Filtered Distributive Laws

Vladimir Dotsenko
University of Luxembourg
arXiv:1109.5345
joint with James Griffin (Southampton)
"Operads and Rewriting",
Lyon, November 3, 2011

A motivating side story

"Groups of loops" \mathbb{G}_{n} :

A motivating side story

"Groups of loops" \mathbb{G}_{n} :

- the group of (homotopy classes of) motions of n unknotted unlinked circles in \mathbb{R}^{3} bringing each circle to its original position;

A motivating side story

"Groups of loops" \mathbb{G}_{n} :

- the group of (homotopy classes of) motions of n unknotted unlinked circles in \mathbb{R}^{3} bringing each circle to its original position;
- pure symmetric automorphisms of the free group F_{n}, that is automorphisms sending each generator to an element of its conjugacy class.

A motivating side story

"Groups of loops" \mathbb{G}_{n} :

- the group of (homotopy classes of) motions of n unknotted unlinked circles in \mathbb{R}^{3} bringing each circle to its original position;
- pure symmetric automorphisms of the free group F_{n}, that is automorphisms sending each generator to an element of its conjugacy class.
Jensen-McCammond-Meier (2006): computation of the cohomology algebra of \mathbb{G}_{n} (Brownstein-Lee conjecture). It is an anticommutative algebra generated by degree one elements $y_{i j}$ subject to quadratic relations

$$
\begin{gathered}
y_{i j} y_{j i}=0 \\
y_{k j} y_{j i}=\left(y_{k j}-y_{i j}\right) y_{k i}
\end{gathered}
$$

A motivating side story

In particular, $\operatorname{dim} H^{\bullet}\left(\mathbb{G}_{n}\right)=(n+1)^{n-1}$, and moreover

A motivating side story

In particular, $\operatorname{dim} H^{\bullet}\left(\mathbb{G}_{n}\right)=(n+1)^{n-1}$, and moreover the collection of all cohomology algebras is an \mathbb{S}-module isomorphic to Com \circ PreLie[1].

A motivating side story

In particular, $\operatorname{dim} H^{\bullet}\left(\mathbb{G}_{n}\right)=(n+1)^{n-1}$, and moreover the collection of all cohomology algebras is an \mathbb{S}-module isomorphic to Com ○ PreLie[1].

There is a similar story of an operadic flavour. Com $\circ \mathrm{Lie}[1]$ is the underlying module of the Gerstenhaber operad, which is built from Orlik-Solomon algebras, the cohomology algebras of pure braid groups.

A motivating side story

In particular, $\operatorname{dim} H^{\bullet}\left(\mathbb{G}_{n}\right)=(n+1)^{n-1}$, and moreover the collection of all cohomology algebras is an \mathbb{S}-module isomorphic to Com \circ PreLie[1].

There is a similar story of an operadic flavour. Com \circ Lie[1] is the underlying module of the Gerstenhaber operad, which is built from Orlik-Solomon algebras, the cohomology algebras of pure braid groups.
Configurations of n unlinked circles in \mathbb{R}^{3} in that story are usually replaced by configurations of little disks inside a big disk, and this gives an operad structure.

A motivating side story

In particular, $\operatorname{dim} H^{\bullet}\left(\mathbb{G}_{n}\right)=(n+1)^{n-1}$, and moreover the collection of all cohomology algebras is an \mathbb{S}-module isomorphic to Com \circ PreLie[1].

There is a similar story of an operadic flavour. Com \circ Lie[1] is the underlying module of the Gerstenhaber operad, which is built from Orlik-Solomon algebras, the cohomology algebras of pure braid groups.
Configurations of n unlinked circles in \mathbb{R}^{3} in that story are usually replaced by configurations of little disks inside a big disk, and this gives an operad structure.

An operadic approximation to our question:

A motivating side story

In particular, $\operatorname{dim} H^{\bullet}\left(\mathbb{G}_{n}\right)=(n+1)^{n-1}$, and moreover the collection of all cohomology algebras is an \mathbb{S}-module isomorphic to Com \circ PreLie[1].

There is a similar story of an operadic flavour. Com \circ Lie[1] is the underlying module of the Gerstenhaber operad, which is built from Orlik-Solomon algebras, the cohomology algebras of pure braid groups.

Configurations of n unlinked circles in \mathbb{R}^{3} in that story are usually replaced by configurations of little disks inside a big disk, and this gives an operad structure.

An operadic approximation to our question: there exists an operad intimately related to the groups of loops, whose underlying \mathbb{S}-module is isomorphic to Perm \circ PreLie[1].

