CRITICAL PAIRS IN 2-DIMENSIONAL REWRITING SYSTEMS

SAMUEL MIMRAM

OPERADS AND REWRITING

3 NOVEMBER 2011

Rewriting theory has proven to be very useful to study

- monoids (and groups)
- term algebras

Rewriting theory has proven to be very useful to study

- monoids (and groups)
- term algebras
- n-categories?

Can we generalize it to higher dimensions?

Rewriting theory has proven to be very useful to study

- monoids (and groups)
- term algebras
- n-categories?

Can we generalize it to higher dimensions?

In this talk, I will be interested in extending the procedures of **unification** in higher dimensions.

Rewriting theory has proven to be very useful to study

- monoids (and groups)
- term algebras
- *n*-categories?

Can we generalize it to higher dimensions?

In this talk, I will be interested in extending the procedures of **unification** in dimension 2.

REWRITING SYSTEMS

REWRITING SYSTEMS

A rewriting system consists of

- ▶ a set of *terms* generated by a free construction:
 - free monoid: string rewriting systems
 - free term algebra: term rewriting systems
- ▶ a set of *rewriting rules*: $r : t \rightarrow u$

$\begin{array}{ll} \mathsf{Example} \\ \Sigma = \{a,b\} & \qquad \mathrm{terms} = \Sigma^* & \qquad \mathrm{rules} = \{ba \to ab\} \end{array}$

REWRITING SYSTEMS

A rewriting system consists of

- ▶ a set of *terms* generated by a free construction:
 - free monoid: string rewriting systems
 - free term algebra: term rewriting systems
- ▶ a set of *rewriting rules*: $r : t \rightarrow u$

A term t rewrites to a term t' when there exists

- a rule $r: u \to u'$
- a context C such that t = C[u] and t' = C[u']

Example

 $\Sigma = \{a, b\}$ terms $= \Sigma^*$ rules $= \{ba \rightarrow ab\}$

 A rewriting system can be terminating when there is no infinite reduction path

- A rewriting system can be terminating
- A rewriting can be **confluent** when

- A rewriting system can be terminating
- A rewriting can be **confluent** when

- A rewriting system can be terminating
- A rewriting can be confluent when

 A rewriting system is convergent when both terminating and confluent

- A rewriting system can be terminating
- A rewriting can be confluent when

 A rewriting system is convergent when both terminating and confluent

In a convergent rewriting system, every term has a **normal form**: canonical representative of terms modulo rewriting.

Why are those properties interesting?

A presentation

 $\langle G \mid R \rangle$

of a monoid M consists of

▶ a set G of generators

• a set
$$R \subseteq G^* imes G^*$$
 of *relations*

such that

$$M \cong G^* / \equiv_R$$

Example

- $\blacktriangleright \mathbb{N} \cong \langle a \mid \rangle$
- $\blacktriangleright \ \mathbb{N}/2\mathbb{N} \cong \langle a \mid aa = 1 \rangle$
- $\blacktriangleright \ \mathbb{N} \times \mathbb{N} \cong \langle a, b \mid ba = ab \rangle$
- $\bullet \ \mathfrak{S}_n \cong \langle \sigma_1, \dots, \sigma_n \mid \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}, \ \sigma_i^2 = 1, \ \sigma_i \sigma_j = \sigma_j \sigma_i \rangle$ $\bullet \dots$

- 1. Orient R to get a string rewriting system.
- 2. Show that the rewriting system is terminating.
- 3. Show that the rewriting system is confluent.
- 4. Show that the normal forms are in bijection with M.

- 1. Orient R to get a string rewriting system.
- 2. Show that the rewriting system is terminating.
- 3. Show that the rewriting system is confluent.
- 4. Show that the normal forms are in bijection with M.

