Higher Categories and Rewriting

François Métayer

Laboratoire PPS Université Paris 7 - Denis Diderot & CNRS

Operads and Rewriting, Lyon, 2-4 November 2-4, 2011

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

From rewriting systems to omega-Cat

Homotopy of omega-Cat

Monoids

Presentations

A presentation of a monoid M consists in a pair (Σ, \mathcal{R})

- an alphabet Σ;
- a set R ⊂ Σ* × Σ* of rewriting rules r : w → w', where w, w' are words on the alphabet Σ,

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

such that M is the quotient of the free monoid Σ^* by the congruence generated by \mathcal{R} .

Example

 \mathbb{Z}_2 is presented by $(\{a\}, \{r: aa \rightarrow 1\})$

Complete system

Definition

A rewriting system is *complete* if it is noetherian and confluent.

Example

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Homology

Theorem (Squier 1987)

If a monoid M admits a finite, complete presentation, then $H_3(M)$ is of finite type.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Higher-categorical approach

- ▶ A monoid *M* is a category with a single object.
- The "space of computations" attached to a presentation of M supports a 2-dimensional categorical structure.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- ▶ More generally, the notion of resolution of *M* leads to categories of dimension 2, 3,...,*n*,...
- This leads to interpret Squier's result in an appropriate homotopical structure on ωCat.

Globular sets

The category **O**

$$0 \xrightarrow[t_0]{s_0} 1 \xrightarrow[t_1]{s_1} 2 \xrightarrow[t_2]{s_2} \cdots$$

- ▶ objects are integers 0, 1, 2, ...
- ▶ morphisms are generated by $s_n, t_n : n \to n+1$, with

$$s_{n+1}s_n = t_{n+1}s_n$$
$$t_{n+1}t_n = s_{n+1}t_n$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Globular sets

Definition

A globular set is a presheaf on **O**:

$X: \mathbf{O}^{op} \to \mathbf{Sets}$

- globular sets are obtained by glueing together globe-shaped cells.
- looks like simplicial sets with O replacing Δ, but topologically much more restricted.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Higher categories

Definition

A (strict) ω -category C is given by:

- a globular set $C_0 \coloneqq C_1 \coloneqq C_2 \coloneqq \cdots$
- compositions and units satisfying: associativity, exchange...

$$\omega$$
Cat = ω -categories + ω -functors

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Higher categories

Examples

1. set

$$S \coloneqq () \coloneqq \cdots$$

2. monoid

$$1 \coloneqq M \coloneqq () \coloneqq \cdots$$

3. presentation

$$1 \coloneqq \Sigma^* \coloneqq \mathcal{R}^*_{/\sim} \coloneqq () \coloneqq \cdots$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Polygraphs

Free cell adjunction

Let C be an n-category. Any graph

$$C_n \underset{\tau_n}{\leqslant} S_{n+1}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

such that $g \in S_{n+1}$, $\sigma_n g \parallel \tau_n g$ for each generator g defines an (n+1)-category, the free extension of C by a set S_{n+1} of (n+1)-cells.

Polygraphs

Definition

A computed (Street 76) or polygraph (Burroni 91) S is a sequence of sets S_n of *n*-dimensional cells defining a freely generated *n*-category in each dimension *n*.

Examples from rewriting systems

$$\begin{split} \Sigma &= \{a\} & \text{graph} \quad 1 \Leftarrow \Sigma \\ & \text{free category} \quad 1 \Leftarrow \Sigma^* \\ \mathcal{R} &= \{r\} & 2\text{-graph} \quad 1 \Leftarrow \Sigma^* \Leftarrow \mathcal{R} \\ & \text{free 2-category} \quad 1 \Leftarrow \Sigma^* \Leftarrow \mathcal{R}^* \\ & 2\text{-category} \quad 1 \Leftarrow \Sigma^* \Leftarrow \mathcal{R}^* / \sim \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

what about higher dimensions ?

