\sigma(2 n-1)\}
$$

homot $=\sum_{\sigma \in S_{n-1, n}} \operatorname{sign} \sigma \omega\left(t_{\sigma(1)}, \ldots, t_{\sigma(n-1)}, \omega\left(t_{\sigma(n)}, \ldots, t_{\sigma(2 n-1)}\right)\right)$.

n-Polynomials $F_{1}^{[1]}$ and $F_{1}^{[2]}$

$$
F_{1}^{[1]}\left(t_{1}, \ldots, t_{3 n-2}\right)=\sum_{\sigma \in S_{y m}-1, n-1, n, \sigma(1)=1}
$$

$\operatorname{sign} \sigma\left(t_{1}, t_{\sigma(2)} \ldots, t_{\sigma(n-1)},\left(t_{\sigma(n)}, \ldots, t_{\sigma(2 n-2)},\left(t_{\sigma(2 n-1)}, \ldots, t_{\sigma(3 n-2)}\right)\right)\right)$,

$$
F_{1}^{[2]}\left(t_{1}, \ldots, t_{3 n-2}\right)=\sum_{\sigma \in S_{y m}-1, n-1, n, \sigma(n)=1}
$$

$\operatorname{sign} \sigma\left(t_{\sigma(1)}, \ldots, t_{\sigma(n-1)},\left(t_{1}, t_{\sigma(n+1)}, \ldots, t_{\sigma(2 n-2)},\left(t_{\sigma(2 n-1)}, \ldots, t_{\sigma(3 n-2)}\right)\right)\right.$

n-Polynomials $F_{2}^{[1]}$ and $F_{2}^{[2]}$

$$
F_{2}^{[1]}\left(t_{1}, \ldots, t_{3 n-2}\right)=\sum_{\sigma \in S_{y m_{n-2, n, n}, \sigma(1)=1}}
$$

$\operatorname{sign} \sigma\left(t_{1}, t_{\sigma(2)} \ldots, t_{\sigma(n-2)},\left(t_{\sigma(n-1)}, \ldots, t_{\sigma(2 n-2)}\right),\left(t_{\sigma(2 n-1)}, \ldots, t_{\sigma(3 n-2)}\right)\right.$

$$
F_{2}^{[2]}\left(t_{1}, \ldots, t_{3 n-2}\right)=\sum_{\sigma \in S_{y m}-2, n, n}, \sigma(n-1)=1
$$

$\left.\operatorname{sign} \sigma\left(t_{\sigma(1)}, \ldots, t_{\sigma(n-2)},\left(t_{1}, t_{\sigma(n)}, \ldots, t_{\sigma(2 n-2)}\right),\left(t_{\sigma(2 n-1)}, \ldots, t_{\sigma(3 n-2)}\right)\right)\right)$

n-Associative algebras under n-commutator

Problem. (Kurosh) Find n-identites for total associative n-algebras under n-commutator.
Let

$$
\begin{gathered}
f_{\lambda}^{[1]}=-F_{1}^{[1]}+\lambda F_{2}^{[1]}, \\
f_{\lambda}^{[2]}=F_{1}^{[2]}+\lambda F_{2}^{[2]} .
\end{gathered}
$$

Theorem. Let A be total associative n-algebra. If n is even, then its n-commutators algebra $[A]$ is homotopical n-Lie. Moreover, homot $=0$ is a minimal identity.

Theorem. Let A be total associative algebra. Then its n-commutators algebra $[A]$ satisfies the identity $f_{-1}^{[2]}=0$.

Remark. This result for $n=3$ was proved eariler by M.R. Bremner.

Matrices under 3-commutator

Theorem. Let $\left[M a t_{n}\right]$ be ternary matrix algebra under 3 -commutator $\left[a_{1}, a_{2}, a_{3}\right]=a_{1}\left[a_{2}, a_{3}\right]+a_{2}\left[a_{3}, a_{1}\right]+a_{3}\left[a_{1}, a_{2}\right]$. Then

- If $n=2$, then $\left[\mathrm{Mat}_{2}\right.$] is 3-Lie.
- Let $n=3$. Then any multilinear identity of $\left[\mathrm{Mat}_{3}\right]$ of ω-degree 2 follows from skew-symmetry identity of 3-commutator. The 3-algebra $\left[\mathrm{Mat}_{3}\right]$ satisfies the identity $f_{-3}^{[1]}=0$ and $f_{-1}^{[2]}=0$.
The identities $f_{-3}^{[1]}=0$ and $f_{-1}^{[2]}=0$ are independent and any multilinear identity of $\left[\mathrm{Mat}_{3}\right]$ of ω-degree 3 follows these identities.
- If $n>3$, then any multilinear identity of $\left[\mathrm{Mat}_{3}\right]$ of ω-degree 2 follows from skew-symmetry identity of 3-commutator. The 3-algebra $\left[M a t_{n}\right]$ satisfies the identity $f_{-1}^{[2]}=0$ and any its identity of ω-degree 3 follows from the identity $f_{-1}^{[2]}=0$.

n-Poisson brackets

Theorem. Let U be associative commutative algebra with derivations D_{1}, \ldots, D_{n}. Then the skew-symmetric n-algebra $\left(U, D_{1} \wedge \cdots \wedge D_{n}\right)$ is homotopical n-Lie if $n>2$. If $n=2$ it is s_{4}-Lie.