Fouxe-Rabinovitch groups

A natural generalisation of pure symmetric automorphisms: H_{1}, \ldots, H_{n} some groups, $H=H_{1} * \cdots * H_{n}$.

Fouxe-Rabinovitch groups

A natural generalisation of pure symmetric automorphisms: H_{1}, \ldots, H_{n} some groups, $H=H_{1} * \cdots * H_{n}$.

Partial conjugation automorphisms (Fouxe-Rabinovich 1940): fix $i \neq j$, allow H_{j} to conjugate H_{i}. These altogether generate the Fouxe-Rabinovitch group FR(H).

Fouxe-Rabinovitch groups

A natural generalisation of pure symmetric automorphisms: H_{1}, \ldots, H_{n} some groups, $H=H_{1} * \cdots * H_{n}$.

Partial conjugation automorphisms (Fouxe-Rabinovich 1940): fix $i \neq j$, allow H_{j} to conjugate H_{i}. These altogether generate the Fouxe-Rabinovitch group FR(H).

Griffin 2010: suppose that $Y_{i}=K\left(H_{i}, 1\right)$ are classifying spaces for H_{i}. There exists a functorial construction of $K\left(\operatorname{FR}\left(H_{1} * \cdots * H_{n}\right), 1\right)$ from Y_{1}, \ldots, Y_{n}.

Cactus products

Griffin's construction is the space of configurations, each looking like a cactus:

Cactus products

Griffin's construction is the space of configurations, each looking like a cactus:

Cactus products

Griffin's construction is the space of configurations, each looking like a cactus:

so his classifying space construction is called the space of \mathbf{Y}-cacti $\left(\mathbf{Y}=\left(Y_{1}, \ldots, Y_{n}\right)\right)$.

The operad of based cacti

For $Y_{1}=\cdots=Y_{n}=Y$, a version of the cacti space, the space of based cacti (defined for a pointed space $(Y, *)$), gives rise to a topological operad.

The operad of based cacti

For $Y_{1}=\cdots=Y_{n}=Y$, a version of the cacti space, the space of based cacti (defined for a pointed space $(Y, *)$), gives rise to a topological operad.
Its homology forms an algebraic operad. In fact, that operad can be constructed functorially from the graded cocommutative coalgebra $H_{\bullet}(Y)$.

The operad of based cacti

For $Y_{1}=\cdots=Y_{n}=Y$, a version of the cacti space, the space of based cacti (defined for a pointed space $(Y, *)$), gives rise to a topological operad.
Its homology forms an algebraic operad. In fact, that operad can be constructed functorially from the graded cocommutative coalgebra $H_{\bullet}(Y)$.

The operadic part of the story: let $(C, \Delta, \epsilon, \gamma)$ be a graded augmented cocommutative coalgebra.

The operad of based cacti

For $Y_{1}=\cdots=Y_{n}=Y$, a version of the cacti space, the space of based cacti (defined for a pointed space $(Y, *)$), gives rise to a topological operad.
Its homology forms an algebraic operad. In fact, that operad can be constructed functorially from the graded cocommutative coalgebra $H_{\bullet}(Y)$.

The operadic part of the story: let $(C, \Delta, \epsilon, \gamma)$ be a graded augmented cocommutative coalgebra. The operad BCACT_{C} of based C-cacti is generated by binary operations $C \otimes \mathbb{k} S_{2}$; these operations satisfy the relations

$$
\begin{gathered}
c^{\prime} \circ_{1} c^{\prime \prime} .(23)=(-1)^{\left|c^{\prime}\right|\left|c^{\prime \prime}\right|} c^{\prime \prime} \circ_{1} c^{\prime} \quad\left(\text { for homogeneous } c^{\prime}, c^{\prime \prime} \in C\right), \\
\\
c \circ_{2} \mathbb{1}=\sum c_{(1)} \circ_{1} c_{(2)} \quad(\text { for } c \in C),
\end{gathered}
$$

The operad of based cacti

After splitting our relations along the augmentation, we obtain

The operad of Based cacti

After splitting our relations along the augmentation, we obtain

$$
\begin{gathered}
\mathbb{1} \circ_{1} \mathbb{1}=\mathbb{1} \circ_{2} \mathbb{1}=\mathbb{1} \circ_{1} \mathbb{1} .(23), \\
c \circ_{1} \mathbb{1}=\mathbb{1} \circ_{1} c \cdot(23) \quad(\text { for } c \in \bar{C}), \\
c \circ_{2} \mathbb{1}=\sum c_{(1)} \circ_{1} c_{(2)} \quad(\text { for } c \in \bar{C}), \\
c^{\prime} \circ_{1} c^{\prime \prime} .(23)=(-1)^{\left|c^{\prime}\right|\left|c^{\prime \prime}\right|} c^{\prime \prime} \circ_{1} c^{\prime} \quad\left(\text { for homogeneous } c^{\prime}, c^{\prime \prime} \in \bar{C}\right) .
\end{gathered}
$$

