CRITICAL PAIRS IN 2-DIMENSIONAL REWRITING SYSTEMS

SAMUEL MIMRAM

OPERADS AND REWRITING
3 NOVEMBER 2011

TOWARDS HIGHER-DIMENSIONAL REWRITING THEORY

Rewriting theory has proven to be very useful to study

- monoids (and groups)
- term algebras

TOWARDS HIGHER-DIMENSIONAL REWRITING THEORY

Rewriting theory has proven to be very useful to study

- monoids (and groups)
- term algebras
- n-categories?

> Can we generalize it
> to higher dimensions?

TOWARDS HIGHER-DIMENSIONAL REWRITING THEORY

Rewriting theory has proven to be very useful to study

- monoids (and groups)
- term algebras
- n-categories?

> Can we generalize it to higher dimensions?

In this talk, I will be interested in extending the procedures of unification in higher dimensions.

TOWARDS HIGHER-DIMENSIONAL REWRITING THEORY

Rewriting theory has proven to be very useful to study

- monoids (and groups)
- term algebras
- n-categories?

> Can we generalize it
> to higher dimensions?

In this talk, I will be interested in extending the procedures of unification in dimension 2.

REWRITING SYSTEMS

REWRITING SYSTEMS

A rewriting system consists of

- a set of terms generated by a free construction:
- free monoid: string rewriting systems
- free term algebra: term rewriting systems
- a set of rewriting rules: $r: t \rightarrow u$

Example

$$
\Sigma=\{a, b\} \quad \text { terms }=\Sigma^{*} \quad \text { rules }=\{b a \rightarrow a b\}
$$

REWRITING SYSTEMS

A rewriting system consists of

- a set of terms generated by a free construction:
- free monoid: string rewriting systems
- free term algebra: term rewriting systems
- a set of rewriting rules: $r: t \rightarrow u$

A term t rewrites to a term t^{\prime} when there exists

- a rule $r: u \rightarrow u^{\prime}$
- a context C such that $t=C[u]$ and $t^{\prime}=C\left[u^{\prime}\right]$

Example

$$
\Sigma=\{a, b\} \quad \text { terms }=\Sigma^{*} \quad \text { rules }=\{b a \rightarrow a b\}
$$

$$
\text { aabaab } \xrightarrow{\text { aarab }} \text { aaabab }
$$

CONVERGENT REWRITING SYSTEMS

- A rewriting system can be terminating when there is no infinite reduction path

CONVERGENT REWRITING SYSTEMS

- A rewriting system can be terminating
- A rewriting can be confluent when

CONVERGENT REWRITING SYSTEMS

- A rewriting system can be terminating
- A rewriting can be confluent when

CONVERGENT REWRITING SYSTEMS

- A rewriting system can be terminating
- A rewriting can be confluent when

- A rewriting system is convergent when both terminating and confluent

CONVERGENT REWRITING SYSTEMS

- A rewriting system can be terminating
- A rewriting can be confluent when

- A rewriting system is convergent when both terminating and confluent

In a convergent rewriting system, every term has a normal form: canonical representative of terms modulo rewriting.

Why
are those properties
interesting?

PRESENTATIONS OF MONOIDS

A presentation

$$
\langle G \mid R\rangle
$$

of a monoid M consists of

- a set G of generators
- a set $R \subseteq G^{*} \times G^{*}$ of relations
such that

$$
M \cong \quad G^{*} / \equiv_{R}
$$

Example

- $\mathbb{N} \cong\langle a \mid\rangle$
- $\mathbb{N} / 2 \mathbb{N} \cong\langle a \mid a a=1\rangle$
- $\mathbb{N} \times \mathbb{N} \cong\langle a, b \mid b a=a b\rangle$
- $\mathfrak{S}_{n} \cong\left\langle\sigma_{1}, \ldots, \sigma_{n} \mid \sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}, \sigma_{i}^{2}=1, \sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}\right\rangle$

PRESENTATIONS OF MONOIDS

How do we show that $M \cong\langle G \mid R\rangle$ i.e. $M \cong G^{*} / \equiv_{R}$?

PRESENTATIONS OF MONOIDS

How do we show that $M \cong\langle G \mid R\rangle$ i.e. $M \cong G^{*} / \equiv_{R}$?

1. Orient R to get a string rewriting system.
2. Show that the rewriting system is terminating.
3. Show that the rewriting system is confluent.
4. Show that the normal forms are in bijection with M.

PRESENTATIONS OF MONOIDS

How do we show that $M \cong\langle G \mid R\rangle$ i.e. $M \cong G^{*} / \equiv_{R}$?

1. Orient R to get a string rewriting system.
2. Show that the rewriting system is terminating.
3. Show that the rewriting system is confluent.
4. Show that the normal forms are in bijection with M.

Example $\mathbb{N} \times(\mathbb{N} / 2 \mathbb{N}) \stackrel{?}{\cong} \quad\langle a, b \mid b a=a b, b b=1\rangle$

PRESENTATIONS OF MONOIDS

How do we show that $M \cong\langle G \mid R\rangle$ i.e. $M \cong G^{*} / \equiv_{R}$?