Theorem. Let U be associative commutative algebra with m commuting derivations $\partial_{1}, \ldots, \partial_{m}$. For $n \leq m$ let us endow U by n-multiplication ψ given as a linear combination of $n \times n$ jacobians

$$
\psi\left(a_{1}, \ldots, a_{n}\right)=\sum_{B_{1}, \ldots i_{n} \in[m]} \lambda_{i_{1}, \ldots, i_{n}}\left|\begin{array}{ccc}
\partial_{i_{1}}\left(a_{1}\right) & \cdots & \partial_{i_{1}}\left(a_{n}\right) \\
\partial_{i_{2}}\left(a_{1}\right) & \cdots & \partial_{i_{2}}\left(a_{n}\right) \\
\cdots & \cdots & \cdots \\
\partial_{i_{n}}\left(a_{1}\right) & \cdots & \partial_{i_{n}}\left(a_{n}\right)
\end{array}\right|
$$

If n is even, then (U, ψ) is homotopical n-Lie.

The n-polynomial r

Let

$$
r\left(t_{1}, \ldots, t_{7}\right)=
$$

$$
\sum_{\sigma \in S_{2,3}} \operatorname{sign} \sigma \psi\left(t_{\sigma(1)}, t_{\sigma(2)}, \psi\left(t_{6}, t_{7}, \psi\left(t_{\sigma(3)}, t_{\sigma(4)}, t_{\sigma(5)}\right)\right)\right)+
$$

$$
\begin{gathered}
\sum_{\sigma \in \tilde{S}_{1,2,2}} \operatorname{sign} \sigma\left\{\psi\left(t_{\sigma(1)}, t_{6}, \psi\left(t_{\sigma(2)}, t_{\sigma(3)}, \psi\left(t_{\sigma(4)}, t_{\sigma(5)}, t_{7}\right)\right)\right)-\right. \\
\left.\psi\left(t_{\sigma(1)}, t_{7}, \psi\left(t_{\sigma(2)}, t_{\sigma(3)}, \psi\left(t_{\sigma(4)}, t_{\sigma(5)}, t_{6}\right)\right)\right)\right\}- \\
\sum_{\sigma \in S_{1,2,2}} \operatorname{sign} \sigma\left\{\psi\left(t_{\sigma(1)}, \psi\left(t_{\sigma(2)}, t_{\sigma(3)}, t_{6}\right), \psi\left(t_{\sigma(4)}, t_{\sigma(5)}, t_{7}\right)\right)\right) \\
\left.\quad-\psi\left(t_{\sigma(1)}, \psi\left(t_{\sigma(2)}, t_{\sigma(3)}, t_{7}\right), \psi\left(t_{\sigma(4)}, t_{\sigma(5)}, t_{6}\right)\right)\right\} .
\end{gathered}
$$

Then r is skew-symmetric under variables $\left\{t_{1}, t_{2}, t_{3}, t_{4}, t_{5}\right\}$ and $\left\{t_{6}, t_{7}\right\}$.

Theorem. Let $A=K\left[x_{1}, \ldots, x_{6}\right]$ be algebra of polynomials with 6 variables and 3-multiplication given as a sum of two jacobians

$$
\left[a_{1}, a_{2}, a_{3}\right]=\left|\begin{array}{ccc}
\partial_{1} a_{1} & \partial_{1} a_{2} & \partial_{1} a_{3} \\
\partial_{2} a_{1} & \partial_{2} a_{2} & \partial_{2} a_{3} \\
\partial_{3} a_{1} & \partial_{3} a_{2} & \partial_{3} a_{3}
\end{array}\right|+\left|\begin{array}{ccc}
\partial_{4} a_{1} & \partial_{4} a_{2} & \partial_{4} a_{3} \\
\partial_{5} a_{1} & \partial_{5} a_{2} & \partial_{5} a_{3} \\
\partial_{6} a_{1} & \partial_{6} a_{2} & \partial_{6} a_{3}
\end{array}\right|
$$

Then any multilinear identity of A of ω-degree 2 follows from the skew-symmetric identity of 3-multiplication. The algebra A satisfies the identities $f_{-2}^{[1]}=0$ and $f_{1}^{[2]}=0$ and $r=0$. Any multilinear identity of A of ω-degree 3 follows from the identities $f_{-2}^{[1]}=0$, $f_{1}^{[2]}=0$ and $r=0$.

Referenes.

1. N-commutators, Comm.Math. Helvetici, 79(2004), No.3, p. 516-553. Preprint available math.RA/0203036
2. N-commutators for simple Lie algebras, XXVI workshop on geometrical methods in physics, Amer. Inst.Phys. Conf.Proc. 956, 2007, pp.159-168.
3. 10-commutator, 13-commutators and odd derivations, J.

Nonlinear Math.Phys., 15(2008),No.1, 87-103.
4. Algebras with skew-symmetric identity of degree 3, J. Math. Sci, 161(2009), No.1, p.11-30.
5. Anticommutative algebas with skew-symmetric identity, J.Algebra Appl., 8(2009), No.2, p.157-180.
6. (jointly with P. Zusmanovich) Commutative 2-cocycles of Lie algebars, J. Algebra, 324(2010), No.4, p.732-748.
7. Lie expression for multi-parameter Klyachko idempotent, J. Alg.

Comb., 33(2011), No 4, p. 531-542.

Thank You !