The operad of based cacti

After splitting our relations along the augmentation, we obtain

$$
\begin{gathered}
\mathbb{1} \circ_{1} \mathbb{1}=\mathbb{1} \circ_{2} \mathbb{1}=\mathbb{1} \circ_{1} \mathbb{1} \cdot(23), \\
c \circ_{1} \mathbb{1}=\mathbb{1} \circ_{1} c \cdot(23) \quad(\text { for } c \in \bar{C}), \\
c \circ_{2} \mathbb{1}=\sum c_{(1)} \circ_{1} c_{(2)} \quad(\text { for } c \in \bar{C}), \\
c^{\prime} \circ_{1} c^{\prime \prime} .(23)=(-1)^{\left|c^{\prime}\right|\left|c^{\prime \prime}\right|} c^{\prime \prime} \circ_{1} c^{\prime} \quad\left(\text { for homogeneous } c^{\prime}, c^{\prime \prime} \in \bar{C}\right) .
\end{gathered}
$$

These relations give a rewriting system allowing to move the operation $\mathbb{1}$ towards the top level of compositions.

A toy example of a distributive law

The Poisson operad is generated by a symmetric binary operation $\cdot \star \cdot$ and a skew-symmetric binary operation $[\cdot, \cdot]$ that satisfy the relations

$$
\begin{gathered}
{[a,[b, c]]+[b,[c, a]]+[c,[a, b]]=0} \\
{[a \star b, c]=a \star[b, c]+[a, c] \star b} \\
(a \star b) \star c=a \star(b \star c)
\end{gathered}
$$

A toy example of a distributive law

The Poisson operad is generated by a symmetric binary operation $\cdot \star \cdot$ and a skew-symmetric binary operation $[\cdot, \cdot]$ that satisfy the relations

$$
\begin{gathered}
{[a,[b, c]]+[b,[c, a]]+[c,[a, b]]=0} \\
{[a \star b, c]=a \star[b, c]+[a, c] \star b} \\
(a \star b) \star c=a \star(b \star c)
\end{gathered}
$$

It is built from the operad Lie and the operad Com via the Leibniz rule that allows to rewrite every expression as a product of several Lie monomials.

A toy example of a distributive law

The Poisson operad is generated by a symmetric binary operation $\cdot \star \cdot$ and a skew-symmetric binary operation $[\cdot, \cdot]$ that satisfy the relations

$$
\begin{gathered}
{[a,[b, c]]+[b,[c, a]]+[c,[a, b]]=0} \\
{[a \star b, c]=a \star[b, c]+[a, c] \star b} \\
(a \star b) \star c=a \star(b \star c)
\end{gathered}
$$

It is built from the operad Lie and the operad Com via the Leibniz rule that allows to rewrite every expression as a product of several Lie monomials.

Moreover, it is possible to prove that all possible commutative products of Lie monomials are linearly independent, so form a basis. Rewriting rules with this property are called distributive laws.

A Warning example

The nil-Poisson operad is generated by a symmetric binary operation $\cdot \star$. and a skew-symmetric binary operation $[\cdot, \cdot]$ that satisfy the relations

$$
\begin{gathered}
{[a,[b, c]]=0} \\
{[a \star b, c]=a \star[b, c]+[a, c] \star b} \\
(a \star b) \star c=a \star(b \star c)
\end{gathered}
$$

A WARNing EXAMPLE

The nil-Poisson operad is generated by a symmetric binary operation $\cdot \star$. and a skew-symmetric binary operation $[\cdot, \cdot]$ that satisfy the relations

$$
\begin{gathered}
{[a,[b, c]]=0} \\
{[a \star b, c]=a \star[b, c]+[a, c] \star b,} \\
(a \star b) \star c=a \star(b \star c)
\end{gathered}
$$

It is built from the nilpotent operad Nil and the operad Com via the Leibniz rule that allows to rewrite every expression as a product of brackets.

