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Rewriting theory has proven to be very useful to study
» monoids (and groups)
> term algebras
» n-categories?

Can we generalize it
to higher dimensions?

In this talk, | will be interested in extending the procedures of
unification in dimension 2.
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REWRITING SYSTEMS

A rewriting system consists of
> a set of terms generated by a free construction:
» free monoid: string rewriting systems
> free term algebra: term rewriting systems
> a set of rewriting rules: r: t — u

A term t rewrites to a term t’ when there exists
»aruler:u—u
» a context C such that t = C[u] and t' = C[//]

Example
Y ={a, b} terms = ¥* rules = {ba — ab}

b
aabaab 2222 aaabab



CONVERGENT REWRITING SYSTEMS

> A rewriting system can be terminating
when there is no infinite reduction path
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CONVERGENT REWRITING SYSTEMS

> A rewriting system can be terminating
» A rewriting can be confluent when

> A rewriting system is convergent
when both terminating and confluent

In a convergent rewriting system, every term has a normal form:
canonical representative of terms modulo rewriting.



Why
are those properties
interesting?
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PRESENTATIONS OF MONOIDS

A presentation
(G| R)
of a monoid M consists of

» a set G of generators
» aset R C G* x G* of relations

such that
M = G*/ =R
Example
» N=(al)
» N/2N = (a | aa=1)
» NxN=(a,b| ba= ab)
> &, = (01,...,04 | 0i0i110] = 04100041, U,-2 =1, 005 = gjoj)
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PRESENTATIONS OF MONOIDS

How do we show that M = (G | R) i.e. M= G*/ =g ?

. Orient R to get a string rewriting system.
. Show that the rewriting system is terminating.

. Show that the rewriting system is confluent.

A W N =

. Show that the normal forms are in bijection with M.

?
Example N x (N/2N) = (a,b| ba— ab, bb — 1)

Normal forms are:

a" and a"b

They are in bijection with N x (N/2N)!



How do we show
that a rewriting system
is confluent?
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CRITICAL PAIRS

Given a terminating rewriting system the following are equivalent:
1. the rewriting system is confluent
2. the rewriting system is locally confluent

Clt]

N

cul’ v
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CRITICAL PAIRS

Given a terminating rewriting system the following are equivalent:
1. the rewriting system is confluent
2. the rewriting system is locally confluent
3. all the critical pairs are joinable
i.e. the property above is satisfied for all minimal t

?
Example N x (N/2N) = (a,b| ba— ab, bb — 1)

Critical pairs are:

NG N\

10/ 42



CRITICAL PAIRS

Given a terminating rewriting system the following are equivalent:
1. the rewriting system is confluent
2. the rewriting system is locally confluent
3. all the critical pairs are joinable
i.e. the property above is satisfied for all minimal t

?
Example N x (N/2N) = (a,b| ba— ab, bb — 1)

Critical pairs are joinable'

bbb

7\
N/

\
/

/\
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string rs
term rs

presentation of a monoid
presentation of 7
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TERM REWRITING SYSTEMS

» A signature (X, «) consists of
> aset ¥ of generators
> an arity function a: ¥ - N

» Terms are elements of the free algebra £* over this signature

Example
The TRS of commutative monoids: ¥ ={m:2, e: 0}

:m(m(x,y),z) — m(x, m(y, z))

22T >0
3

x

)



PRESENTATIONS OF LAWVERE THEORIES

String rewriting systems correspond to
presentations of monoids.
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presentations of Lawvere theories.
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A Lawvere theory is a category C
» whose objects are integers
» which is cartesian

» whose cartesian product is given on objects by addition

TRS ((X, @), R) induce a LT whose morphisms m — n are n-uples
of terms with variables xq, ..., X, considered modulo relations.

Presentation: C = ¥*/=¢

Example
Consider the TRS of commutative monoids: ¥ = {m:2, e: 0}

2T >R
23
X
\./3\./\/
1
x
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PRESENTATIONS OF LAWVERE THEORIES

A Lawvere theory is a category C
» whose objects are integers
» which is cartesian
» whose cartesian product is given on objects by addition

TRS ((X, @), R) induce a LT whose morphisms m — n are n-uples
of terms with variables xq, ..., X, considered modulo relations.

