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TOWARDS HIGHER-DIMENSIONAL
REWRITING THEORY

Rewriting theory has proven to be very useful to study
I monoids (and groups)
I term algebras

I n-categories?

Can we generalize it
to higher dimensions?

In this talk, I will be interested in extending the procedures of
unification in dimension 2.
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REWRITING SYSTEMS
A rewriting system consists of
I a set of terms generated by a free construction:

I free monoid: string rewriting systems
I free term algebra: term rewriting systems

I a set of rewriting rules: r : t → u

A term t rewrites to a term t ′ when there exists
I a rule r : u → u′
I a context C such that t = C [u] and t ′ = C [u′]

Example
Σ = {a, b} terms = Σ∗ rules = {ba→ ab}

aabaab aarab−−−→ aaabab
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CONVERGENT REWRITING SYSTEMS
I A rewriting system can be terminating

when there is no infinite reduction path
t

��
t1

��
t2

��
...

I A rewriting can be confluent
I A rewriting system is convergent

when both terminating and confluent

In a convergent rewriting system, every term has a normal form:
canonical representative of terms modulo rewriting.

5 / 42



CONVERGENT REWRITING SYSTEMS
I A rewriting system can be terminating
I A rewriting can be confluent when

t
∗

~~}}}}}}}}
∗

  AAAAAAAA

u v

w
I A rewriting system is convergent

when both terminating and confluent

In a convergent rewriting system, every term has a normal form:
canonical representative of terms modulo rewriting.

5 / 42



CONVERGENT REWRITING SYSTEMS
I A rewriting system can be terminating
I A rewriting can be confluent when

t
∗

~~}}}}}}}}
∗

  AAAAAAAA

u

∗   

v

∗~~w

I A rewriting system is convergent
when both terminating and confluent

In a convergent rewriting system, every term has a normal form:
canonical representative of terms modulo rewriting.

5 / 42



CONVERGENT REWRITING SYSTEMS
I A rewriting system can be terminating
I A rewriting can be confluent when

t
∗

~~}}}}}}}}
∗

  AAAAAAAA

u

∗   

v

∗~~w
I A rewriting system is convergent

when both terminating and confluent

In a convergent rewriting system, every term has a normal form:
canonical representative of terms modulo rewriting.

5 / 42



CONVERGENT REWRITING SYSTEMS
I A rewriting system can be terminating
I A rewriting can be confluent when

t
∗

~~}}}}}}}}
∗

  AAAAAAAA

u

∗   

v

∗~~w
I A rewriting system is convergent

when both terminating and confluent

In a convergent rewriting system, every term has a normal form:
canonical representative of terms modulo rewriting.

5 / 42



Why
are those properties

interesting?
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PRESENTATIONS OF MONOIDS
A presentation

〈G | R〉
of a monoid M consists of
I a set G of generators
I a set R ⊆ G∗ × G∗ of relations

such that
M ∼= G∗/ ≡R

Example
I N ∼= 〈a | 〉
I N/2N ∼= 〈a | aa = 1〉
I N× N ∼= 〈a, b | ba = ab〉
I Sn ∼= 〈σ1, . . . , σn | σiσi+1σi = σi+1σiσi+1, σ2

i = 1, σiσj = σjσi〉
I . . .
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PRESENTATIONS OF MONOIDS

How do we show that M ∼= 〈G | R〉 i.e. M ∼= G∗/ ≡R ?

1. Orient R to get a string rewriting system.
2. Show that the rewriting system is terminating.
3. Show that the rewriting system is confluent.
4. Show that the normal forms are in bijection with M.

Example N× (N/2N)
?∼= 〈a, b | ba→ ab, bb → 1〉
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PRESENTATIONS OF MONOIDS

How do we show that M ∼= 〈G | R〉 i.e. M ∼= G∗/ ≡R ?

1. Orient R to get a string rewriting system.
2. Show that the rewriting system is terminating.
3. Show that the rewriting system is confluent.
4. Show that the normal forms are in bijection with M.