- 1. Orient R to get a string rewriting system.
- 2. Show that the rewriting system is terminating.
- 3. Show that the rewriting system is confluent.
- 4. Show that the normal forms are in bijection with M.

$$\mathsf{Example} \ \ \mathbb{N} imes (\mathbb{N}/2\mathbb{N}) \ \ \stackrel{?}{\cong} \ \ \langle {\it a}, {\it b} \mid {\it ba} o {\it ab}, \ {\it bb} o 1
angle$$

How do we show that $M \cong \langle G \mid R \rangle$ i.e. $M \cong G^* / \equiv_R ?$

- 1. Orient R to get a string rewriting system.
- 2. Show that the rewriting system is terminating.
- 3. Show that the rewriting system is confluent.
- 4. Show that the normal forms are in bijection with M.

Example $\mathbb{N} \times (\mathbb{N}/2\mathbb{N}) \stackrel{?}{\cong} \langle a, b \mid ba \to ab, bb \to 1 \rangle$ Normal forms are: a^n and $a^n b$

They are in bijection with $\mathbb{N} \times (\mathbb{N}/2\mathbb{N})!$

How do we show that a rewriting system is confluent?

Given a *terminating* rewriting system the following are equivalent: 1. the rewriting system is **confluent**

Given a *terminating* rewriting system the following are equivalent:

- 1. the rewriting system is **confluent**
- 2. the rewriting system is locally confluent

Given a *terminating* rewriting system the following are equivalent:

- 1. the rewriting system is **confluent**
- 2. the rewriting system is locally confluent

Given a *terminating* rewriting system the following are equivalent:

- 1. the rewriting system is **confluent**
- 2. the rewriting system is locally confluent

all the critical pairs are joinable
 i.e. the property above is satisfied for all minimal t

Given a *terminating* rewriting system the following are equivalent:

- 1. the rewriting system is **confluent**
- 2. the rewriting system is locally confluent
- 3. all the critical pairs are joinable

i.e. the property above is satisfied for all minimal t

Critical pairs are:

Given a *terminating* rewriting system the following are equivalent:

- 1. the rewriting system is **confluent**
- 2. the rewriting system is locally confluent
- 3. all the critical pairs are joinable

i.e. the property above is satisfied for all minimal t

Critical pairs are joinable:

string rs = presentation of a monoid

term rs = presentation of ?

TERM REWRITING SYSTEMS

- A signature (Σ, α) consists of
 - a set Σ of generators
 - an *arity* function $\alpha : \Sigma \to \mathbb{N}$
- Terms are elements of the free algebra Σ^* over this signature

Example

The TRS of commutative monoids: $\Sigma = \{m : 2, e : 0\}$

$$R = \left\{ \begin{array}{l} \alpha : m(m(x, y), z) \to m(x, m(y, z)) \\ \lambda : m(e, x) \to x \\ \rho : m(x, e) \to x \\ \gamma : m(x, y) \to m(y, x) \end{array} \right\}$$

String rewriting systems correspond to presentations of monoids.

Term rewriting systems correspond to presentations of **Lawvere theories**.

- A Lawvere theory is a category ${\mathcal C}$
 - whose objects are integers
 - which is cartesian
 - whose cartesian product is given on objects by addition

A Lawvere theory is a category ${\mathcal C}$

- whose objects are integers
- which is cartesian
- whose cartesian product is given on objects by addition

TRS ((Σ, α), R) induce a LT whose morphisms $m \to n$ are *n*-uples of terms with variables x_1, \ldots, x_m , considered modulo relations.

Presentation: $\mathcal{C} \cong \Sigma^* / \equiv_R$

A Lawvere theory is a category ${\mathcal C}$

- whose objects are integers
- which is cartesian
- whose cartesian product is given on objects by addition

TRS ((Σ, α), R) induce a LT whose morphisms $m \to n$ are *n*-uples of terms with variables x_1, \ldots, x_m , considered modulo relations.