1. Orient R to get a string rewriting system.
2. Show that the rewriting system is terminating.
3. Show that the rewriting system is confluent.
4. Show that the normal forms are in bijection with M.

Example $\mathbb{N} \times(\mathbb{N} / 2 \mathbb{N}) \stackrel{?}{\cong}\langle a, b \mid b a \rightarrow a b, b b \rightarrow 1\rangle$

PRESENTATIONS OF MONOIDS

How do we show that $M \cong\langle G \mid R\rangle$ i.e. $M \cong G^{*} / \equiv_{R}$?

1. Orient R to get a string rewriting system.
2. Show that the rewriting system is terminating.
3. Show that the rewriting system is confluent.
4. Show that the normal forms are in bijection with M.

Example $\mathbb{N} \times(\mathbb{N} / 2 \mathbb{N}) \stackrel{?}{\cong}\langle a, b \mid b a \rightarrow a b, b b \rightarrow 1\rangle$
Normal forms are:

$$
a^{n} \quad \text { and } \quad a^{n} b
$$

They are in bijection with $\mathbb{N} \times(\mathbb{N} / 2 \mathbb{N})$!

> How do we show
> that a rewriting system is confluent?

CRITICAL PAIRS

Given a terminating rewriting system the following are equivalent: 1. the rewriting system is confluent

CRITICAL PAIRS

Given a terminating rewriting system the following are equivalent:

1. the rewriting system is confluent
2. the rewriting system is locally confluent

CRITICAL PAIRS

Given a terminating rewriting system the following are equivalent:

1. the rewriting system is confluent
2. the rewriting system is locally confluent

CRITICAL PAIRS

Given a terminating rewriting system the following are equivalent:

1. the rewriting system is confluent
2. the rewriting system is locally confluent

3. all the critical pairs are joinable
i.e. the property above is satisfied for all minimal t

CRITICAL PAIRS

Given a terminating rewriting system the following are equivalent:

1. the rewriting system is confluent
2. the rewriting system is locally confluent
3. all the critical pairs are joinable
i.e. the property above is satisfied for all minimal t

Example $\mathbb{N} \times(\mathbb{N} / 2 \mathbb{N}) \stackrel{?}{\cong}\langle a, b \mid b a \rightarrow a b, b b \rightarrow 1\rangle$
Critical pairs are:

CRITICAL PAIRS

Given a terminating rewriting system the following are equivalent:

1. the rewriting system is confluent
2. the rewriting system is locally confluent
3. all the critical pairs are joinable
i.e. the property above is satisfied for all minimal t

Example $\mathbb{N} \times(\mathbb{N} / 2 \mathbb{N}) \stackrel{?}{\cong}\langle a, b \mid b a \rightarrow a b, b b \rightarrow 1\rangle$
Critical pairs are joinable:

string rs $=$ presentation of a monoid term rs $=$ presentation of ?

TERM REWRITING SYSTEMS

- A signature (Σ, α) consists of
- a set Σ of generators
- an arity function $\alpha: \Sigma \rightarrow \mathbb{N}$
- Terms are elements of the free algebra Σ^{*} over this signature

Example

The TRS of commutative monoids: $\Sigma=\{m: 2, e: 0\}$

$$
R=\left\{\begin{array}{lrl}
\alpha: & m(m(x, y), z) & \rightarrow m(x, m(y, z)) \\
\lambda: & m(e, x) & \rightarrow x \\
\rho: & m(x, e) \rightarrow x \\
\gamma: & m(x, y) \rightarrow m(y, x)
\end{array}\right\}
$$

PRESENTATIONS OF LAWVERE THEORIES

String rewriting systems correspond to presentations of monoids.

PRESENTATIONS OF LAWVERE THEORIES

Term rewriting systems correspond to presentations of Lawvere theories.

PRESENTATIONS OF LAWVERE THEORIES

A Lawvere theory is a category \mathcal{C}

- whose objects are integers
- which is cartesian
- whose cartesian product is given on objects by addition

PRESENTATIONS OF LAWVERE THEORIES

A Lawvere theory is a category \mathcal{C}

- whose objects are integers
- which is cartesian
- whose cartesian product is given on objects by addition

TRS $((\Sigma, \alpha), R)$ induce a LT whose morphisms $m \rightarrow n$ are n-uples of terms with variables x_{1}, \ldots, x_{m}, considered modulo relations.

Presentation: $\mathcal{C} \cong \Sigma^{*} / \equiv_{R}$

PRESENTATIONS OF LAWVERE THEORIES

A Lawvere theory is a category \mathcal{C}

- whose objects are integers
- which is cartesian
- whose cartesian product is given on objects by addition

TRS $((\Sigma, \alpha), R)$ induce a LT whose morphisms $m \rightarrow n$ are n-uples of terms with variables x_{1}, \ldots, x_{m}, considered modulo relations.
Presentation: $\mathcal{C} \cong \Sigma^{*} / \equiv_{R}$

Example

Consider the TRS of commutative monoids: $\Sigma=\{m: 2, e: 0\}$

$$
R=\left\{\begin{array}{ll}
\alpha: & m(m(x, y), z) \rightarrow m(x, m(y, z)) \\
\lambda: & m(e, x) \rightarrow x \\
\rho: & m(x, e) \rightarrow x \\
\gamma: & m(x, y) \rightarrow m(y, x)
\end{array}\right\}
$$