A warning example

The nil-Poisson operad is generated by a symmetric binary operation $\cdot \star$. and a skew-symmetric binary operation $[\cdot, \cdot]$ that satisfy the relations

$$
\begin{gathered}
{[a,[b, c]]=0} \\
{[a \star b, c]=a \star[b, c]+[a, c] \star b,} \\
(a \star b) \star c=a \star(b \star c)
\end{gathered}
$$

It is built from the nilpotent operad Nil and the operad Com via the Leibniz rule that allows to rewrite every expression as a product of brackets.

However, commutative products of brackets are not independent any more: expanding $\left[a_{1},\left[a_{2}, a_{3} \star a_{4}\right]\right]=0$, we obtain

$$
\left[a_{1}, a_{4}\right] \star\left[a_{2}, a_{3}\right]+\left[a_{1}, a_{3}\right] \star\left[a_{2}, a_{4}\right]=0
$$

A motivating example

An unconventional presentation of the associative operad (Livernet-Loday). The operad generated by a symmetric binary operation $\cdot \star$. and a skew-symmetric binary operation $[\cdot, \cdot]$ that satisfy the relations

$$
\begin{gathered}
{[a,[b, c]]+[b,[c, a]]+[c,[a, b]]=0} \\
{[a \star b, c]=a \star[b, c]+[a, c] \star b} \\
(a \star b) \star c-a \star(b \star c)=[b,[a, c]]
\end{gathered}
$$

is isomorphic to the associative operad As.

A motivating example

An unconventional presentation of the associative operad (Livernet-Loday). The operad generated by a symmetric binary operation $\cdot \star$. and a skew-symmetric binary operation $[\cdot, \cdot]$ that satisfy the relations

$$
\begin{gathered}
{[a,[b, c]]+[b,[c, a]]+[c,[a, b]]=0} \\
{[a \star b, c]=a \star[b, c]+[a, c] \star b} \\
(a \star b) \star c-a \star(b \star c)=[b,[a, c]]
\end{gathered}
$$

is isomorphic to the associative operad As.
It looks like a deformation of the Poisson operad, but the product is no longer associative. Can we still think of As as built from Com and Lie by some procedure?

Filtered distributive Laws

$\mathscr{A}=\mathscr{F}(\mathscr{V}) /(\mathscr{R})$ and $\mathscr{B}=\mathscr{F}(\mathscr{W}) /(\mathscr{S})$ are two quadratic operads. For two \mathbb{S}-module mappings

$$
s: \mathscr{R} \rightarrow \mathscr{W} \bullet \mathscr{V} \oplus \mathscr{V} \bullet \mathscr{W} \oplus \mathscr{W} \bullet \mathscr{W}
$$

and

$$
d: \mathscr{W} \bullet \mathscr{V} \rightarrow \mathscr{V} \bullet \mathscr{W} \oplus \mathscr{W} \bullet \mathscr{W}
$$

one can define a quadratic operad \mathscr{E} with generators $\mathscr{U}=\mathscr{V} \oplus \mathscr{W}$ and relations $\mathscr{T}=\mathscr{Q} \oplus \mathscr{D} \oplus \mathscr{S}$, where

$$
\mathscr{Q}=\{x-s(x) \mid x \in \mathscr{R}\}, \quad \mathscr{D}=\{x-d(x) \mid x \in \mathscr{W} \bullet \mathscr{V}\} .
$$

Filtered distributive Laws

$\mathscr{A}=\mathscr{F}(\mathscr{V}) /(\mathscr{R})$ and $\mathscr{B}=\mathscr{F}(\mathscr{W}) /(\mathscr{S})$ are two quadratic operads. For two \mathbb{S}-module mappings

$$
s: \mathscr{R} \rightarrow \mathscr{W} \bullet \mathscr{V} \oplus \mathscr{V} \bullet \mathscr{W} \oplus \mathscr{W} \bullet \mathscr{W}
$$

and

$$
d: \mathscr{W} \bullet \mathscr{V} \rightarrow \mathscr{V} \bullet \mathscr{W} \oplus \mathscr{W} \bullet \mathscr{W}
$$

one can define a quadratic operad \mathscr{E} with generators $\mathscr{U}=\mathscr{V} \oplus \mathscr{W}$ and relations $\mathscr{T}=\mathscr{Q} \oplus \mathscr{D} \oplus \mathscr{S}$, where

$$
\mathscr{Q}=\{x-s(x) \mid x \in \mathscr{R}\}, \quad \mathscr{D}=\{x-d(x) \mid x \in \mathscr{W} \bullet \mathscr{V}\} .
$$

Here $\mathscr{V} \bullet \mathscr{W}$ is the span of all elements $\phi \circ ; \psi$ with $\phi \in \mathscr{V}, \psi \in \mathscr{W}$.