Presentation: $\mathcal{C} \cong \Sigma^* / \equiv_R$

Example

Consider the TRS of commutative monoids: $\Sigma = \{m : 2, e : 0\}$

$$R = \left\{ \begin{array}{l} \alpha : m(m(x, y), z) \to m(x, m(y, z)) \\ \lambda : m(e, x) \to x \\ \rho : m(x, e) \to x \\ \gamma : m(x, y) \to m(y, x) \end{array} \right\}$$

A Lawvere theory is a category ${\mathcal C}$

- whose objects are integers
- which is cartesian
- whose cartesian product is given on objects by addition

TRS ((Σ, α), R) induce a LT whose morphisms $m \to n$ are *n*-uples of terms with variables x_1, \ldots, x_m , considered modulo relations.

Presentation: $\mathcal{C} \cong \Sigma^* / \equiv_R$

Example

Consider the TRS of commutative monoids: $\Sigma = \{m : 2, e : 0\}$

It presents the Lawvere theory whose morphisms $M: m \rightarrow n$ are $(m \times n)$ -matrices with coefficients in \mathbb{N} .

A Lawvere theory is a category ${\mathcal C}$

- whose objects are integers
- which is cartesian
- whose cartesian product is given on objects by addition

TRS ((Σ, α), R) induce a LT whose morphisms $m \to n$ are *n*-uples of terms with variables x_1, \ldots, x_m , considered modulo relations.

Presentation: $\mathcal{C} \cong \Sigma^* / \equiv_R$

Example

Consider the TRS of commutative monoids: $\Sigma = \{m : 2, e : 0\}$

$$[m(m(x_1, x_1), x_2); e; x_2] : 2 \rightarrow 3$$

PRESENTATIONS OF LAWVERE THEORIES

A Lawvere theory is a category ${\mathcal C}$

- whose objects are integers
- which is cartesian
- whose cartesian product is given on objects by addition

TRS ((Σ, α), R) induce a LT whose morphisms $m \to n$ are *n*-uples of terms with variables x_1, \ldots, x_m , considered modulo relations.

Presentation: $\mathcal{C} \cong \Sigma^* / \equiv_R$

Example

Consider the TRS of commutative monoids: $\Sigma = \{m : 2, e : 0\}$

$$[m(m(x_1, x_1), x_2); e; x_2] : 2 \to 3 \qquad \rightsquigarrow \qquad \begin{pmatrix} 2 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

PRESENTATIONS OF LAWVERE THEORIES

A Lawvere theory is a category ${\mathcal C}$

- whose objects are integers
- which is cartesian
- whose cartesian product is given on objects by addition

TRS ((Σ, α), R) induce a LT whose morphisms $m \to n$ are *n*-uples of terms with variables x_1, \ldots, x_m , considered modulo relations.

Presentation: $\mathcal{C} \cong \Sigma^* / \equiv_R$

Example

Consider the TRS of commutative monoids: $\Sigma = \{m : 2, e : 0\}$

$$\begin{array}{cccc} [m(m(x_1, x_1), x_2) \; ; \; e \; ; \; x_2] \\ [m(x_1, m(x_1, x_2)) \; ; \; e \; ; \; m(e, x_2)] \end{array} : 2 \to 3 \qquad \rightsquigarrow \qquad \begin{pmatrix} 2 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

PRESENTATIONS OF LAWVERE THEORIES

A Lawvere theory is a category ${\mathcal C}$

- whose objects are integers
- which is cartesian
- whose cartesian product is given on objects by addition

TRS ((Σ, α), R) induce a LT whose morphisms $m \to n$ are *n*-uples of terms with variables x_1, \ldots, x_m , considered modulo relations.

Presentation: $\mathcal{C} \cong \Sigma^* / \equiv_R$

Example

Consider the TRS of commutative monoids: $\Sigma = \{m : 2, e : 0\}$

$$\begin{array}{cccc} [m(m(x_1, x_1), x_2) \; ; \; e \; ; \; x_2] \\ [m(x_1, m(x_1, x_2)) \; ; \; e \; ; \; m(e, x_2)] \end{array} : 2 \to 3 \qquad \rightsquigarrow \qquad \begin{pmatrix} 2 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

Use rewriting theory!