PRESENTATIONS OF LAWVERE THEORIES

A Lawvere theory is a category \mathcal{C}

- whose objects are integers
- which is cartesian
- whose cartesian product is given on objects by addition

TRS $((\Sigma, \alpha), R)$ induce a LT whose morphisms $m \rightarrow n$ are n-uples of terms with variables x_{1}, \ldots, x_{m}, considered modulo relations.
Presentation: $\mathcal{C} \cong \Sigma^{*} / \equiv_{R}$

Example

Consider the TRS of commutative monoids: $\Sigma=\{m: 2, e: 0\}$

It presents the Lawvere theory whose morphisms $M: m \rightarrow n$ are $(m \times n)$-matrices with coefficients in \mathbb{N}.

PRESENTATIONS OF LAWVERE THEORIES

A Lawvere theory is a category \mathcal{C}

- whose objects are integers
- which is cartesian
- whose cartesian product is given on objects by addition

TRS $((\Sigma, \alpha), R)$ induce a LT whose morphisms $m \rightarrow n$ are n-uples of terms with variables x_{1}, \ldots, x_{m}, considered modulo relations.
Presentation: $\mathcal{C} \cong \Sigma^{*} / \equiv_{R}$

Example

Consider the TRS of commutative monoids: $\Sigma=\{m: 2, e: 0\}$

$$
\left[m\left(m\left(x_{1}, x_{1}\right), x_{2}\right) ; e ; x_{2}\right]: 2 \rightarrow 3
$$

PRESENTATIONS OF LAWVERE THEORIES

A Lawvere theory is a category \mathcal{C}

- whose objects are integers
- which is cartesian
- whose cartesian product is given on objects by addition

TRS $((\Sigma, \alpha), R)$ induce a LT whose morphisms $m \rightarrow n$ are n-uples of terms with variables x_{1}, \ldots, x_{m}, considered modulo relations.
Presentation: $\mathcal{C} \cong \Sigma^{*} / \equiv_{R}$

Example

Consider the TRS of commutative monoids: $\Sigma=\{m: 2, e: 0\}$

$$
\left[m\left(m\left(x_{1}, x_{1}\right), x_{2}\right) ; e ; x_{2}\right]: 2 \rightarrow 3 \quad \rightsquigarrow \quad\left(\begin{array}{lll}
2 & 0 & 0 \\
1 & 0 & 1
\end{array}\right)
$$

PRESENTATIONS OF LAWVERE THEORIES

A Lawvere theory is a category \mathcal{C}

- whose objects are integers
- which is cartesian
- whose cartesian product is given on objects by addition

TRS $((\Sigma, \alpha), R)$ induce a LT whose morphisms $m \rightarrow n$ are n-uples of terms with variables x_{1}, \ldots, x_{m}, considered modulo relations.
Presentation: $\mathcal{C} \cong \Sigma^{*} / \equiv_{R}$

Example

Consider the TRS of commutative monoids: $\Sigma=\{m: 2, e: 0\}$

$$
\begin{array}{r}
{\left[m\left(m\left(x_{1}, x_{1}\right), x_{2}\right) ; e ; x_{2}\right]} \\
{\left[m\left(x_{1}, m\left(x_{1}, x_{2}\right)\right) ; e ; m\left(e, x_{2}\right)\right]}
\end{array}: 2 \rightarrow 3 \quad \rightsquigarrow \quad\left(\begin{array}{lll}
2 & 0 & 0 \\
1 & 0 & 1
\end{array}\right)
$$

PRESENTATIONS OF LAWVERE THEORIES

A Lawvere theory is a category \mathcal{C}

- whose objects are integers
- which is cartesian
- whose cartesian product is given on objects by addition

TRS $((\Sigma, \alpha), R)$ induce a LT whose morphisms $m \rightarrow n$ are n-uples of terms with variables x_{1}, \ldots, x_{m}, considered modulo relations.
Presentation: $\mathcal{C} \cong \quad \Sigma^{*} / \equiv_{R}$

Example

Consider the TRS of commutative monoids: $\Sigma=\{m: 2, e: 0\}$

$$
\begin{array}{r}
{\left[m\left(m\left(x_{1}, x_{1}\right), x_{2}\right) ; e ; x_{2}\right]} \\
{\left[m\left(x_{1}, m\left(x_{1}, x_{2}\right)\right) ; e ; m\left(e, x_{2}\right)\right]}
\end{array}: 2 \rightarrow 3 \quad \rightsquigarrow \quad\left(\begin{array}{lll}
2 & 0 & 0 \\
1 & 0 & 1
\end{array}\right)
$$

Use rewriting theory!

Can we use the same techniques in order to build presentations of n-categories?

POLYGRAPHS

[Street76,Burroni93,Power90]

PRESENTING \boldsymbol{n}-CATEGORIES

We want to generalize rewriting systems

dimension	rewr. syst.	presents
1	string	monoid

$$
\xrightarrow{a} \xrightarrow{b} \xrightarrow{c}
$$

PRESENTING n-CATEGORIES

We want to generalize rewriting systems

dimension	rewr. syst.	presents
	string	monoid
1	term	Lawvere th.