Example N× (N/2N)
?∼= 〈a, b | ba→ ab, bb → 1〉

Normal forms are:
an and anb

They are in bijection with N× (N/2N)!
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How do we show
that a rewriting system

is confluent?
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CRITICAL PAIRS
Given a terminating rewriting system the following are equivalent:
1. the rewriting system is confluent

t
∗

~~}}}}}}}}
∗

  AAAAAAAA

u

∗   

v

∗~~w

2. the rewriting system is locally confluent
3. all the critical pairs are joinable

i.e. the property above is satisfied for all minimal t

Example N× (N/2N)
?∼= 〈a, b | ba→ ab, bb → 1〉

Critical pairs are:
bba

~~||||||||

""EEEEEEEE

a bab

a

bbb

}}||||||||

!!BBBBBBBB

b b

b
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CRITICAL PAIRS
Given a terminating rewriting system the following are equivalent:
1. the rewriting system is confluent
2. the rewriting system is locally confluent
3. all the critical pairs are joinable

i.e. the property above is satisfied for all minimal t

Example N× (N/2N)
?∼= 〈a, b | ba→ ab, bb → 1〉

Critical pairs are joinable:
bba

~~||||||||

""EEEEEEEE

a

CCCCCCCC

CCCCCCCC bab

∗
{{xxxxxxxxx

a

bbb

}}||||||||

!!BBBBBBBB

b

BBBBBBBBB

BBBBBBBBB b

|||||||||
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string rs = presentation of a monoid
term rs = presentation of ?
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TERM REWRITING SYSTEMS

I A signature (Σ, α) consists of
I a set Σ of generators
I an arity function α : Σ→ N

I Terms are elements of the free algebra Σ∗ over this signature

Example
The TRS of commutative monoids: Σ = {m : 2, e : 0}

R =


α : m(m(x , y), z) → m(x ,m(y , z))
λ : m(e, x) → x
ρ : m(x , e) → x
γ : m(x , y) → m(y , x)
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PRESENTATIONS OF LAWVERE THEORIES
String rewriting systems correspond to

presentations of monoids.

A Lawvere theory is a category C
I whose objects are integers
I which is cartesian
I whose cartesian product is given on objects by addition

TRS ((Σ, α),R) induce a LT whose morphisms m→ n are n-uples
of terms with variables x1, . . . , xm, considered modulo relations.
Presentation: C ∼= Σ∗/ ≡R

Example
Consider the TRS of commutative monoids: Σ = {m : 2, e : 0}
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Example
Consider the TRS of commutative monoids: Σ = {m : 2, e : 0}

It presents the Lawvere theory whose morphisms
M : m→ n are (m × n)-matrices with coefficients in N.
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Can we use the same techniques
in order to build

presentations of n-categories?
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POLYGRAPHS
[Street76,Burroni93,Power90]
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PRESENTING n-CATEGORIES
We want to generalize rewriting systems

dimension rewr. syst. presents

1 string monoid

a // b // c //
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Generalization: a // b //  x a // y b // y
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PRESENTING n-CATEGORIES
We want to generalize rewriting systems

dimension rewr. syst. presents
0 element 0-category
1 string 1-category
2 term cartesian category

Lawvere th. = cartesian category with N as objects

Generalization: f  

A B
f
C
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PRESENTING n-CATEGORIES
We want to generalize rewriting systems

dimension rewr. syst. presents
0 element 0-category
1 string 1-category
2 term monoidal category

cartesian category = monoidal category in which
every object is a comonoid

Generalization:
A B

f
C

 

A B
f

C D
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PRESENTING n-CATEGORIES
We want to generalize rewriting systems

dimension rewr. syst. presents
0 element 0-category
1 string 1-category
2 term 2-category

monoidal category = 2-category with only one object

Generalization:
A B

f
C D

 

A By
x f z

tC D
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POLYGRAPHS
A 0-signature

Σ1 Σ2 Σ3

Σ0 Σ∗1 Σ∗2

such that s∗0 ◦ s1 = s∗0 ◦ t1 and t∗0 ◦ s1 = t∗0 ◦ t1

Example

signature

rules

x y

x a // y

b

��
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POLYGRAPHS
A 0-rewriting system

Σ1
s0

~~}}}}}}}}

t0~~}}}}}}}}
Σ2 Σ3

Σ0 Σ∗1 Σ∗2
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signature rules

x y
x a // y

b
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POLYGRAPHS
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POLYGRAPHS
A 2-signature = a 1-rewriting system
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POLYGRAPHS
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POLYGRAPHS
A 2-rewriting system
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POLYGRAPHS
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such that s∗1 ◦ s2 = s∗1 ◦ t2 and t∗1 ◦ s2 = t∗1 ◦ t2