Filtered distributive Laws

Generators of \mathscr{E} : generators of \mathscr{A} and \mathscr{B} together.

Filtered distributive laws

Generators of \mathscr{E} : generators of \mathscr{A} and \mathscr{B} together.
Relations of \mathscr{E} :

Filtered distributive Laws

Generators of \mathscr{E} : generators of \mathscr{A} and \mathscr{B} together.
Relations of \mathscr{E} :

- a rewriting rule transforming the relations of \mathscr{A} into "lower terms" of degree at most 1 in generators of \mathscr{A}

Filtered distributive Laws

Generators of \mathscr{E} : generators of \mathscr{A} and \mathscr{B} together.
Relations of \mathscr{E} :

- a rewriting rule transforming the relations of \mathscr{A} into "lower terms" of degree at most 1 in generators of \mathscr{A}
- a rewriting rule transforming $\mathscr{W} \bullet \mathscr{V}$ into a combination of terms from $\mathscr{V} \bullet \mathscr{W}$ and "lower terms" of degree 0 in generators of \mathscr{A}

Filtered distributive Laws

Generators of \mathscr{E} : generators of \mathscr{A} and \mathscr{B} together.
Relations of \mathscr{E} :

- a rewriting rule transforming the relations of \mathscr{A} into "lower terms" of degree at most 1 in generators of \mathscr{A}
- a rewriting rule transforming $\mathscr{W} \bullet \mathscr{V}$ into a combination of terms from $\mathscr{V} \bullet \mathscr{W}$ and "lower terms" of degree 0 in generators of \mathscr{A}
- relations of \mathscr{B}

Filtered distributive Laws

Generators of \mathscr{E} : generators of \mathscr{A} and \mathscr{B} together.
Relations of \mathscr{E} :

- a rewriting rule transforming the relations of \mathscr{A} into "lower terms" of degree at most 1 in generators of \mathscr{A}
- a rewriting rule transforming $\mathscr{W} \bullet \mathscr{V}$ into a combination of terms from $\mathscr{V} \bullet \mathscr{W}$ and "lower terms" of degree 0 in generators of \mathscr{A}
- relations of \mathscr{B}

Usual rewriting rules for distributive laws (Markl 1994): $s=0$, $d: \mathscr{W} \bullet \mathscr{V} \rightarrow \mathscr{V} \bullet \mathscr{W}$ (no lower terms anywhere).

Examples - 1

The operad PostLie is generated by a skew-symmetric operation $[\cdot, \cdot]$ and an operation $\cdot \circ \cdot$ without any symmetries that satisfy the relations

$$
\begin{gathered}
{[a,[b, c]]+[b,[c, a]]+[c,[a, b]]=0,} \\
a \circ[b, c]=(a \circ b) \circ c-a \circ(b \circ c)-(a \circ c) \circ b+a \circ(c \circ b), \\
{[a, b] \circ c=[a \circ c, b]+[a, b \circ c] .}
\end{gathered}
$$

Examples - 1

The operad PostLie is generated by a skew-symmetric operation $[\cdot, \cdot]$ and an operation $\cdot \circ \cdot$ without any symmetries that satisfy the relations

$$
\begin{gathered}
{[a,[b, c]]+[b,[c, a]]+[c,[a, b]]=0,} \\
a \circ[b, c]=(a \circ b) \circ c-a \circ(b \circ c)-(a \circ c) \circ b+a \circ(c \circ b), \\
{[a, b] \circ c=[a \circ c, b]+[a, b \circ c] .}
\end{gathered}
$$

It is based on a rewriting rule between the operads Lie and Mag.

EXAMPLES - 2

The Koszul dual operad PostLie! = ComTrias of commutative trialgebras is generated by a symmetric operation . \bullet and an operation $\cdot \star \cdot$ without any symmetries; the identities between them can be expressed as follows:

$$
\begin{aligned}
& (a \star b) \star c=a \star(b \bullet c), \\
& a \star(b \star c)=a \star(b \bullet c), \\
& a \star(c \star b)=a \star(b \bullet c), \\
& a \bullet(b \star c)=(a \bullet b) \star c, \\
& (a \bullet b) \bullet c=a \bullet(b \bullet c) .
\end{aligned}
$$

EXAMPLES - 2

The Koszul dual operad PostLie! $=$ ComTrias of commutative trialgebras is generated by a symmetric operation • \bullet and an operation $\cdot \star$. without any symmetries; the identities between them can be expressed as follows:

$$
\begin{aligned}
& (a \star b) \star c=a \star(b \bullet c), \\
& a \star(b \star c)=a \star(b \bullet c), \\
& a \star(c \star b)=a \star(b \bullet c), \\
& a \bullet(b \star c)=(a \bullet b) \star c, \\
& (a \bullet b) \bullet c=a \bullet(b \bullet c) .
\end{aligned}
$$

It is based on a rewriting rule between the operads Nil and Com.