PRESENTING \cap-CATEGORIES

We want to generalize rewriting systems

dimension	rewr. syst.	presents
0	element	set
1	string	monoid
2	term	Lawvere th.

PRESENTING \cap-CATEGORIES

We want to generalize rewriting systems

dimension	rewr. syst.	presents
0	element	set
1	string	monoid
2	term	Lawvere th.

PRESENTING \cap-CATEGORIES

We want to generalize rewriting systems

dimension
rewr. syst.
0
1
2
:---:
0-category
term
:---:
sawvere th.
set $=0$-category

PRESENTING \cap-CATEGORIES

We want to generalize rewriting systems

dimension	rewr. syst.	presents
0	element	0-category
1	string	monoid
2	term	Lawvere th.

PRESENTING \boldsymbol{n}-CATEGORIES

We want to generalize rewriting systems

dimension	rewr. syst.	presents
0	element	0-category
1	string	1-category
2	term	Lawvere th.

monoid $=$ 1-category with only one object

Generalization: $\xrightarrow{a} \xrightarrow{b} \quad \rightsquigarrow \quad x \xrightarrow{a} y \xrightarrow{b} y$

PRESENTING \cap-CATEGORIES

We want to generalize rewriting systems

dimension	rewr. syst.	presents
0	element	0-category
1	string	1-category
2	term	Lawvere th.

PRESENTING n-CATEGORIES

We want to generalize rewriting systems

dimension	rewr. syst.	presents
0	element	0-category
1	string	1-category
2	term	cartesian category

Lawvere th. $=$ cartesian category with \mathbb{N} as objects

Generalization:

\leadsto

PRESENTING \boldsymbol{n}-CATEGORIES

We want to generalize rewriting systems

dimension	rewr. syst.	presents
0	element	0-category
1	string	1-category
2	term	monoidal category

monoidal category in which every object is a comonoid

Generalization:

\leadsto

PRESENTING n-CATEGORIES

We want to generalize rewriting systems

dimension	rewr. syst.	presents
0	element	0-category
1	string	1-category
2	term	2-category

monoidal category $=$ 2-category with only one object

Generalization:

\leadsto

POLYGRAPHS

A 0-signature

$$
\Sigma_{0}
$$

Example

$$
\begin{aligned}
& \text { signature } \\
& x \quad y
\end{aligned}
$$

POLYGRAPHS

A 0-rewriting system

Example

POLYGRAPHS

A 1 -signature $=$ a 0 -rewriting system

Example signature

POLYGRAPHS

A 1-signature generates a category

$$
\Sigma_{0} \underset{t_{0}^{*}}{\stackrel{s_{0}}{s_{0}} \Sigma_{s_{0}^{*} t_{0}}^{i_{1}} \downarrow} \sum_{1}^{\Sigma_{1}}
$$

Example

 signature$$
x \xrightarrow{a} y \bigcap_{2}^{b} x \xrightarrow{a} y \xrightarrow{b} y \xrightarrow{b} y
$$

POLYGRAPHS

A 1-rewriting system

such that $s_{0}^{*} \circ s_{1}=s_{0}^{*} \circ t_{1}$ and $t_{0}^{*} \circ s_{1}=t_{0}^{*} \circ t_{1}$
Example signature
terms

POLYGRAPHS

A 2-signature $=$ a 1-rewriting system

such that $s_{0}^{*} \circ s_{1}=s_{0}^{*} \circ t_{1}$ and $t_{0}^{*} \circ s_{1}=t_{0}^{*} \circ t_{1}$
Example
signature

POLYGRAPHS

A 2-signature generates a 2-category

such that $s_{0}^{*} \circ s_{1}=s_{0}^{*} \circ t_{1}$ and $t_{0}^{*} \circ s_{1}=t_{0}^{*} \circ t_{1}$
Example

> signature

POLYGRAPHS

A 2-rewriting system

such that $s_{1}^{*} \circ s_{2}=s_{1}^{*} \circ t_{2}$ and $t_{1}^{*} \circ s_{2}=t_{1}^{*} \circ t_{2}$
Example
signature

rules

POLYGRAPHS

A 2-rewriting system

Right notion of n-rewriting system: n-polygraphs.

An example: a presentation of $\mathbf{B i j}$

[Lafont03]

A PRESENTATION OF Bij

The category Bij has

- objects are integers $[n]=\{0, \ldots, n-1\}$
- morphisms $f:[m] \rightarrow[n]$ are bijections

A PRESENTATION OF Bij

The category Bij has

- objects are integers $[n]=\{0, \ldots, n-1\}$
- morphisms $f:[m] \rightarrow[n]$ are bijections

A PRESENTATION OF Bij

The category Bij has

- objects are integers $[n]=\{0, \ldots, n-1\}$
- morphisms $f:[m] \rightarrow[n]$ are bijections

A PRESENTATION OF Bij

The category Bij has

- objects are integers $[n]=\{0, \ldots, n-1\}$
- morphisms $f:[m] \rightarrow[n]$ are bijections