Can we use the same techniques in order to build presentations of *n*-categories?

[Street76,Burroni93,Power90]

dimension	rewr. syst.	presents
1	string	monoid

$$\xrightarrow{a} \xrightarrow{b} \xrightarrow{c}$$

We want to generalize rewriting systems

dimension	rewr. syst.	presents
1	string	monoid
2	term	Lawvere th.

16 / 42

rewr. syst.	presents
element	set
string	monoid
term	Lawvere th.
	element string

rewr. syst.	presents
element	set
string	monoid
term	Lawvere th.
	element string

dimension	rewr. syst.	presents
0	element	0-category
1	string	monoid
2	term	Lawvere th.

dimension	rewr. syst.	presents
0	element	0-category
1	string	monoid
2	term	Lawvere th.

We want to generalize rewriting systems

rewr. syst.	presents
element	0-category
string	1-category
term	Lawvere th.
	element string

monoid = 1-category with only one object

Generalization:
$$\xrightarrow{a} \xrightarrow{b} \xrightarrow{} x \xrightarrow{a} y \xrightarrow{b} y$$

dimension	rewr. syst.	presents
0	element	0-category
1	string	1-category
2	term	Lawvere th.

We want to generalize rewriting systems

dimension	rewr. syst.	presents
0	element	0-category
1	string	1-category
2	term	cartesian category

Lawvere th. = cartesian category with $\mathbb N$ as objects

We want to generalize rewriting systems

dimension	rewr. syst.	presents
0	element	0-category
1	string	1-category
2	term	monoidal category

cartesian category = monoidal category in which every object is a comonoid

We want to generalize rewriting systems

dimension	rewr. syst.	presents
0	element	0-category
1	string	1-category
2	term	2-category

monoidal category = 2-category with only one object

A 0-signature

 Σ_0

Example

signature

x y

A 0-rewriting system

A 1-signature = a 0-rewriting system

Example signature

A 1-signature generates a category

terms

A 1-rewriting system

such that
$$s_0^*\circ s_1=s_0^*\circ t_1$$
 and $t_0^*\circ s_1=t_0^*\circ t_1$

 $x \xrightarrow{a} y \xrightarrow{b} y$

Example

х

signature

 $\xrightarrow{b} y$

A 2-signature = a 1-rewriting system

such that
$$s_0^*\circ s_1=s_0^*\circ t_1$$
 and $t_0^*\circ s_1=t_0^*\circ t_1$

Example

A 2-signature generates a 2-category

such that $s_0^*\circ s_1=s_0^*\circ t_1$ and $t_0^*\circ s_1=t_0^*\circ t_1$

Example

A 2-rewriting system

such that
$$s_1^*\circ s_2=s_1^*\circ t_2$$
 and $t_1^*\circ s_2=t_1^*\circ t_2$

Example

A 2-rewriting system

Right notion of *n*-rewriting system: *n*-polygraphs.

An example: a presentation of Bij

[Lafont03]

- objects are integers $[n] = \{0, \dots, n-1\}$
- morphisms $f : [m] \rightarrow [n]$ are bijections

- ▶ objects are integers [n] = {0,...,n-1}
- morphisms $f : [m] \rightarrow [n]$ are bijections

- ▶ objects are integers [n] = {0,...,n-1}
- morphisms $f : [m] \rightarrow [n]$ are bijections

The category **Bij** has

- ▶ objects are integers [n] = {0,...,n-1}
- morphisms $f : [m] \rightarrow [n]$ are bijections

Vertical composition \circ

- ▶ objects are integers [n] = {0,...,n-1}
- morphisms $f : [m] \rightarrow [n]$ are bijections

- objects are integers $[n] = \{0, \dots, n-1\}$
- morphisms $f : [m] \rightarrow [n]$ are bijections