ExAmples - 3

The operad CTD of commutative tridendriform algebras is generated by a symmetric operation $\cdot \star \cdot$ and an operation $\cdot \prec \cdot$ without any symmetries that satisfy the relations

$$
\begin{gathered}
(a \prec b) \prec c=a \prec(b \prec c+c \prec b+b \star c), \\
a \star(b \prec c)=(a \star b) \prec c, \\
(a \star b) \star c=a \star(b \star c) .
\end{gathered}
$$

ExAmples - 3

The operad CTD of commutative tridendriform algebras is generated by a symmetric operation $\cdot \star \cdot$ and an operation $\cdot \prec \cdot$ without any symmetries that satisfy the relations

$$
\begin{gathered}
(a \prec b) \prec c=a \prec(b \prec c+c \prec b+b \star c), \\
a \star(b \prec c)=(a \star b) \prec c, \\
(a \star b) \star c=a \star(b \star c) .
\end{gathered}
$$

It is based on a rewriting rule between the operads Zinb and Com.

EXAMPLES - 4

The operad CTD! is generated by a skew-symmetric operation $[\cdot, \cdot]$ and an operation •• without any symmetries that satisfy the relations

$$
\begin{gathered}
{[a,[b, c]]+[b,[c, a]]+[c,[a, b]]=0,} \\
a \bullet[b, c]=a \bullet(b \bullet c), \\
{[a, b] \bullet c=[a \bullet c, b]+[a, b \bullet c],} \\
(a \bullet b) \bullet c=a \bullet(b \bullet c)+(a \bullet c) \bullet b .
\end{gathered}
$$

EXAMPLES - 4

The operad CTD! is generated by a skew-symmetric operation $[\cdot, \cdot]$ and an operation •• without any symmetries that satisfy the relations

$$
\begin{gathered}
{[a,[b, c]]+[b,[c, a]]+[c,[a, b]]=0,} \\
a \bullet[b, c]=a \bullet(b \bullet c), \\
{[a, b] \bullet c=[a \bullet c, b]+[a, b \bullet c],} \\
(a \bullet b) \bullet c=a \bullet(b \bullet c)+(a \bullet c) \bullet b .
\end{gathered}
$$

It is based on a rewriting rule between the operads Lie and Leib.

EXAMPLES - 5

The operad of based two-point cacti is generated by the operations $\cdot 0$ and $\cdot 1$ without any symmetries that satisfy the relations

$$
\begin{gathered}
(a \cdot 0 b) \cdot 0 c=a \cdot 0(b \cdot 0 c)=(-1)^{|b||c|}(a \cdot 0 c) \cdot 0 b \\
(a \cdot 0 b) \cdot 1 c=(-1)^{|b||c|}\left(a \cdot{ }_{1} c\right) \cdot 0 b \\
a \cdot{ }_{1}(b \cdot 0 c)=(a \cdot 0 b) \cdot 0 c \\
(a \cdot 1 b) \cdot{ }_{1} c=(-1)^{|b||c|}\left(a \cdot{ }_{1} c\right) \cdot{ }_{1} b
\end{gathered}
$$

Examples - 5

The operad of based two-point cacti is generated by the operations $\cdot 0$ and $\cdot 1$ without any symmetries that satisfy the relations

$$
\begin{gathered}
(a \cdot 0 b) \cdot 0 c=a \cdot 0(b \cdot 0 c)=(-1)^{|b||c|}(a \cdot 0 c) \cdot 0 b, \\
(a \cdot 0 b) \cdot 1 c=(-1)^{|b||c|}\left(a \cdot{ }_{1} c\right) \cdot 0 b, \\
a \cdot \cdot_{1}(b \cdot 0 c)=(a \cdot 0 b) \cdot 0 c \\
\left(a \cdot{ }_{1} b\right) \cdot 1 c=(-1)^{|b||c|}\left(a \cdot{ }_{1} c\right) \cdot{ }_{1} b
\end{gathered}
$$

The operation $a, b \mapsto a \cdot 0 b$ is permutative, the operation $a, b \mapsto a \cdot{ }_{1} b$ is nonassociative permutative, and the remaining defining relations give a rewriting rule between the operads Perm and NAP.