Vertical composition ○

A PRESENTATION OF Bij

The category Bij has

- objects are integers $[n]=\{0, \ldots, n-1\}$
- morphisms $f:[m] \rightarrow[n]$ are bijections

A PRESENTATION OF Bij

The category Bij has

- objects are integers $[n]=\{0, \ldots, n-1\}$
- morphisms $f:[m] \rightarrow[n]$ are bijections

A PRESENTATION OF Bij

The category Bij has

- objects are integers $[n]=\{0, \ldots, n-1\}$
- morphisms $f:[m] \rightarrow[n]$ are bijections

Horizontal composition \otimes

A PRESENTATION OF Bij

We want to give a presentation of $\mathbf{B i j}$, i.e. describe it as

- a free category on sets of typed generators for 0 -, 1- and 2-cells
- quotiented by relations between 2-cells in the generated 2-category

A PRESENTATION OF Bij

Bij is presented by the 3-polygraph such that [Lafont03]

- $\Sigma_{0}=\{*\}$

A PRESENTATION OF Bij

Bij is presented by the 3-polygraph such that [Lafont03]

- $\Sigma_{0}=\{*\}$
- $\Sigma_{1}=\{1: * \rightarrow *\} \quad\left(\right.$ so $\left.\Sigma_{1}^{*} \approx \mathbb{N}\right)$

A PRESENTATION OF Bij

Bij is presented by the 3-polygraph such that [Lafont03]

- $\Sigma_{0}=\{*\}$
- $\Sigma_{1}=\{1: * \rightarrow *\} \quad\left(\right.$ so $\left.\Sigma_{1}^{*} \approx \mathbb{N}\right)$
- $\Sigma_{2}=\{\gamma: 1 \otimes 1 \rightarrow 1 \otimes 1\}$

A PRESENTATION OF Bij

Bij is presented by the 3-polygraph such that [Lafont03]

- $\Sigma_{0}=\{*\}$
- $\Sigma_{1}=\{1: * \rightarrow *\} \quad\left(\right.$ so $\left.\Sigma_{1}^{*} \approx \mathbb{N}\right)$
- $\Sigma_{2}=\{\gamma: 1 \otimes 1 \rightarrow 1 \otimes 1\}$
- $\Sigma_{3}=\{y, s\}$

$\stackrel{S}{\Longrightarrow}$

A PRESENTATION OF Bij

Bij is presented by the 3-polygraph such that [Lafont03]

- $\Sigma_{0}=\{*\}$
- $\Sigma_{1}=\{1: * \rightarrow *\} \quad\left(\right.$ so $\left.\Sigma_{1}^{*} \approx \mathbb{N}\right)$
- $\Sigma_{2}=\{\gamma: 1 \otimes 1 \rightarrow 1 \otimes 1\}$
- $\Sigma_{3}=\{y, s\}$

A PRESENTATION OF Bij

Bij is presented by the 3-polygraph such that [Lafont03]

- $\Sigma_{0}=\{*\}$
- $\Sigma_{1}=\{1: * \rightarrow *\} \quad\left(\right.$ so $\left.\Sigma_{1}^{*} \approx \mathbb{N}\right)$
- $\Sigma_{2}=\{\gamma: 1 \otimes 1 \rightarrow 1 \otimes 1\}$
- $\Sigma_{3}=\{y, s\}$

A PRESENTATION OF Bij

The rules

of the rewriting system induce critical pairs

A PRESENTATION OF Bij

The rules

of the rewriting system induce critical pairs

A PRESENTATION OF Bij

The rules

of the rewriting system induce critical pairs

A PRESENTATION OF Bij

The rules

of the rewriting system induce critical pairs

Critical pairs are computed using a unification procedure.

We want to extend it to 2-dimensional rewriting systems

Contrarily to term rewriting systems we can have an infinite number of critical pairs...

IDEA:
change the definition of critical pairs

CRITICAL PAIRS IN THE MULTICATEGORY OF COMPACT CONTEXTS

TWO PROBLEMS WITH CRITICAL PAIRS

Consider the 2-rewriting system Σ with
$\Sigma_{0}=\{*\} \quad \Sigma_{1}=\{1\} \quad \Sigma_{2}=\{s: 1 \rightarrow 1, d: 1 \rightarrow 3, m: 3 \rightarrow 1\}$
the generators for 2-cells are drawn respectively as

TWO PROBLEMS WITH CRITICAL PAIRS

Consider the 2 -rewriting system Σ with
$\Sigma_{0}=\{*\} \quad \Sigma_{1}=\{1\} \quad \Sigma_{2}=\{s: 1 \rightarrow 1, d: 1 \rightarrow 3, m: 3 \rightarrow 1\}$
the generators for 2-cells are drawn respectively as

with rules

and

TWO PROBLEMS WITH CRITICAL PAIRS

The two rules

induce an infinite number of critical pairs:
variables on the border:

TWO PROBLEMS WITH CRITICAL PAIRS

The two rules

induce an infinite number of critical pairs:
variables on the border: use compact morphisms!

TWO PROBLEMS WITH CRITICAL PAIRS

The two rules

induce an infinite number of critical pairs:
variables on the border: use compact morphisms!