The category **Bij** has

- ▶ objects are integers [n] = {0,...,n-1}
- morphisms $f : [m] \rightarrow [n]$ are bijections

Horizontal composition \otimes

We want to give a presentation of Bij, i.e. describe it as

- a free category on sets of typed generators for 0-, 1- and 2-cells
- quotiented by relations between 2-cells in the generated 2-category

 ${\bf Bij}$ is presented by the 3-polygraph such that [Lafont03]

- $\blacktriangleright \Sigma_0 = \{*\}$
- $\blacktriangleright \ \Sigma_1 = \{1:* \to *\} \qquad (\text{so } \Sigma_1^* \approx \mathbb{N})$

Bij is presented by the 3-polygraph such that [Lafont03]

- $\begin{array}{l} \blacktriangleright \ \Sigma_0 = \{*\} \\ \blacktriangleright \ \Sigma_1 = \{1: * \rightarrow *\} \qquad (\text{so } \Sigma_1^* \approx \mathbb{N}) \end{array}$
- $\blacktriangleright \ \Sigma_2 = \{\gamma: 1 \otimes 1 \to 1 \otimes 1\}$

Bij is presented by the 3-polygraph such that [Lafont03]

- $\begin{array}{l} \blacktriangleright \ \Sigma_0 = \{*\} \\ \blacktriangleright \ \Sigma_1 = \{1: * \to *\} \qquad (\text{so } \Sigma_1^* \approx \mathbb{N}) \end{array}$
- $\blacktriangleright \Sigma_2 = \{\gamma : 1 \otimes 1 \to 1 \otimes 1\}$
- $\Sigma_3 = \{y, s\}$

 \xrightarrow{s}

 $* \longrightarrow * \longrightarrow$

Bij is presented by the 3-polygraph such that [Lafont03] $\Sigma_0 = \{*\}$

- $\Sigma_1 = \{1 : * \to *\}$ (so $\Sigma_1^* \approx \mathbb{N}$)
- $\blacktriangleright \Sigma_2 = \{\gamma : 1 \otimes 1 \to 1 \otimes 1\}$
- $\Sigma_3 = \{y, s\}$

 \xrightarrow{s}

*

*

The rules

of the rewriting system induce critical pairs

The rules

of the rewriting system induce critical pairs

The rules

of the rewriting system induce critical pairs

The rules

of the rewriting system induce critical pairs

22 / 42

Critical pairs are computed using a **unification** procedure.

We want to extend it to 2-dimensional rewriting systems

Contrarily to term rewriting systems we can have an infinite number of critical pairs...

IDEA: change the definition of critical pairs

CRITICAL PAIRS IN THE MULTICATEGORY OF COMPACT CONTEXTS

Consider the 2-rewriting system $\boldsymbol{\Sigma}$ with

 $\Sigma_0 = \{*\}$ $\Sigma_1 = \{1\}$ $\Sigma_2 = \{s : 1 \rightarrow 1, d : 1 \rightarrow 3, m : 3 \rightarrow 1\}$

the generators for 2-cells are drawn respectively as

Consider the 2-rewriting system $\boldsymbol{\Sigma}$ with

 $\Sigma_0 = \{*\}$ $\Sigma_1 = \{1\}$ $\Sigma_2 = \{s : 1 \rightarrow 1, d : 1 \rightarrow 3, m : 3 \rightarrow 1\}$

the generators for 2-cells are drawn respectively as

The two rules

and

. . .

induce an infinite number of critical pairs:

variables on the border.

The two rules

and

induce an infinite number of critical pairs:

variables on the border: use compact morphisms!

The two rules

and

. . .

induce an infinite number of critical pairs:

variables on the border. use compact morphisms!