Examples - 6

The operad of based S^{1}-cacti is generated by the operations • and

- without any symmetries that satisfy the relations

$$
\begin{gathered}
(a \cdot b) \cdot c=a \cdot(b \cdot c), \\
(a \cdot b) \cdot c=(-1)^{|b||c|}(a \cdot c) \cdot b, \\
(a \cdot b) \bullet c=(-1)^{|b||c|}(a \bullet c) \cdot b, \\
a \bullet(b \cdot c)=(a \cdot b) \bullet c+(a \bullet b) \cdot c, \\
(a \bullet b) \bullet c=(-1)^{1+|b||c|}(a \bullet c) \bullet b .
\end{gathered}
$$

Examples - 6

The operad of based S^{1}-cacti is generated by the operations • and

- without any symmetries that satisfy the relations

$$
\begin{gathered}
(a \cdot b) \cdot c=a \cdot(b \cdot c), \\
(a \cdot b) \cdot c=(-1)^{|b||c|}(a \cdot c) \cdot b, \\
(a \cdot b) \bullet c=(-1)^{|b||c|}(a \bullet c) \cdot b, \\
a \bullet(b \cdot c)=(a \cdot b) \bullet c+(a \bullet b) \cdot c, \\
(a \bullet b) \bullet c=(-1)^{1+|b||c|}(a \bullet c) \bullet b .
\end{gathered}
$$

The operation $a, b \mapsto a \cdot b$ is permutative, the operation $a, b \mapsto a \bullet b$ is nonassociative permutative of degree 1 , and the defining relations give a rewriting rule between the operads Perm and NAP [1].

Back to filtered distributive laws

$\mathscr{A}=\mathscr{F}(\mathscr{V}) /(\mathscr{R})$ and $\mathscr{B}=\mathscr{F}(\mathscr{W}) /(\mathscr{S})$ are two quadratic operads. For two \mathbb{S}-module mappings

$$
s: \mathscr{R} \rightarrow \mathscr{W} \bullet \mathscr{V} \oplus \mathscr{V} \bullet \mathscr{W} \oplus \mathscr{W} \bullet \mathscr{W}
$$

and

$$
d: \mathscr{W} \bullet \mathscr{V} \rightarrow \mathscr{V} \bullet \mathscr{W} \oplus \mathscr{W} \bullet \mathscr{W}
$$

one can define a quadratic operad \mathscr{E} with generators $\mathscr{U}=\mathscr{V} \oplus \mathscr{W}$ and relations $\mathscr{T}=\mathscr{Q} \oplus \mathscr{D} \oplus \mathscr{S}$, where

$$
\mathscr{Q}=\{x-s(x) \mid x \in \mathscr{R}\}, \quad \mathscr{D}=\{x-d(x) \mid x \in \mathscr{W} \bullet \mathscr{V}\} .
$$

The filtered distributive Laws criterion

Assume that the natural projection of \mathbb{S}-modules $\pi: \mathscr{E} \rightarrow \mathscr{A}$ splits (for example, it is always true in characteristic zero, or in arbitrary characteristic whenever the relations of \mathscr{A} remain undeformed, including the case of usual distributive laws). Then the composite of natural mappings

$$
\mathscr{F}(\mathscr{V}) \circ \mathscr{F}(\mathscr{W}) \hookrightarrow \mathscr{F}(\mathscr{V} \oplus \mathscr{W}) \rightarrow \mathscr{F}(\mathscr{V} \oplus \mathscr{W}) /(\mathscr{T})
$$

gives rise to a surjection of \mathbb{S}-modules

$$
\xi: \mathscr{A} \circ \mathscr{B} \rightarrow \mathscr{E}
$$

The filtered distributive Laws criterion

Assume that the natural projection of \mathbb{S}-modules $\pi: \mathscr{E} \rightarrow \mathscr{A}$ splits (for example, it is always true in characteristic zero, or in arbitrary characteristic whenever the relations of \mathscr{A} remain undeformed, including the case of usual distributive laws). Then the composite of natural mappings

$$
\mathscr{F}(\mathscr{V}) \circ \mathscr{F}(\mathscr{W}) \hookrightarrow \mathscr{F}(\mathscr{V} \oplus \mathscr{W}) \rightarrow \mathscr{F}(\mathscr{V} \oplus \mathscr{W}) /(\mathscr{T})
$$

gives rise to a surjection of \mathbb{S}-modules

$$
\xi: \mathscr{A} \circ \mathscr{B} \rightarrow \mathscr{E} .
$$

Definition

We say that the mappings s and d define a filtered distributive law between the operads \mathscr{A} and \mathscr{B} if $\pi: \mathscr{E} \rightarrow \mathscr{A}$ splits, and the restriction of ξ to weight 3 elements

$$
\xi_{3}:(\mathscr{A} \circ \mathscr{B})_{(3)} \rightarrow \mathscr{E}_{(3)}
$$

