Higher Categories and Rewriting

François Métayer

Laboratoire PPS
Université Paris 7 - Denis Diderot \& CNRS
Operads and Rewriting, Lyon, 2-4 November 2-4, 2011

From rewriting systems to omega-Cat

Homotopy of omega-Cat

Monoids

Presentations

A presentation of a monoid M consists in a pair (Σ, \mathcal{R})

- an alphabet Σ;
- a set $\mathcal{R} \subset \Sigma^{*} \times \Sigma^{*}$ of rewriting rules $r: w \rightarrow w^{\prime}$, where w, w^{\prime} are words on the alphabet Σ,
such that M is the quotient of the free monoid Σ^{*} by the congruence generated by \mathcal{R}.

Example

\mathbb{Z}_{2} is presented by $(\{a\},\{r: a a \rightarrow 1\})$

Complete system

Definition

A rewriting system is complete if it is noetherian and confluent.
Example

Homology

Theorem (Squier 1987)
If a monoid M admits a finite, complete presentation, then $\mathrm{H}_{3}(M)$ is of finite type.

Higher-categorical approach

- A monoid M is a category with a single object.
- The "space of computations" attached to a presentation of M supports a 2-dimensional categorical structure.
- More generally, the notion of resolution of M leads to categories of dimension $2,3, \ldots, n, \ldots$
- This leads to interpret Squier's result in an appropriate homotopical structure on ω Cat.

Globular sets

The category \mathbf{O}

$$
0 \underset{\mathrm{t}_{0}}{\mathrm{~s} 0} 1 \underset{\mathrm{t}_{1}}{\stackrel{\mathrm{~s}_{1}}{\rightrightarrows}} 2 \underset{\mathrm{t}_{2}}{\mathrm{~s}_{2}} \cdots
$$

- objects are integers $0,1,2, \ldots$
- morphisms are generated by $\mathrm{s}_{n}, \mathrm{t}_{n}: n \rightarrow n+1$, with

$$
\begin{aligned}
& \mathrm{s}_{n+1} \mathrm{~s}_{n}=\mathrm{t}_{n+1} \mathrm{~s}_{n} \\
& \mathrm{t}_{n+1} \mathrm{t}_{n}=\mathrm{s}_{n+1} \mathrm{t}_{n}
\end{aligned}
$$

Globular sets

Definition

A globular set is a presheaf on \mathbf{O} :

$$
X: \mathbf{O}^{o p} \rightarrow \text { Sets }
$$

- globular sets are obtained by glueing together globe-shaped cells.
- looks like simplicial sets with \mathbf{O} replacing Δ, but topologically much more restricted.

Higher categories

Definition
A (strict) ω-category C is given by:

- a globular set $\quad C_{0} \leftleftarrows C_{1} \leftleftarrows C_{2} \leftleftarrows \cdots$
- compositions and units satisfying: associativity, exchange...
ω Cat $=\omega$-categories $+\omega$-functors

Higher categories

Examples

1. set

$$
S \leftleftarrows() \leftleftarrows \cdots
$$

2. monoid

$$
1 \leftleftarrows M \leftleftarrows() \leftleftarrows \cdots
$$

3. presentation

$$
1 \leftleftarrows \Sigma^{*} \leftleftarrows \mathcal{R}_{/ \sim}^{*} \leftleftarrows() \leftleftarrows \cdots
$$

Polygraphs

Free cell adjunction
Let C be an n-category. Any graph

$$
C_{n} \underset{\tau_{n}}{\stackrel{\sigma_{n}}{\rightleftarrows}} S_{n+1}
$$

such that $g \in S_{n+1}, \sigma_{n} g \| \tau_{n} g$ for each generator g defines an $(n+1)$-category, the free extension of C by a set S_{n+1} of ($n+1$)-cells.

Polygraphs

Definition

A computad (Street 76) or polygraph (Burroni 91) S is a sequence of sets S_{n} of n-dimensional cells defining a freely generated n-category in each dimension n.

Examples from rewriting systems

$$
\begin{array}{rll}
\Sigma=\{a\} & \text { graph } & 1 \leftleftarrows \Sigma \\
& \text { free category } & 1 \leftleftarrows \Sigma^{*} \\
\mathcal{R}=\{r\} & \text { 2-graph } & 1 \leftleftarrows \Sigma^{*} \leftleftarrows \mathcal{R} \\
& \text { free 2-category } & 1 \leftleftarrows \Sigma^{*} \leftleftarrows \mathcal{R}^{*} \\
& \text { 2-category } & 1 \leftleftarrows \Sigma^{*} \leftleftarrows \mathcal{R}^{*} / \sim
\end{array}
$$

- what about higher dimensions ?