Presentation: C = ¥*/=¢

Example
Consider the TRS of commutative monoids: ¥ = {m:2, e: 0}

It presents the Lawvere theory whose morphisms
M : m — n are (m x n)-matrices with coefficients in N.
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» whose objects are integers
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» whose cartesian product is given on objects by addition

TRS ((X, @), R) induce a LT whose morphisms m — n are n-uples
of terms with variables xq, ..., X, considered modulo relations.
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Example
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A Lawvere theory is a category C
» whose objects are integers
» which is cartesian
» whose cartesian product is given on objects by addition

TRS ((X, @), R) induce a LT whose morphisms m — n are n-uples
of terms with variables xq, ..., X, considered modulo relations.

Presentation: C = ¥*/=¢

Example
Consider the TRS of commutative monoids: ¥ = {m:2, e: 0}

[m(m(x1,x1),x2) ; e; x2] :2—3 — <i 8 (1)>
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PRESENTATIONS OF LAWVERE THEORIES

A Lawvere theory is a category C
» whose objects are integers
» which is cartesian
» whose cartesian product is given on objects by addition

TRS ((X, @), R) induce a LT whose morphisms m — n are n-uples
of terms with variables xq, ..., X, considered modulo relations.

Presentation: C = ¥*/=¢

Example
Consider the TRS of commutative monoids: ¥ = {m:2, e: 0}

[m(m(xi, x1), x2) ; e xa] 2 00
[m(x1, m(x1,x2)) ; e; m(e,x2)] 2—+3 e ( )

Use rewriting theory!

13 /42



Can we use the same techniques
in order to build
presentations of n-categories?

14 /42



POLYGRAPHS

[Street76,Burronio3,Power90]
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monoid
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We want to generalize rewriting systems

dimension ‘ rewr. syst. ‘ presents
0 element 0-category
1 string 1-category
2 term Lawvere th.
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PRESENTING /1-CATEGORIES

We want to generalize rewriting systems

dimension ‘ rewr. syst. ‘ presents
0 element 0-category
1 string 1-category
2 term cartesian category

Lawvere th. = cartesian category with N as objects

Generalization: \Q?/ ~ \Q?/
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PRESENTING /1-CATEGORIES

We want to generalize rewriting systems

dimension ‘ rewr. syst. ‘ presents
0 element 0-category
1 string 1-category
2 term monoidal category

monoidal category in which

cartesian category = . .
every object is a comonoid

A B A B

Generalization: \Q?/ s Ezé

C ¢ D

16
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PRESENTING /1-CATEGORIES

We want to generalize rewriting systems

dimension ‘ rewr. syst. ‘ presents
0 element | O-category
1 string 1-category
2 term 2-category
monoidal category = 2-category with only one object
A B A, B

y
Generalization: EZi ~ >§Z§z
t

¢ D ¢ D

16

42



A 0-signature

Example
signature

X y

POLYGRAPHS



POLYGRAPHS

A O-rewriting system

Y
$0
to
P
Example
signature rules
b

x )