Right notion of n-rewriting system: n-polygraphs.
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An example: a presentation of Bij

[Lafont03]
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A PRESENTATION OF Bij

The category Bij has
I objects are integers [n] = {0, . . . , n − 1}
I morphisms f : [m]→ [n] are bijections
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A PRESENTATION OF Bij

The category Bij has
I objects are integers [n] = {0, . . . , n − 1}
I morphisms f : [m]→ [n] are bijections

[5]

f⊗g
��

0

;;;;;;;; 1

��������
2 3

;;;;;;;; 4

��������

[5] 0 1 2 3 4

Horizontal composition ⊗
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A PRESENTATION OF Bij

We want to give a presentation of Bij, i.e. describe it as
I a free category on sets of typed generators

for 0-, 1- and 2-cells
I quotiented by relations between 2-cells in the generated

2-category

20 / 42



A PRESENTATION OF Bij
Bij is presented by the 3-polygraph such that [Lafont03]
I Σ0 = {∗}

I Σ1 = {1 : ∗ → ∗} (so Σ∗1 ≈ N)
I Σ2 = {γ : 1⊗ 1→ 1⊗ 1}
I Σ3 = {y , s}

1 1
∗

∗ γ ∗
∗

1 1
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A PRESENTATION OF Bij
The rules

γ

γ

γ

y
=⇒

γ

γ

γ

γ

γ

s
=⇒

of the rewriting system induce critical pairs

γ

γ

γ
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A PRESENTATION OF Bij
The rules

γ

γ

γ

y
=⇒

γ

γ

γ

γ

γ

s
=⇒

of the rewriting system induce critical pairs
...

γ

γ

γ φ

γ

γ

... 22 / 42



Critical pairs are computed using a
unification procedure.

We want to extend it to
2-dimensional rewriting systems

23 / 42



Contrarily to term rewriting systems
we can have an infinite number

of critical pairs...
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IDEA:
change the definition

of critical pairs
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CRITICAL PAIRS
IN THE MULTICATEGORY OF
COMPACT CONTEXTS

26 / 42



TWO PROBLEMS WITH CRITICAL PAIRS
Consider the 2-rewriting system Σ with

Σ0 = {∗} Σ1 = {1} Σ2 = {s : 1→ 1, d : 1→ 3, m : 3→ 1}

the generators for 2-cells are drawn respectively as

s d m

with rules

d

s s s
⇒ . . . and

s s s

m
⇒ . . .
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TWO PROBLEMS WITH CRITICAL PAIRS
The two rules

d

s s s
⇒ . . . and

s s s

m
⇒ . . .

induce an infinite number of critical pairs:

variables on the border:

use compact morphisms!

...
d

s s

s φ

s s

m
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BACK TO A FINITE NUMBER
OF CRITICAL PAIRS

Theorem
The 2-category of “terms” generated by a signature can be
embedded into the multicategory of compact contexts.

compact contexts

terms

In other words, there is a finite number of
generating families of critical pairs

in those rewriting systems. 29 / 42



THE MULTICATEGORY OF CONTEXTS
Consider a 2-polygraph Σ

Σ1
s0

~~}}}}}}}}

t0~~}}}}}}}}
i1
��

Σ2
s1

~~}}}}}}}}

t1~~}}}}}}}}

Σ0 Σ∗1
s∗0oo
t∗0
oo

and a family X = {X1 : f1 ⇒ g1, . . . ,Xn : fn ⇒ gn} of 2-globes,
with fi , gi ∈ Σ∗1 parallel 1-cells considered as formal variables

We define the 2-polygraph Σ[X ] as
Σ1

s0

~~}}}}}}}}

t0~~}}}}}}}}
i1
��

Σ2 ] X
s1

{{wwwwwwwww

t1{{wwwwwwwww

Σ0 Σ∗1
s∗0oo
t∗0
oo
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THE MULTICATEGORY OF CONTEXTS
Consider a 2-polygraph Σ