TWO PROBLEMS WITH CRITICAL PAIRS

The two rules

induce an infinite number of critical pairs:
variables inside:

TWO PROBLEMS WITH CRITICAL PAIRS

The two rules

induce an infinite number of critical pairs:
variables inside:
use contexts!
(= multicategory of
terms with metavariables)

BACK TO A FINITE NUMBER OF CRITICAL PAIRS

Theorem
The 2-category of "terms" generated by a signature can be embedded into the multicategory of compact contexts.

In other words, there is a finite number of generating families of critical pairs
in those rewriting systems.

THE MULTICATEGORY OF CONTEXTS

Consider a 2-polygraph Σ

and a family $\mathcal{X}=\left\{X_{1}: f_{1} \Rightarrow g_{1}, \ldots, X_{n}: f_{n} \Rightarrow g_{n}\right\}$ of 2-globes, with $f_{i}, g_{i} \in \Sigma_{1}^{*}$ parallel 1-cells considered as formal variables

THE MULTICATEGORY OF CONTEXTS

Consider a 2-polygraph Σ

and a family $\mathcal{X}=\left\{X_{1}: f_{1} \Rightarrow g_{1}, \ldots, X_{n}: f_{n} \Rightarrow g_{n}\right\}$ of 2-globes, with $f_{i}, g_{i} \in \sum_{1}^{*}$ parallel 1-cells considered as formal variables

We define the 2-polygraph $\Sigma[\mathcal{X}]$ as

THE MULTICATEGORY OF CONTEXTS

Consider a 2-polygraph Σ

and a family $\mathcal{X}=\left\{X_{1}: f_{1} \Rightarrow g_{1}, \ldots, X_{n}: f_{n} \Rightarrow g_{n}\right\}$ of 2-globes, with $f_{i}, g_{i} \in \sum_{1}^{*}$ parallel 1-cells considered as formal variables

We define the 2-polygraph $\Sigma[\mathcal{X}]$ as

THE MULTICATEGORY OF CONTEXTS

Consider a 2-polygraph Σ

Substitution

Given

- a 2-cell $\alpha: f \Rightarrow f^{\prime}$ in Σ_{2}^{*}
- and a 2-cell $\beta: g \Rightarrow g^{\prime}$ in $\Sigma_{2}\left[X: f \Rightarrow f^{\prime}\right]^{*}$
we can define
- a 2 -cell $\alpha[\beta / X]: f \Rightarrow f^{\prime}$ in Σ_{2}^{*}
which corresponds to the 2 -cell α where all occurrences of X have been replaced by β.

THE MULTICATEGORY OF CONTEXTS

Consider a 2-polygraph Σ

Definition

We can thus define the multicategory of contexts \mathcal{K}_{Σ} whose

- objects are globes $f \Rightarrow g$, i.e. parallel 1-cells in Σ_{1}^{*}
- operations in $\mathcal{K}_{\Sigma}\left(f_{1} \Rightarrow g_{1}, \ldots, f_{n} \Rightarrow g_{n} ; f \Rightarrow g\right)$ are 2-cells $\kappa: f \Rightarrow g$ in $\Sigma_{2}\left[X_{1}: f_{1} \Rightarrow g_{1}, \ldots, X_{n}: f_{n} \Rightarrow g_{n}\right]^{*}$
- composition is given by generalizing the previous substitution

CRITICAL PAIRS

Definition

Suppose that we are given two 2-cells

$$
\alpha_{1}: f_{1} \Rightarrow g_{1} \quad \text { and } \quad \beta_{1}: f_{1} \Rightarrow g_{1}
$$

in a 2-polygraph Σ. A most general unifier is

CRITICAL PAIRS

Definition

Suppose that we are given two 2-cells

$$
\alpha_{1}: f_{1} \Rightarrow g_{1} \quad \text { and } \quad \beta_{1}: f_{1} \Rightarrow g_{1}
$$

in a 2-polygraph Σ. A most general unifier is a pair

$$
\kappa_{1} \in \mathcal{K}_{\Sigma}\left(f_{1} \Rightarrow g_{1} ; f \Rightarrow g\right) \quad \text { and } \quad \kappa_{2} \in \mathcal{K}_{\Sigma}\left(f_{2} \Rightarrow g_{2} ; f \Rightarrow g\right)
$$

of linear contexts such that

1. unifier: $\kappa_{1}\left(\alpha_{1}\right)=\kappa_{2}\left(\alpha_{2}\right)$
2. minimal: if $\kappa_{1}=\kappa_{1}^{\prime \prime} \circ \kappa_{1}^{\prime}$ and $\kappa_{2}=\kappa_{2}^{\prime \prime} \circ \kappa_{2}^{\prime}$ where $\left(\kappa_{1}^{\prime}, \kappa_{2}^{\prime}\right)$ is a unifier then $\kappa_{1}^{\prime \prime}=\mathrm{id}$ and $\kappa_{2}^{\prime \prime}=\mathrm{id}$
3. overlapping: there is no binary context κ such that $\kappa_{1}=\left(\mathrm{id}, \alpha_{2}\right)$ and $\kappa_{2}=\left(\alpha_{1}, \mathrm{id}\right)$

