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A MOTIVATING SIDE STORY

“Groups of loops” Gy:

@ the group of (homotopy classes of) motions of n unknotted
unlinked circles in R3 bringing each circle to its original
position;

@ pure symmetric automorphisms of the free group F,, that is
automorphisms sending each generator to an element of its
conjugacy class.

Jensen—McCammond—-Meier (2006): computation of the
cohomology algebra of G, (Brownstein—Lee conjecture). It is an
anticommutative algebra generated by degree one elements y;;
subject to quadratic relations

Yiiyji = 0,
YkiYji = (}’kj - )’ij))/ki-
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In particular, dim H*(G,) = (n+1)""1, and moreover
the collection of all cohomology algebras is an S-module
isomorphic to Com o PreLie[1].

There is a similar story of an operadic flavour. Como Lie[1] is the
underlying module of the Gerstenhaber operad, which is built from
Orlik—=Solomon algebras, the cohomology algebras of pure braid
groups.

Configurations of n unlinked circles in R3 in that story are usually
replaced by configurations of little disks inside a big disk, and this
gives an operad structure.

An operadic approximation to our question: there exists an
operad intimately related to the groups of loops, whose underlying
S-module is isomorphic to Perm o PreLie[1].
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FOUXE-RABINOVITCH GROUPS

A natural generalisation of pure symmetric automorphisms:
Hi,...,H, some groups, H = Hy % ---x H,.

Partial conjugation automorphisms (Fouxe—Rabinovich 1940): fix
i # j, allow H; to conjugate H;. These altogether generate the
Fouxe-Rabinovitch group FR(H).

Griffin 2010: suppose that Y; = K(H;, 1) are classifying spaces
for H;. There exists a functorial construction of
K(FR(Hy *---* Hp),1) from Yy, ..., Y,
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CACTUS PRODUCTS

Griffin's construction is the space of configurations, each looking
like a cactus:

so his classifying space construction is called the space of Y-cacti
(Y=(Y1,...,Yn)).
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For Y1 =---=Y, =Y, a version of the cacti space, the space of
based cacti (defined for a pointed space (Y, *)), gives rise to a
topological operad.

Its homology forms an algebraic operad. In fact, that operad can
be constructed functorially from the graded cocommutative
coalgebra He(Y).

The operadic part of the story: let (C, A, ¢€,7) be a graded
augmented cocommutative coalgebra. The operad BCACT ¢ of
based C-cacti is generated by binary operations C ® kS,; these
operations satisfy the relations

o1 c".(23) = (=1)II<"l " o1 ¢ (for homogeneous ¢/, ¢’ € C),

copl = Z cayo1cp) (force (),
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After splitting our relations along the augmentation, we obtain

logl =101 =1071.(23),
cop1=101c.(23) (for c € C),
coyl = Z €(1) °1 €(2) (for cc ?),

o1 c".(23) = (—1)I€II€"I¢” o1 ¢ (for homogeneous ¢, ¢” € C).

These relations give a rewriting system allowing to move the
operation 1 towards the top level of compositions.
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The Poisson operad is generated by a symmetric binary operation
- % - and a skew-symmetric binary operation [-, -] that satisfy the
relations

[av [bv C]] + [bv [C’ a]] + [Cv [av b]] =0,
[axb,c]=ax][b,c]+ [a,c]*b,

(axb)xc=ax(bxc).

It is built from the operad Lie and the operad Com via the Leibniz
rule that allows to rewrite every expression as a product of several
Lie monomials.

Moreover, it is possible to prove that all possible commutative
products of Lie monomials are linearly independent, so form a
basis. Rewriting rules with this property are called distributive laws.
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The nil-Poisson operad is generated by a symmetric binary
operation - x - and a skew-symmetric binary operation [-, ] that
satisfy the relations

[37 [b7 C]] =0,
[a* b, c] =ax*][b,c|+ [a,c]*b,

(axb)xc=ax(bxc).

It is built from the nilpotent operad Nil and the operad Com via
the Leibniz rule that allows to rewrite every expression as a
product of brackets.

However, commutative products of brackets are not independent
any more: expanding [a1, [a2, a3 * a4]] = 0, we obtain

[a1, a4] x [a2, @3] + [a1, a3] x [a2, a4] = 0.
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A MOTIVATING EXAMPLE

An unconventional presentation of the associative operad
(Livernet—Loday). The operad generated by a symmetric binary
operation - x - and a skew-symmetric binary operation [-, -] that
satisfy the relations

[‘37 [bv C]] + [bv [C, a]] + [C7 [37 b]] =0,
[a* b, c] =ax*][b,c|]+ [a,c] b,
(axb)*xc—ax(bxc)=]b,]a,c]]

is isomorphic to the associative operad As.

It looks like a deformation of the Poisson operad, but the product
is no longer associative. Can we still think of As as built from Com
and Lie by some procedure?
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o = F(V)/(#) and B =7 (W)/() are two quadratic
operads. For two S-module mappings

SSHEWeeVDVeW DWW

and
d:- W eV Ve oWeW,

one can define a quadratic operad & with generators % =7V & W
and relations .7 = 2® 2 & ., where

2={x—s(x)|xe#x}, Z={x—dx)|xeW eV}

Here ¥ @ # is the span of all elements ¢ o; 1) with ¢ € ¥, b € #'.