Example
signature

b
(N
2 V)
x—=y

POLYGRAPHS

A 1-signature = a O-rewriting system

Y



POLYGRAPHS

A 1-signature generates a category

PN}

So
i1
*
S5 H0

z0 <~ ZT
t*
0

Example
signature terms
b
M b
() x—2sy-tsy y

a
X ——Y



POLYGRAPHS

A 1l-rewriting system

PN} 2o

S0 S1
i1
* T t:
sy to 1

z0 <~ ZT
t*
0

such that sjos; =sjot; and tjos; =tjoty

Example
signature terms rules

b
a b
O x—ey by by /’“\

X —Y
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POLYGRAPHS

A 2-signature = a l-rewriting system

> P

So S1
i1
* 1 5
S5 0 1

z0 < ZT
t*
0

such that sjos; =sjot; and tjos; =tjoty

Example
signature

y—boy
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POLYGRAPHS

A 2-signature generates a 2-category

> P

So S1
i i
* * T
S5 H0 Ol

* *

oI —rj=—7;
t t

0 1

such that sjos; =sjot; and tjos; =tjoty

Example
signature

y—boy
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POLYGRAPHS

A 2-rewriting system

X1 Y5 23

So S1 S2
i i2
* * T t;
s to st 2

* *

oI =3 =—1;
t t
0 1

such that sfosy =sfot and tfosy =tj oo

Example
signature rules
y—Lsy y—L2sy
a b a o b
ri Us r} = s
X -_— y X \//y
a a

17 /42



POLYGRAPHS

A 2-rewriting system

) Y, Y3

S0 S1 2
i1 i
* * T t;
S5 0 5] 1 2

* *

oI =3 =—1;
t t

0 1

Right notion of n-rewriting system: n-polygraphs.



An example:

a presentation of Bij

[Lafont03]
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A PRESENTATION OF Bij

The category Bij has
» objects are integers [n] = {0, ..., n—1}

» morphisms f : [m] — [n] are bijections

3] 0 1 2 0 1 [2]

| X X |

3] 0 1 2 0 1 [2]



A PRESENTATION OF Bij

The category Bij has
» objects are integers [n] = {0,...,n—1}

» morphisms f : [m] — [n] are bijections

(5] 0 1 2 3 4
o X X
(5] 0 1 2 3 4

Horizontal composition ®



A PRESENTATION OF Bij

We want to give a presentation of Bij, i.e. describe it as

> a free category on sets of typed generators
for 0-, 1- and 2-cells

» quotiented by relations between 2-cells in the generated
2-category

20 /42
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A PRESENTATION OF Bij

Bij is presented by the 3-polygraph such that [Lafont03]

S / N

» Y ={1l:%— %} (so Xj = N) *
S ={y 1ol 51wl \ /
> 23:{)/75}

SN L NN
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A PRESENTATION OF Bij

Bij is presented by the 3-polygraph such that [Lafont03] 11

> Yo = {x} *
» T ={1:%— %} (so i = N) *
» 3 ={y:1®1—->1®1} *
>232{)/75} 1 1
* — % * —> %
SN , 7NN
* —> % v * = * a2 * —> %
NN S NS
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*
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A PRESENTATION OF Bij

Bij is presented by the 3-polygraph such that [Lafont03] 11

> Yo = {x} *
» T ={1:%— %} (so i = N) * *
> ={y:1®1—-1x1} %

>232{)/75} 1 1

é%_%
gé
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A PRESENTATION OF Bij

The rules

[
S
o

of the rewriting system induce critical pairs

Sy




Critical pairs are computed using a
unification procedure.

We want to extend it to
2-dimensional rewriting systems



Contrarily to term rewriting systems
we can have an infinite number
of critical pairs...



IDEA:
change the definition
of critical pairs



CRITICAL PAIRS

IN THE MULTICATEGORY OF
COMPACT CONTEXTS
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TWO PROBLEMS WITH CRITICAL PAIRS

Consider the 2-rewriting system ¥ with
Yo = {x} Y, ={1} Yo={s:1—-1,d:1-3 m:3—1}

the generators for 2-cells are drawn respectively as

R R <

with rules

:,_.. :,_..



TWO PROBLEMS WITH CRITICAL PAIRS

The two rules

CdD SIIED
= ... and = ...
SICICD m
induce an infinite number of critical pairs:
Cd>
SIED,
variables on the border.  (s) | ) |
SIED,
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CdD SICHICD,
= ... and = ...
SIIED Cmy
induce an infinite number of critical pairs:
CdD
OO

variables on the border )
use compact morphisms!
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TWO PROBLEMS WITH CRITICAL PAIRS

The two rules

= ... and = ...

CIEICD (m>

induce an infinite number of critical pairs:

variables inside: s
use contexts! o o

(= multicategory of
terms with metavariables) O

28 /42



BACK TO A FINITE NUMBER
OF CRITICAL PAIRS

Theorem
The 2-category of “terms” generated by a signature can be
embedded into the multicategory of compact contexts.

compact contexts

terms

In other words, there is a finite number of
generating families of critical pairs
in those rewriting systems.