COMPACT 2-CATEGORIES

Now, we want to represent morphisms with "holes" in the border

COMPACT 2-CATEGORIES

Now, we want to represent morphisms with "holes" in the border

COMPACT 2-CATEGORIES

Definition

Given a 2-category \mathcal{C}, a 1-cell $f: A \rightarrow B$ is left adjoint to a 1-cell $g: B \rightarrow A$, which we write

when there exists two 2-cells $\eta: A \rightarrow f \otimes g$ and $\varepsilon: g \otimes f \rightarrow B$

such that

$$
(f \otimes \varepsilon) \circ(\eta \otimes f)=f \quad \text { and } \quad(\varepsilon \otimes g) \circ(g \otimes \eta)=g
$$

COMPACT 2-CATEGORIES

Definition
A 2-category \mathcal{C} is compact when every 1-cell admits both a left and a right adjoint.

COMPACT 2-CATEGORIES

Definition

A 2-category \mathcal{C} is compact when every 1-cell admits both a left and a right adjoint.

Lemma
A 2-category \mathcal{C} generates a free compact 2-category $\mathcal{A}_{\mathcal{C}}$, which is

- 0-cells: same as \mathcal{C},
- 1-cells: f^{n} with f a 1 -cell of \mathcal{C} and $n \in \mathbb{Z}$,
- 2-cells:
- $\alpha: f^{0} \Rightarrow g^{0}$ for $\alpha: f \Rightarrow g$ a 2 -cell of \mathcal{C},
- $\eta_{f^{n}}: \mathrm{id} \Rightarrow f^{n-1} \otimes f^{n}$
- $\varepsilon_{f n}: f^{n} \otimes f^{n-1} \Rightarrow \mathrm{id}$
- + equations

COMPACT 2-CATEGORIES

Definition

A 2-category \mathcal{C} is compact when every 1-cell admits both a left and a right adjoint.

Lemma
A 2-category \mathcal{C} generates a free compact 2-category $\mathcal{A}_{\mathcal{C}}$, which is

- 0-cells: same as \mathcal{C},
- 1-cells: f^{n} with f a 1 -cell of \mathcal{C} and $n \in \mathbb{Z}$,
- 2-cells:
- $\alpha: f^{0} \Rightarrow g^{0}$ for $\alpha: f \Rightarrow g$ a 2 -cell of \mathcal{C},
- $\eta_{f^{n}}: \mathrm{id} \Rightarrow f^{n-1} \otimes f^{n}$
- $\varepsilon_{f n}: f^{n} \otimes f^{n-1} \Rightarrow \mathrm{id}$
- + equations

Theorem
A 2-category \mathcal{C} embeds fully and faithfully in the free compact category it generates.

ROTATIONS

In the free compact 2-category $\mathcal{A}_{\mathcal{C}}$, the following Hom-sets

$$
\mathcal{A}_{\mathcal{C}}\left(f^{n} \otimes g, h\right) \quad \cong \quad \mathcal{A}_{\mathcal{C}}\left(g, f^{n-1} \otimes h\right)
$$

are isomorphic:

We call these isomorphisms rotations.

ROTATIONS

In the free compact 2-category $\mathcal{A}_{\mathcal{C}}$, the following Hom-sets

$$
\mathcal{A}_{\mathcal{C}}\left(f^{n} \otimes g, h\right) \quad \cong \quad \mathcal{A}_{\mathcal{C}}\left(g, f^{n-1} \otimes h\right)
$$

are isomorphic:

We call these isomorphisms rotations.

Rotations are unary operations in $\mathcal{K}_{\mathcal{A}_{\mathcal{C}}}$.

ROTATIONS

The diagram

up to rotation!

THE MULTICATEGORY OF COMPACT CONTEXTS

A 2-polygraph Σ generates a 2-category \mathcal{C},

- which can be embedded in the free compact 2-category $\mathcal{A}_{\mathcal{C}}$
- and the 2-cells $\alpha: f \Rightarrow g$ of $\mathcal{A}_{\mathcal{C}}$ can be seen as nullary contexts in $\mathcal{K}_{\mathcal{A}_{\mathcal{C}}}(; f \Rightarrow g)$

UNIFICATION IN THE MULTICATEGORY OF COMPACT CONTEXTS

Theorem

Given a 3-polygraph R with underlying 2-polygraph Σ generating a 2-category \mathcal{C}, there exists a finite number of contexts

$$
\kappa^{i} \in \mathcal{K}_{\mathcal{A}_{\mathcal{C}}}\left(f_{1}^{i} \Rightarrow g_{1}^{i}, \ldots, f_{k_{i}}^{i} \Rightarrow g_{k_{i}}^{i} ; f^{i} \Rightarrow g^{i}\right)
$$

such that

- for any nullary contexts $\kappa_{1}, \ldots, \kappa_{k_{i}}$ and unary context κ such that the composite $\kappa \circ \kappa^{i} \circ\left(\kappa_{1}, \ldots, \kappa_{k_{i}}\right) \in \mathcal{K}_{\mathcal{A}_{\mathcal{C}}}\left(; f^{\prime} \Rightarrow g^{\prime}\right)$ is of the form κ_{α}, for some 2-cell $\alpha: f^{\prime} \Rightarrow g^{\prime}$ of \mathcal{C}, the 2-cell α is an unifier of left members of two rewriting rules of R,
- and moreover any such unifier can be obtained in this way (in particular the critical pairs).