Σ1
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��

Σ2
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t1~~}}}}}}}}
i2
��

Σ0 Σ∗1
s∗0oo
t∗0
oo Σ∗2

s∗1oo
t∗1
oo

and a family X = {X1 : f1 ⇒ g1, . . . ,Xn : fn ⇒ gn} of 2-globes,
with fi , gi ∈ Σ∗1 parallel 1-cells considered as formal variables

We define the 2-polygraph Σ[X ] as
Σ1

s0

~~}}}}}}}}

t0~~}}}}}}}}
i1
��

Σ2 ] X
s1

zztttttttttt

t1zztttttttttt
i2
��
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THE MULTICATEGORY OF CONTEXTS
Consider a 2-polygraph Σ

Σ1
s0

~~}}}}}}}}

t0~~}}}}}}}}
i1
��

Σ2
s1

~~}}}}}}}}

t1~~}}}}}}}}
i2
��

Σ0 Σ∗1
s∗0oo
t∗0
oo Σ∗2

s∗1oo
t∗1
oo

Substitution
Given
I a 2-cell α : f ⇒ f ′ in Σ∗2
I and a 2-cell β : g ⇒ g ′ in Σ2[X : f ⇒ f ′]∗

we can define
I a 2-cell α[β/X ] : f ⇒ f ′ in Σ∗2

which corresponds to the 2-cell α where all occurrences of X
have been replaced by β.
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THE MULTICATEGORY OF CONTEXTS
Consider a 2-polygraph Σ

Σ1
s0

~~}}}}}}}}

t0~~}}}}}}}}
i1
��

Σ2
s1

~~}}}}}}}}

t1~~}}}}}}}}
i2
��

Σ0 Σ∗1
s∗0oo
t∗0
oo Σ∗2

s∗1oo
t∗1
oo

Definition
We can thus define the multicategory of contexts KΣ whose
I objects are globes f ⇒ g , i.e. parallel 1-cells in Σ∗1
I operations in KΣ(f1 ⇒ g1, . . . , fn ⇒ gn; f ⇒ g) are

2-cells κ : f ⇒ g in Σ2[X1 : f1 ⇒ g1, . . . ,Xn : fn ⇒ gn]∗

I composition is given by generalizing the previous substitution
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CRITICAL PAIRS

Definition
Suppose that we are given two 2-cells

α1 : f1 ⇒ g1 and β1 : f1 ⇒ g1

in a 2-polygraph Σ. A most general unifier is

a pair

γ

γ

γ

γ
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CRITICAL PAIRS

Definition
Suppose that we are given two 2-cells

α1 : f1 ⇒ g1 and β1 : f1 ⇒ g1

in a 2-polygraph Σ. A most general unifier is a pair

κ1 ∈ KΣ(f1 ⇒ g1; f ⇒ g) and κ2 ∈ KΣ(f2 ⇒ g2; f ⇒ g)

of linear contexts such that
1. unifier: κ1(α1) = κ2(α2)

2. minimal: if κ1 = κ′′1 ◦ κ′1 and κ2 = κ′′2 ◦ κ′2 where (κ′1, κ
′
2) is a

unifier then κ′′1 = id and κ′′2 = id
3. overlapping: there is no binary context κ such that
κ1 = (id, α2) and κ2 = (α1, id)

31 / 42



COMPACT 2-CATEGORIES
Now, we want to represent morphisms with “holes” in the border

d

s s

s

s s

m
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COMPACT 2-CATEGORIES
Definition
Given a 2-category C, a 1-cell f : A→ B is left adjoint to a 1-cell
g : B → A, which we write

A
f

++⊥ B
g

kk

when there exists two 2-cells η : A→ f ⊗ g and ε : g ⊗ f → B

A
η

f
B

g

g
A

f

ε

B
such that

(f ⊗ ε) ◦ (η ⊗ f ) = f and (ε⊗ g) ◦ (g ⊗ η) = g
32 / 42



COMPACT 2-CATEGORIES
Definition
A 2-category C is compact when every 1-cell admits both a left
and a right adjoint.

Lemma
A 2-category C generates a free compact 2-category AC , which is
I 0-cells: same as C,
I 1-cells: f n with f a 1-cell of C and n ∈ Z,
I 2-cells:

I α : f 0 ⇒ g0 for α : f ⇒ g a 2-cell of C,
I ηf n : id⇒ f n−1 ⊗ f n

I εf n : f n ⊗ f n−1 ⇒ id
I + equations

Theorem
A 2-category C embeds fully and faithfully in the free compact
category it generates.