THE MULTICATEGORY OF CONTEXTS
Consider a 2-polygraph *
P P

So : S1
i1
t t
56" 0 1

Yo=—123
t
and a family X = {X; : i = gi1,..., X,y : fn = gn} of 2-globes,
with f;, gi € ¥ parallel 1-cells considered as formal variables
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THE MULTICATEGORY OF CONTEXTS
Consider a 2-polygraph *
P P

S0 g s1
I
t t
56" 0 1

zO <~ ZT
t

and a family X = {X; : i = gi1,..., X,y : fn = gn} of 2-globes,
with f;, gi € ¥ parallel 1-cells considered as formal variables

We define the 2-polygraph X[X] as
Y oW X

So S1
i
* 1 t:
sy to 1

ZO%ZT

to
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THE MULTICATEGORY OF CONTEXTS

Consider a 2-polygraph *
P P

S0 | S1 |
n )
t t
5510 st

Yo=—¥Yj=——%3
t t
and a family X = {X; : i = gi1,..., X,y : fn = gn} of 2-globes,
with f;, gi € ¥ parallel 1-cells considered as formal variables

We define the 2-polygraph X[X] as
] oW X

S0 S1
i i
* 1 £t
S5 0 sy 1

Zo:*ZI;:*(ZQLﬂX)*
ty t

30/42



THE MULTICATEGORY OF CONTEXTS

Consider a 2-polygraph ¥
P P

S0 S1
i1 i
58< to si« t1

Substitution
Given

» a2cella:f=f"inX}

» and a2-cell B: g =g’ in Lo[X : f = f]*
we can define

» a2-cell a[g/X]: f=f"inX}
which corresponds to the 2-cell a where all occurrences of X
have been replaced by 3.

30/42



THE MULTICATEGORY OF CONTEXTS

Consider a 2-polygraph ¥
P P

S0 S1
i i2
55‘ to s;‘ t1

Definition
We can thus define the multicategory of contexts sy whose
> objects are globes f = g, i.e. parallel 1-cells in X

» operations in Ky (A = g1,...,fp = gn, f = g) are
2cellsk: f=gin Lo[Xi:A=g1,..., Xn: fn = gn]*

» composition is given by generalizing the previous substitution

30/42



CRITICAL PAIRS

Definition
Suppose that we are given two 2-cells

a1 h=g and bi:hA=ga

in a 2-polygraph X. A most general unifier is

31/42



CRITICAL PAIRS

Definition
Suppose that we are given two 2-cells

a1 i =g and Bi:h =g

in a 2-polygraph X. A most general unifier is a pair

/<;1€/Cz(f1:>g1;f:>g) and IizElCz(fzigz;fig)

of linear contexts such that
1. unifier: k1(a1) = ka(ag)
2. minimal: if k1 = k{ o K] and kp = K} o K5 where (K], K5) is a
unifier then s} = id and x5 = id
3. overlapping: there is no binary context x such that
k1 = (id, a2) and kp = (a1,id)

31/42
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Now, we want to represent morphisms with “holes” in the border



COMPACT 2-CATEGORIES

Definition
Given a 2-category C, a 1-cell f : A — B is left adjoint to a 1-cell
g : B — A, which we write

f
A1 B
g

when there exists two 2-cellsn: A—- f®gande: g®f —- B

g f
A
B
B
such that

(fee)om@f)=f and (c®g)o(g®@n)=¢g



COMPACT 2-CATEGORIES

Definition
A 2-category C is compact when every 1-cell admits both a left
and a right adjoint.

32/42
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A 2-category C generates a free compact 2-category Ac, which is
» 0O-cells: same as C,
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COMPACT 2-CATEGORIES

Definition
A 2-category C is compact when every 1-cell admits both a left
and a right adjoint.

Lemma

A 2-category C generates a free compact 2-category Ac, which is
» 0O-cells: same as C,
» l-cells: f™" with f a 1-cell of C and n € Z,
> 2-cells:

» a: 0= g% fora:f =g a2-cell of C,
> e id = FTL @ F0
> e T = id

> + equations

Theorem

A 2-category C embeds fully and faithfully in the free compact
category it generates.