UNIFICATION IN THE MULTICATEGORY OF COMPACT CONTEXTS

Theorem

Given a 3-polygraph R with underlying 2-polygraph Σ generating a 2-category \mathcal{C}, there exists a finite number of contexts

$$
\kappa^{i} \in \mathcal{K}_{\mathcal{A}_{\mathcal{C}}}\left(f_{1}^{i} \Rightarrow g_{1}^{i}, \ldots, f_{k_{i}}^{i} \Rightarrow g_{k_{i}}^{i} ; f^{i} \Rightarrow g^{i}\right)
$$

such that

- for any nullary contexts $\kappa_{1}, \ldots, \kappa_{k_{i}}$ and unary context κ such that the composite $\kappa \circ \kappa^{i} \circ\left(\kappa_{1}, \ldots, \kappa_{k_{i}}\right) \in \mathcal{K}_{\mathcal{A}_{\mathcal{C}}}\left(; f^{\prime} \Rightarrow g^{\prime}\right)$ is of the form κ_{α}, for some 2-cell $\alpha: f^{\prime} \Rightarrow g^{\prime}$ of \mathcal{C}, the 2-cell α is an unifier of left members of two rewriting rules of R,
- and moreover any such unifier can be obtained in this way (in particular the critical pairs).

Remark

There is unicity up to rotations.

UNIFICATION IN THE MULTICATEGORY OF COMPACT CONTEXTS

UNIFICATION IN TRS

Suppose that we have a TRS
$f: 2 \quad h: 1 \quad f(x, h(h(y))) \Rightarrow \ldots \quad h(h(f(x, y))) \Rightarrow \ldots$
In order to generate critical pairs, we unify a subterm of $f(x, h(h(y)))$ with $h(h(f(x, y)))$

$\stackrel{?}{=}$

UNIFICATION IN TRS

Suppose that we have a TRS
$f: 2 \quad h: 1 \quad f(x, h(h(y))) \Rightarrow \ldots \quad h(h(f(x, y))) \Rightarrow \ldots$
In order to generate critical pairs, we unify a subterm of $f(x, h(h(y)))$ with $h(h(f(x, y)))$

UNIFICATION IN TRS

Suppose that we have a TRS
$f: 2 \quad h: 1 \quad f(x, h(h(y))) \Rightarrow \ldots \quad h(h(f(x, y))) \Rightarrow \ldots$
In order to generate critical pairs, we unify a subterm of $f(x, h(h(y)))$ with $h(h(f(x, y)))$

UNIFICATION IN TRS

Suppose that we have a TRS
$f: 2 \quad h: 1 \quad f(x, h(h(y))) \Rightarrow \ldots \quad h(h(f(x, y))) \Rightarrow \ldots$
In order to generate critical pairs, we unify a subterm of $f(x, h(h(y)))$ with $h(h(f(x, y)))$

UNIFICATION IN TRS

Suppose that we have a TRS
$f: 2 \quad h: 1 \quad f(x, h(h(y))) \Rightarrow \ldots \quad h(h(f(x, y))) \Rightarrow \ldots$
In order to generate critical pairs, we unify a subterm of $f(x, h(h(y)))$ with $h(h(f(x, y)))$

UNIFICATION IN 2-REWRITING SYSTEMS

We want to compute the critical pairs generated by

UNIFICATION IN 2-REWRITING SYSTEMS

We want to compute the critical pairs generated by

UNIFICATION IN 2-REWRITING SYSTEMS

We want to compute the critical pairs generated by

UNIFICATION IN 2-REWRITING SYSTEMS

We want to compute the critical pairs generated by

UNIFICATION IN 2-REWRITING SYSTEMS

We want to compute the critical pairs generated by

UNIFICATION IN 2-REWRITING SYSTEMS

We want to compute the critical pairs generated by

UNIFICATION IN 2-REWRITING SYSTEMS

We want to compute the critical pairs generated by

UNIFICATION IN 2-REWRITING SYSTEMS

We want to compute the critical pairs generated by

UNIFICATION IN 2-REWRITING SYSTEMS

We want to compute the critical pairs generated by

METACONFLUENCE

Remark

When a 2-rewriting system is confluent, its critical pairs (in our generalized sense) are not necessarily confluent. But at least, we get a finite description of the critical pairs!

NOT SHOWN HERE

- The operations in the multicategory of compact contexts can be represented in an effective way.

NOT SHOWN HERE

- The operations in the multicategory of compact contexts can be represented in an effective way.
- Precise formulation of the algorithm.

NOT SHOWN HERE

- The operations in the multicategory of compact contexts can be represented in an effective way.
- Precise formulation of the algorithm.
- An implementation was realized.

FUTURE WORKS

- Generalize techniques developed by Guiraud and Malbos to this setting
- Generalize to higher dimensions
- Towards automated tools for studying higher categories?

THANKS!

Any questions?