The filtered distributive laws criterion

Theorem (V.D., 2007)
Assume that the operads \mathscr{A} and \mathscr{B} are Koszul, and that the mappings s and d define a filtered distributive law between them. Then the operad \mathscr{E} is Koszul, and the \mathbb{S}-modules $\mathscr{A} \circ \mathscr{B}$ and \mathscr{E} are isomorphic.

The filtered distributive laws criterion

Theorem (V.D., 2007)
Assume that the operads \mathscr{A} and \mathscr{B} are Koszul, and that the mappings s and d define a filtered distributive law between them. Then the operad \mathscr{E} is Koszul, and the \mathbb{S}-modules $\mathscr{A} \circ \mathscr{B}$ and \mathscr{E} are isomorphic.

For example,

The filtered distributive laws criterion

Theorem (V.D., 2007)
Assume that the operads \mathscr{A} and \mathscr{B} are Koszul, and that the mappings s and d define a filtered distributive law between them. Then the operad \mathscr{E} is Koszul, and the \mathbb{S}-modules $\mathscr{A} \circ \mathscr{B}$ and \mathscr{E} are isomorphic.

For example,

The filtered distributive laws criterion

Theorem (V.D., 2007)
Assume that the operads \mathscr{A} and \mathscr{B} are Koszul, and that the mappings s and d define a filtered distributive law between them. Then the operad \mathscr{E} is Koszul, and the \mathbb{S}-modules $\mathscr{A} \circ \mathscr{B}$ and \mathscr{E} are isomorphic.

For example,

- in the case of the associative operad, we get the well known result $\mathrm{As} \simeq \mathrm{Com} \circ \mathrm{Li}$;

The filtered distributive laws criterion

Theorem (V.D., 2007)

Assume that the operads \mathscr{A} and \mathscr{B} are Koszul, and that the mappings s and d define a filtered distributive law between them. Then the operad \mathscr{E} is Koszul, and the \mathbb{S}-modules $\mathscr{A} \circ \mathscr{B}$ and \mathscr{E} are isomorphic.

For example,

- in the case of the associative operad, we get the well known result As \simeq Com \circ Lie;
- as \mathbb{S}-modules, PostLie \simeq Lie \circ Mag; the suboperad of PostLie generated by $\cdot \circ \cdot$ is isomorphic to Mag;

The filtered distributive laws criterion

Theorem (V.D., 2007)

Assume that the operads \mathscr{A} and \mathscr{B} are Koszul, and that the mappings s and d define a filtered distributive law between them. Then the operad \mathscr{E} is Koszul, and the \mathbb{S}-modules $\mathscr{A} \circ \mathscr{B}$ and \mathscr{E} are isomorphic.

For example,

- in the case of the associative operad, we get the well known result As \simeq Com \circ Lie;
- as \mathbb{S}-modules, PostLie \simeq Lie \circ Mag; the suboperad of PostLie generated by $\cdot \circ \cdot$ is isomorphic to Mag;
- as \mathbb{S}-modules, $C T D^{!} \simeq$ Lie \circ Leib.

Koszulness of the operad of cacti

Theorem

For any choice of an augmented graded cocommutative coalgebra C, the operad BCACT_{C} is Koszul, and as \mathbb{S}-modules,

$$
\mathrm{BCACT}_{C} \simeq \operatorname{Perm} \circ \mathrm{NAP}_{\bar{C}} .
$$

Koszulness of the operad of cacti

Theorem

For any choice of an augmented graded cocommutative coalgebra C, the operad BCACT_{C} is Koszul, and as \mathbb{S}-modules,

$$
\mathrm{BCACT}_{C} \simeq \operatorname{Perm} \circ \mathrm{NAP}_{\bar{C}} .
$$

Here NAP $_{\bar{C}}$ is the operad of NAP-algebras enriched in the graded vector space \bar{C}. It is based on rooted trees whose edges are decorated by \bar{C}.