32 / 42



COMPACT 2-CATEGORIES
Definition
A 2-category C is compact when every 1-cell admits both a left
and a right adjoint.

Lemma
A 2-category C generates a free compact 2-category AC , which is
I 0-cells: same as C,
I 1-cells: f n with f a 1-cell of C and n ∈ Z,
I 2-cells:

I α : f 0 ⇒ g0 for α : f ⇒ g a 2-cell of C,
I ηf n : id⇒ f n−1 ⊗ f n

I εf n : f n ⊗ f n−1 ⇒ id
I + equations

Theorem
A 2-category C embeds fully and faithfully in the free compact
category it generates.

32 / 42



COMPACT 2-CATEGORIES
Definition
A 2-category C is compact when every 1-cell admits both a left
and a right adjoint.

Lemma
A 2-category C generates a free compact 2-category AC , which is
I 0-cells: same as C,
I 1-cells: f n with f a 1-cell of C and n ∈ Z,
I 2-cells:

I α : f 0 ⇒ g0 for α : f ⇒ g a 2-cell of C,
I ηf n : id⇒ f n−1 ⊗ f n

I εf n : f n ⊗ f n−1 ⇒ id
I + equations

Theorem
A 2-category C embeds fully and faithfully in the free compact
category it generates. 32 / 42



ROTATIONS

In the free compact 2-category AC , the following Hom-sets

AC(f n ⊗ g , h) ∼= AC(g , f n−1 ⊗ h)

are isomorphic:

f n

B
g

A α C
h

 

B g

A α C
f n−1 h

We call these isomorphisms rotations.

Rotations are unary operations in KAC .
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ROTATIONS

The diagram

d

s s

s

s s

m

is a representation of

d

s s

s

s s

m

up to rotation!
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THE MULTICATEGORY OF
COMPACT CONTEXTS

A 2-polygraph Σ generates a 2-category C,
I which can be embedded in the free compact 2-category AC
I and the 2-cells α : f ⇒ g of AC can be seen as nullary

contexts in KAC(; f ⇒ g)
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UNIFICATION IN THE MULTICATEGORY
OF COMPACT CONTEXTS

Theorem
Given a 3-polygraph R with underlying 2-polygraph Σ generating a
2-category C, there exists a finite number of contexts

κi ∈ KAC(f i
1 ⇒ g i

1 , . . . , f i
ki ⇒ g i

ki ; f
i ⇒ g i )

such that
I for any nullary contexts κ1, . . . , κki and unary context κ such

that the composite κ ◦ κi ◦ (κ1, . . . , κki ) ∈ KAC(; f ′ ⇒ g ′) is
of the form κα, for some 2-cell α : f ′ ⇒ g ′ of C, the 2-cell α
is an unifier of left members of two rewriting rules of R,

I and moreover any such unifier can be obtained in this way (in
particular the critical pairs).

Remark
There is unicity up to rotations.
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UNIFICATION
IN THE MULTICATEGORY OF
COMPACT CONTEXTS
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UNIFICATION IN TRS

Suppose that we have a TRS

f : 2 h : 1 f (x , h(h(y)))⇒ . . . h(h(f (x , y)))⇒ . . .

In order to generate critical pairs,
we unify a subterm of f (x , h(h(y))) with h(h(f (x , y)))

h

h

f

?
=

f

h

h
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UNIFICATION IN 2-REWRITING SYSTEMS

We want to compute the critical pairs generated by

d

s s s
?
=

s s s

m
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METACONFLUENCE

Remark
When a 2-rewriting system is confluent, its critical pairs (in our
generalized sense) are not necessarily confluent. But at least, we
get a finite description of the critical pairs!
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NOT SHOWN HERE

I The operations in the multicategory of compact contexts can
be represented in an effective way.

I Precise formulation of the algorithm.
I An implementation was realized.
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FUTURE WORKS

I Generalize techniques developed by Guiraud and Malbos to
this setting

I Generalize to higher dimensions
I Towards automated tools for studying higher categories?
I . . .
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THANKS!

Any questions?
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