ROTATIONS

In the free compact 2-category A, the following Hom-sets
Ac(f"®g’h) = AC(g7fn71®h)

are isomorphic:

We call these isomorphisms rotations.
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ROTATIONS

In the free compact 2-category A, the following Hom-sets
Ac(f"®g’h) = AC(g7fn71®h)

are isomorphic:

fnoog B g
B M
A
i;gc A
h fFn—1 h

We call these isomorphisms rotations.

Rotations are unary operations in K 4,.
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ROTATIONS

The diagram
D
D,

is a representation of (s)

up to rotation!
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THE MULTICATEGORY OF
COMPACT CONTEXTS

A 2-polygraph ¥ generates a 2-category C,
» which can be embedded in the free compact 2-category A¢

> and the 2-cells o : f = g of A¢ can be seen as nullary
contexts in K4.(; f = &)
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UNIFICATION IN THE MULTICATEGORY
OF COMPACT CONTEXTS

Theorem
Given a 3-polygraph R with underlying 2-polygraph ¥ generating a
2-category C, there exists a finite number of contexts

K€ Kalfi=egl,..  fi=egl:f=g)
such that
» for any nullary contexts K1, ...,Kk, and unary context k such
that the composite ko k' o (k1,...,kK) € Ka.(;f' = g') is

of the form K, for some 2-cell o : f' = g’ of C, the 2-cell o
is an unifier of left members of two rewriting rules of R,

» and moreover any such unifier can be obtained in this way (in
particular the critical pairs).



UNIFICATION IN THE MULTICATEGORY
OF COMPACT CONTEXTS

Theorem
Given a 3-polygraph R with underlying 2-polygraph ¥ generating a
2-category C, there exists a finite number of contexts

K€ Kalfi=egl,..  fi=egl:f=g)
such that
» for any nullary contexts K1, ...,Kk, and unary context k such
that the composite ko k' o (k1,...,kK) € Ka.(;f' = g') is

of the form K, for some 2-cell o : f' = g’ of C, the 2-cell o
is an unifier of left members of two rewriting rules of R,

» and moreover any such unifier can be obtained in this way (in
particular the critical pairs).

Remark
There is unicity up to rotations.
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UNIFICATION

IN THE MULTICATEGORY OF
COMPACT CONTEXTS



UNIFICATION IN TRS

Suppose that we have a TRS

f:2 h:1 f(x,h(h(y))) = ... h(h(f(x,y))) = ...

In order to generate critical pairs,
we unify a subterm of f(x, h(h(y))) with h(h(f(x,y)))
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UNIFICATION IN TRS

Suppose that we have a TRS

f:2 h:1 f(x,h(h(y))) = ... h(h(f(x,y))) = ...

In order to generate critical pairs,
we unify a subterm of f(x, h(h(y))) with h(h(f(x,y)))

~



UNIFICATION IN 2-REWRITING SYSTEMS

We want to compute the critical pairs generated by
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UNIFICATION IN 2-REWRITING SYSTEMS

We want to compute the critical pairs generated by

, I
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UNIFICATION IN 2-REWRITING SYSTEMS

We want to compute the critical pairs generated by
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METACONFLUENCE

Remark
When a 2-rewriting system is confluent, its critical pairs (in our

generalized sense) are not necessarily confluent. But at least, we
get a finite description of the critical pairs!

39 /42



NOT SHOWN HERE

» The operations in the multicategory of compact contexts can
be represented in an effective way.
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» The operations in the multicategory of compact contexts can
be represented in an effective way.

> Precise formulation of the algorithm.
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NOT SHOWN HERE

» The operations in the multicategory of compact contexts can
be represented in an effective way.

> Precise formulation of the algorithm.

» An implementation was realized.
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v

v

v

FUTURE WORKS

Generalize techniques developed by Guiraud and Malbos to
this setting

Generalize to higher dimensions

Towards automated tools for studying higher categories?
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THANKS!

Any questions?