The two rules

and

induce an infinite number of critical pairs:

variables inside:

The two rules

and

induce an infinite number of critical pairs:

variables inside: use contexts! (= multicategory of terms with metavariables)

BACK TO A FINITE NUMBER OF CRITICAL PAIRS

Theorem

The 2-category of "terms" generated by a signature can be embedded into the **multicategory of compact contexts**.

In other words, there is a finite number of *generating families* of critical pairs in those rewriting systems.

Consider a 2-polygraph Σ

and a family $\mathcal{X} = \{X_1 : f_1 \Rightarrow g_1, \dots, X_n : f_n \Rightarrow g_n\}$ of 2-globes, with $f_i, g_i \in \Sigma_1^*$ parallel 1-cells considered as *formal variables*

Consider a 2-polygraph Σ

and a family $\mathcal{X} = \{X_1 : f_1 \Rightarrow g_1, \dots, X_n : f_n \Rightarrow g_n\}$ of 2-globes, with $f_i, g_i \in \Sigma_1^*$ parallel 1-cells considered as *formal variables*

We define the 2-polygraph $\Sigma[\mathcal{X}]$ as

Consider a 2-polygraph Σ

and a family $\mathcal{X} = \{X_1 : f_1 \Rightarrow g_1, \dots, X_n : f_n \Rightarrow g_n\}$ of 2-globes, with $f_i, g_i \in \Sigma_1^*$ parallel 1-cells considered as *formal variables*

We define the 2-polygraph $\Sigma[\mathcal{X}]$ as

Consider a 2-polygraph Σ

Substitution

Given

- a 2-cell $\alpha : f \Rightarrow f'$ in Σ_2^*
- and a 2-cell $\beta : g \Rightarrow g'$ in $\Sigma_2[X : f \Rightarrow f']^*$

we can define

► a 2-cell
$$\alpha[\beta/X]$$
 : $f \Rightarrow f'$ in Σ_2^*

which corresponds to the 2-cell α where all occurrences of X have been replaced by β .

Consider a 2-polygraph Σ

Definition

We can thus define the multicategory of contexts \mathcal{K}_Σ whose

- objects are globes $f \Rightarrow g$, i.e. parallel 1-cells in Σ_1^*
- operations in $\mathcal{K}_{\Sigma}(f_1 \Rightarrow g_1, \dots, f_n \Rightarrow g_n; f \Rightarrow g)$ are 2-cells $\kappa : f \Rightarrow g$ in $\Sigma_2[X_1 : f_1 \Rightarrow g_1, \dots, X_n : f_n \Rightarrow g_n]^*$
- composition is given by generalizing the previous substitution

CRITICAL PAIRS

Definition

Suppose that we are given two 2-cells

 $\alpha_1: f_1 \Rightarrow g_1 \qquad \text{and} \qquad \beta_1: f_1 \Rightarrow g_1$

in a 2-polygraph Σ . A most general unifier is

CRITICAL PAIRS

Definition

Suppose that we are given two 2-cells

$$\alpha_1: f_1 \Rightarrow g_1 \qquad \text{and} \qquad \beta_1: f_1 \Rightarrow g_1$$

in a 2-polygraph Σ . A most general unifier is a pair

$$\kappa_1 \in \mathcal{K}_{\Sigma}(\mathit{f}_1 \Rightarrow \mathit{g}_1; \mathit{f} \Rightarrow \mathit{g}) \quad \text{ and } \quad \kappa_2 \in \mathcal{K}_{\Sigma}(\mathit{f}_2 \Rightarrow \mathit{g}_2; \mathit{f} \Rightarrow \mathit{g})$$

of linear contexts such that

- 1. unifier: $\kappa_1(\alpha_1) = \kappa_2(\alpha_2)$
- 2. *minimal*: if $\kappa_1 = \kappa_1'' \circ \kappa_1'$ and $\kappa_2 = \kappa_2'' \circ \kappa_2'$ where (κ_1', κ_2') is a unifier then $\kappa_1'' = \operatorname{id}$ and $\kappa_2'' = \operatorname{id}$
- 3. *overlapping*: there is no binary context κ such that $\kappa_1 = (id, \alpha_2)$ and $\kappa_2 = (\alpha_1, id)$