Resolutions

Definition

A polygraphic resolution of an ω-category C is a morphism $p: S^{*} \rightarrow C$, where S is a polygraph and:

- p_{0} is surjective;
- for each pair (x, y) of parallel n-cells in S_{n}^{*} and each $u: p x \rightarrow p y$, there exists $z: x \rightarrow y$ such that $p z=u$.

Resolutions

Theorem
Each ω-category admits a polygraphic resolution, which is unique up to "homotopy".

A partial resolution of \mathbb{Z}_{2}

Weak equivalences

Definition

- Two parallel n-cells x, y are ω-equivalent if there is a reversible $(n+1)$-cell $u: x \rightarrow y$;
- An $(n+1)$-cell $u: x \rightarrow y$ is reversible if there is a cell $v: y \rightarrow x$ such that $u * v$ and $v * u$ are ω-equivalent to 1_{x} and 1_{y} respectively.

Definition

A morphism $f: C \rightarrow D$ is a weak equivalence if:

- for all $d \in D_{0}$, there is $c \in C_{0}$ such that $f c \sim d$;
- for each pair (c, c^{\prime}) of parallel n-cells in C and each $d: f c \rightarrow f c^{\prime}$, there exists $u: c \rightarrow c^{\prime}$ such that $f u \sim d$.
We denote by \mathcal{W} the class of weak equivalences.

Globes

n-Globes

- For each n, the n-globe \mathbf{O}^{n} is the free ω-category generated by the globular set with two cells in dimensions $<n$, one cell in dimension n, and none in dimensions $>n$, that is

$$
\mathbf{O}^{n}=\mathbf{O}(-, n)^{*}
$$

- Likewise, $\partial \mathbf{O}^{n}$ denotes the boundary of the n-globe, obtained from \mathbf{O}^{n} by removing the unique n-dimensional generator.

Generating cofibrations

Canonical inclusions
We denote by \mathbf{i}_{n} the inclusion of $\partial \mathbf{O}^{n}$ in \mathbf{O}^{n} :

$$
I=\left\{\mathbf{i}_{n} \mid n \geq 0\right\}
$$

I is the set of generating cofibrations.

Model structure

Theorem (Lafont, Worytkiewicz \& FM)
The class \mathcal{W} of weak equivalences and the set \mathcal{I} of generating cofibrations determine a Quillen model structure on ω Cat.

Fibrations \& Cofibrations
The trivial fibrations are the morphisms having the right-lifting property with respect to \mathcal{I} and the class \mathcal{C} of cofibrations is the class of morphisms having the left-lifting property with respect to all trivial fibrations.
The class \mathcal{F} of fibrations is the class of morphisms having the right-lifting property with respect to all morphisms in $\mathcal{C} \cap \mathcal{W}$.

Cylinders

- $\left(C^{\prime}\right)_{n}=\operatorname{Hom}(c y l[n], C)$;
- C^{l} is an ω-category;
- there are natural transformations $\pi_{1}, \pi_{2}: C^{\prime} \rightarrow C$

Properties

- reversible cylinders $\Gamma(C) \subset C^{\prime}$ define a path object on C;
- all objects are fibrant;
- cofibrant objects are exactly polygraphs.

$$
(\omega \text { Cat })_{c f}=\text { Pol }^{*}
$$

Abelian group objects

Denormalization theorem (Bourn)
There is an equivalence of categories between:

$$
\begin{aligned}
\omega \text { Cat }^{a b} & =\text { abelian group objects in } \omega \text { Cat } \\
\text { and } \mathbf{C h} & =\text { chain complexes }
\end{aligned}
$$

Abelianization functor

$$
A b: \omega \mathbf{C a t} \rightarrow \mathbf{C h}, \quad C \mapsto(A, \partial)
$$

$A_{i}=\mathbb{Z} C_{i} / \approx$, where $\operatorname{id}(x) \approx 0$ and $x *_{j} y \approx x+y$

Homology as a derived functor

Derived functor

$$
t: L F \circ \gamma \rightarrow F
$$

Model structure on Ch

- Weak equivalences induce isomorphisms in homology
- $\nu: \mathbf{C h} \rightarrow \mathrm{Ho}(\mathbf{C h})$

Deriving the abelianization functor

Theorem
Let $F=\nu \circ A b$. There is a left derived functor LF and for any polygraph $S,(L F \circ \gamma)\left(S^{*}\right) \simeq F\left(S^{*}\right)$.

Proof.

- on cofibrant objects $A b\left(S^{*}\right)=\left[S^{*}\right]=\mathbb{Z} S$;
- If $f: S^{*} \rightarrow T^{*}$ is a weak equivalence, then $A b(f)$ is a quasi-isomorphism.