Resolutions

Definition

A polygraphic resolution of an ω -category C is a morphism $p: S^* \to C$, where S is a polygraph and:

- *p*₀ is surjective;
- For each pair (x, y) of parallel n-cells in S^{*}_n and each u : px → py, there exists z : x → y such that pz = u.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Resolutions

Theorem

Each ω -category admits a polygraphic resolution, which is unique up to "homotopy".

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

A partial resolution of \mathbb{Z}_2

▲ロト▲園ト▲園ト▲園ト 園 のへで

Weak equivalences

Definition

- Two parallel *n*-cells x, y are ω-equivalent if there is a reversible (n + 1)-cell u : x → y;
- An (n+1)-cell u : x → y is reversible if there is a cell v : y → x such that u * v and v * u are ω-equivalent to 1_x and 1_y respectively.

Definition

A morphism $f : C \rightarrow D$ is a *weak equivalence* if:

- for all $d \in D_0$, there is $c \in C_0$ such that $fc \sim d$;
- For each pair (c, c') of parallel n-cells in C and each d : fc → fc', there exists u : c → c' such that fu ~ d.

We denote by $\ensuremath{\mathcal{W}}$ the class of weak equivalences.

Globes

n-Globes

For each n, the n-globe Oⁿ is the free ω-category generated by the globular set with two cells in dimensions < n, one cell in dimension n, and none in dimensions > n, that is

$$\mathbf{O}^n = \mathbf{O}(-, n)^*$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

► Likewise, ∂Oⁿ denotes the boundary of the *n*-globe, obtained from Oⁿ by removing the unique *n*-dimensional generator.

Generating cofibrations

Canonical inclusions

We denote by \mathbf{i}_n the inclusion of $\partial \mathbf{O}^n$ in \mathbf{O}^n :

$$I = \{\mathbf{i}_n \mid n \ge 0\}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

I is the set of *generating cofibrations*.

Model structure

Theorem (Lafont, Worytkiewicz & FM)

The class W of weak equivalences and the set I of generating cofibrations determine a Quillen model structure on ω **Cat**.

Fibrations & Cofibrations

The *trivial fibrations* are the morphisms having the right-lifting property with respect to \mathcal{I} and the class \mathcal{C} of *cofibrations* is the class of morphisms having the left-lifting property with respect to all trivial fibrations.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

The class \mathcal{F} of fibrations is the class of morphisms having the right-lifting property with respect to all morphisms in $\mathcal{C} \cap \mathcal{W}$.

Cylinders

- $(C')_n = \operatorname{Hom}(\operatorname{cyl}[n], C);$
- C' is an ω -category;
- ▶ there are natural transformations $\pi_1, \pi_2 : C^I \to C$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Properties

- reversible cylinders $\Gamma(C) \subset C'$ define a path object on C ;
- all objects are fibrant;
- cofibrant objects are exactly polygraphs.

 $(\omega \operatorname{Cat})_{cf} = \operatorname{Pol}^*$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Abelian group objects

Denormalization theorem (Bourn)

There is an equivalence of categories between:

 $\omega \operatorname{Cat}^{ab} =$ abelian group objects in $\omega \operatorname{Cat}$ and $\operatorname{Ch} =$ chain complexes

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Abelianization functor

$$Ab: \omega \mathbf{Cat} \to \mathbf{Ch}, \qquad C \mapsto (A, \partial)$$

 $A_i = \mathbb{Z}C_i/_{\approx}$, where $\mathrm{id}(x) \approx 0$ and $x *_j y \approx x + y$

Homology as a derived functor

Derived functor

$$t: LF \circ \gamma \to F$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Model structure on Ch

- Weak equivalences induce isomorphisms in homology
- \blacktriangleright ν : **Ch** \rightarrow Ho(**Ch**)

Deriving the abelianization functor

Theorem

Let $F = \nu \circ Ab$. There is a left derived functor LF and for any polygraph S, $(LF \circ \gamma)(S^*) \simeq F(S^*)$.

Proof.

- on cofibrant objects $Ab(S^*) = [S^*] = \mathbb{Z}S;$
- If f : S^{*} → T^{*} is a weak equivalence, then Ab(f) is a quasi-isomorphism.

(日) (四) (日) (日) (日)

・ロア・国・国ア・国ア・日マ