Now, we want to represent morphisms with "holes" in the border

Now, we want to represent morphisms with "holes" in the border

Definition

Given a 2-category C, a 1-cell $f : A \to B$ is **left adjoint** to a 1-cell $g : B \to A$, which we write

when there exists two 2-cells $\eta: A \to f \otimes g$ and $\varepsilon: g \otimes f \to B$

such that

$$(f \otimes \varepsilon) \circ (\eta \otimes f) = f$$
 and $(\varepsilon \otimes g) \circ (g \otimes \eta) = g$

Definition

A 2-category ${\mathcal C}$ is ${\mbox{compact}}$ when every 1-cell admits both a left and a right adjoint.

Definition

A 2-category ${\mathcal C}$ is ${\mbox{compact}}$ when every 1-cell admits both a left and a right adjoint.

Lemma

A 2-category ${\mathcal C}$ generates a free compact 2-category ${\mathcal A}_{{\mathcal C}},$ which is

- ▶ 0-cells: same as C,
- ▶ 1-cells: f^n with f a 1-cell of C and $n \in \mathbb{Z}$,
- ► 2-cells:
 - $\alpha: f^0 \Rightarrow g^0$ for $\alpha: f \Rightarrow g$ a 2-cell of \mathcal{C} ,
 - η_{f^n} : id $\Rightarrow f^{n-1} \otimes f^n$
 - $\triangleright \ \varepsilon_{f^n}: f^n \otimes f^{n-1} \Rightarrow \mathrm{id}$

+ equations

Definition

A 2-category ${\mathcal C}$ is ${\mbox{compact}}$ when every 1-cell admits both a left and a right adjoint.

Lemma

A 2-category ${\mathcal C}$ generates a free compact 2-category ${\mathcal A}_{{\mathcal C}},$ which is

- ▶ 0-cells: same as C,
- 1-cells: f^n with f a 1-cell of C and $n \in \mathbb{Z}$,
- ► 2-cells:
 - $\alpha: f^0 \Rightarrow g^0 \text{ for } \alpha: f \Rightarrow g \text{ a 2-cell of } \mathcal{C}$,
 - η_{f^n} : id $\Rightarrow f^{n-1} \otimes f^n$
 - $\blacktriangleright \ \varepsilon_{f^n}: f^n \otimes f^{n-1} \Rightarrow \mathrm{id}$
- + equations

Theorem

A 2-category C embeds fully and faithfully in the free compact category it generates.

ROTATIONS

In the free compact 2-category $\mathcal{A}_{\mathcal{C}},$ the following Hom-sets

$$\mathcal{A}_{\mathcal{C}}(f^n \otimes g, h) \cong \mathcal{A}_{\mathcal{C}}(g, f^{n-1} \otimes h)$$

are isomorphic:

We call these isomorphisms rotations.

ROTATIONS

In the free compact 2-category $\mathcal{A}_{\mathcal{C}},$ the following Hom-sets

$$\mathcal{A}_{\mathcal{C}}(f^n \otimes g, h) \cong \mathcal{A}_{\mathcal{C}}(g, f^{n-1} \otimes h)$$

are isomorphic:

We call these isomorphisms rotations.

Rotations are unary operations in $\mathcal{K}_{\mathcal{A}_{\mathcal{C}}}$.

ROTATIONS

d

s

s

m

 $\widehat{(s)}$

s

s

The diagram

up to rotation!