FILTERED DISTRIBUTIVE LAWS

Generators of &: generators of ./ and # together.



FILTERED DISTRIBUTIVE LAWS

Generators of &: generators of ./ and # together.
Relations of &



FILTERED DISTRIBUTIVE LAWS

Generators of &: generators of ./ and # together.
Relations of &

@ a rewriting rule transforming the relations of & into “lower
terms” of degree at most 1 in generators of &



FILTERED DISTRIBUTIVE LAWS

Generators of &: generators of ./ and # together.

Relations of &
@ a rewriting rule transforming the relations of & into “lower
terms” of degree at most 1 in generators of &
@ a rewriting rule transforming % e ¥ into a combination of
terms from ¥ e # and "“lower terms” of degree 0 in
generators of &/



FILTERED DISTRIBUTIVE LAWS

Generators of &: generators of ./ and # together.

Relations of &
@ a rewriting rule transforming the relations of & into “lower
terms” of degree at most 1 in generators of &
@ a rewriting rule transforming % e ¥ into a combination of
terms from ¥ e # and "“lower terms” of degree 0 in
generators of &/

o relations of &



FILTERED DISTRIBUTIVE LAWS

Generators of &: generators of ./ and # together.

Relations of &
@ a rewriting rule transforming the relations of & into “lower
terms” of degree at most 1 in generators of &
@ a rewriting rule transforming % e ¥ into a combination of
terms from ¥ e # and "“lower terms” of degree 0 in
generators of &/

o relations of &

Usual rewriting rules for distributive laws (Markl 1994): s = 0,
d: W eV — ¥ e (no lower terms anywhere).
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The operad CTD of commutative tridendriform algebras is
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without any symmetries that satisfy the relations

(a<b)<c=a<(b<c+c=<b+bxc),
ax(b=<c)=(axb)<c,
(axb)xc=ax(bx*c).

It is based on a rewriting rule between the operads Zinb and Com.
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The operad CTD' is generated by a skew-symmetric operation [, ]
and an operation - e - without any symmetries that satisfy the
relations

[av [bv C]]+[bv [C’ a]]+[C7 [av b]] =0,
ae[b,c]=ae(bec),
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It is based on a rewriting rule between the operads Lie and Leib.
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EXAMPLES — 5

The operad of based two-point cacti is generated by the operations
-0 and -1 without any symmetries that satisfy the relations

(a-gb)-0c=a-g(boc)=(=1)*l(agc)b,
(a-gb)-1c=(—1)Plla.1 ¢) b,
a-1(boc)=(aob)oc,
(a-1b)-1c= (_1)|bllc|(a 1¢)-1b.

The operation a, b — a-g b is permutative, the operation

a, b+ a-1 b is nonassociative permutative, and the remaining
defining relations give a rewriting rule between the operads Perm
and NAP.
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EXAMPLES — 6

The operad of based S'-cacti is generated by the operations - and
e without any symmetries that satisfy the relations
(a-b)-c=a-(b-c),
(a-b)-c=(—1)Pllel(a. c)- b,
(a-b)ec=(—1)*lcl(aec)- b,
ae(b-c)=(a-b)ec+(aeb)-c,
(aeb)ec=(—1)"bll(20c)eb.

The operation a, b — a- b is permutative, the operation

a, b — ae b is nonassociative permutative of degree 1, and the
defining relations give a rewriting rule between the operads Perm
and NAP[1].
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THE FILTERED DISTRIBUTIVE LAWS CRITERION
Assume that the natural projection of S-modules 7: & — < splits
(for example, it is always true in characteristic zero, or in arbitrary
characteristic whenever the relations of &7 remain undeformed,
including the case of usual distributive laws). Then the composite
of natural mappings

F(V Yo F(HW) = F(V W) F(V W) (T)
gives rise to a surjection of S-modules
E A o0 RB — &.

DEFINITION

We say that the mappings s and d define a filtered distributive law
between the operads & and A if m: & — & splits, and the
restriction of & to weight 3 elements

§3: (A 0 B)3) — &(3)
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THEOREM (V.D., 2007)

Assume that the operads </ and 9 are Koszul, and that the
mappings s and d define a filtered distributive law between them.
Then the operad & is Koszul, and the S-modules o/ 0 8 and & are
isomorphic.

For example,

@ in the case of the associative operad, we get the well known
result As ~ Como Lie;

@ as S-modules, PostLie ~ Lie o Mag; the suboperad of PostLie
generated by - o - is isomorphic to Mag;

@ as S-modules, CTD' ~ Lieo Leib.
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KOSZULNESS OF THE OPERAD OF CACTI

THEOREM

For any choice of an augmented graded cocommutative coalgebra
C, the operad BCACT ¢ is Koszul, and as S-modules,

BCAcTc ~ Permo NAP¢.

Here NAP is the operad of NAP-algebras enriched in the graded
vector space é It is based on rooted trees whose edges are
decorated by C.