THE MULTICATEGORY OF COMPACT CONTEXTS

A 2-polygraph Σ generates a 2-category \mathcal{C} ,

- \blacktriangleright which can be embedded in the free compact 2-category $\mathcal{A}_{\mathcal{C}}$
- And the 2-cells α : f ⇒ g of A_C can be seen as nullary contexts in K_{A_C}(; f ⇒ g)

UNIFICATION IN THE MULTICATEGORY OF COMPACT CONTEXTS

Theorem

Given a 3-polygraph R with underlying 2-polygraph Σ generating a 2-category C, there exists a **finite** number of contexts

$$\kappa^{i} \in \mathcal{K}_{\mathcal{A}_{\mathcal{C}}}(f^{i}_{1} \Rightarrow g^{i}_{1} \ , \ \ldots \ , \ f^{i}_{k_{i}} \Rightarrow g^{i}_{k_{i}}; f^{i} \Rightarrow g^{i})$$

such that

- for any nullary contexts κ₁,..., κ_{ki} and unary context κ such that the composite κ ∘ κⁱ ∘ (κ₁,..., κ_{ki}) ∈ K_{AC}(; f' ⇒ g') is of the form κ_α, for some 2-cell α : f' ⇒ g' of C, the 2-cell α is an unifier of left members of two rewriting rules of R,
- and moreover any such unifier can be obtained in this way (in particular the critical pairs).

UNIFICATION IN THE MULTICATEGORY OF COMPACT CONTEXTS

Theorem

Given a 3-polygraph R with underlying 2-polygraph Σ generating a 2-category C, there exists a **finite** number of contexts

$$\kappa^{i} \in \mathcal{K}_{\mathcal{A}_{\mathcal{C}}}(f^{i}_{1} \Rightarrow g^{i}_{1} \ , \ \ldots \ , \ f^{i}_{k_{i}} \Rightarrow g^{i}_{k_{i}}; f^{i} \Rightarrow g^{i})$$

such that

- for any nullary contexts κ₁,..., κ_{k_i} and unary context κ such that the composite κ ∘ κⁱ ∘ (κ₁,..., κ_{k_i}) ∈ K_{A_C}(; f' ⇒ g') is of the form κ_α, for some 2-cell α : f' ⇒ g' of C, the 2-cell α is an unifier of left members of two rewriting rules of R,
- and moreover any such unifier can be obtained in this way (in particular the critical pairs).

Remark

There is unicity up to rotations.

UNIFICATION IN THE MULTICATEGORY OF COMPACT CONTEXTS

Suppose that we have a TRS

$$f: 2$$
 $h: 1$ $f(x, h(h(y))) \Rightarrow \dots = h(h(f(x, y))) \Rightarrow \dots$

Suppose that we have a TRS

$$f: 2$$
 $h: 1$ $f(x, h(h(y))) \Rightarrow \dots = h(h(f(x, y))) \Rightarrow \dots$

Suppose that we have a TRS

$$f: 2$$
 $h: 1$ $f(x, h(h(y))) \Rightarrow \dots = h(h(f(x, y))) \Rightarrow \dots$

Suppose that we have a TRS

$$f: 2$$
 $h: 1$ $f(x, h(h(y))) \Rightarrow \dots = h(h(f(x, y))) \Rightarrow \dots$

Suppose that we have a TRS

$$f: 2$$
 $h: 1$ $f(x, h(h(y))) \Rightarrow \dots = h(h(f(x, y))) \Rightarrow \dots$

METACONFLUENCE

Remark

When a 2-rewriting system is confluent, its critical pairs (in our generalized sense) are not necessarily confluent. But at least, we get a finite description of the critical pairs!

NOT SHOWN HERE

The operations in the multicategory of compact contexts can be represented in an effective way.

NOT SHOWN HERE

- The operations in the multicategory of compact contexts can be represented in an effective way.
- Precise formulation of the algorithm.

NOT SHOWN HERE

- The operations in the multicategory of compact contexts can be represented in an effective way.
- Precise formulation of the algorithm.
- An implementation was realized.

FUTURE WORKS

- Generalize techniques developed by Guiraud and Malbos to this setting
- Generalize to higher dimensions
- Towards automated tools for studying higher categories?

▶ ...

THANKS!

Any questions?