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A motivating side story

“Groups of loops” Gn:

the group of (homotopy classes of) motions of n unknotted
unlinked circles in R3 bringing each circle to its original
position;

pure symmetric automorphisms of the free group Fn, that is
automorphisms sending each generator to an element of its
conjugacy class.

Jensen–McCammond–Meier (2006): computation of the
cohomology algebra of Gn (Brownstein–Lee conjecture). It is an
anticommutative algebra generated by degree one elements yij
subject to quadratic relations

yijyji = 0,

ykjyji = (ykj − yij)yki .
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A motivating side story

In particular, dim H•(Gn) = (n + 1)n−1, and moreover

the collection of all cohomology algebras is an S-module
isomorphic to Com ◦PreLie[1].

There is a similar story of an operadic flavour. Com ◦ Lie[1] is the
underlying module of the Gerstenhaber operad, which is built from
Orlik–Solomon algebras, the cohomology algebras of pure braid
groups.

Configurations of n unlinked circles in R3 in that story are usually
replaced by configurations of little disks inside a big disk, and this
gives an operad structure.

An operadic approximation to our question: there exists an
operad intimately related to the groups of loops, whose underlying
S-module is isomorphic to Perm ◦PreLie[1].
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Fouxe-Rabinovitch groups

A natural generalisation of pure symmetric automorphisms:
H1, . . . ,Hn some groups, H = H1 ∗ · · · ∗ Hn.

Partial conjugation automorphisms (Fouxe–Rabinovich 1940): fix
i 6= j , allow Hj to conjugate Hi . These altogether generate the
Fouxe-Rabinovitch group FR(H).

Griffin 2010: suppose that Yi = K (Hi , 1) are classifying spaces
for Hi . There exists a functorial construction of
K (FR(H1 ∗ · · · ∗ Hn), 1) from Y1, . . . , Yn.
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The operad of based cacti

For Y1 = · · · = Yn = Y , a version of the cacti space, the space of
based cacti (defined for a pointed space (Y , ∗)), gives rise to a
topological operad.

Its homology forms an algebraic operad. In fact, that operad can
be constructed functorially from the graded cocommutative
coalgebra H•(Y ).

The operadic part of the story: let (C ,∆, ε, γ) be a graded
augmented cocommutative coalgebra. The operad BCactC of
based C -cacti is generated by binary operations C ⊗ kS2; these
operations satisfy the relations

c ′ ◦1 c ′′.(23) = (−1)|c
′||c ′′|c ′′ ◦1 c ′ (for homogeneous c ′, c ′′ ∈ C ),

c ◦2 1 =
∑

c(1) ◦1 c(2) (for c ∈ C ),
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The operad of based cacti

After splitting our relations along the augmentation, we obtain

1 ◦1 1 = 1 ◦2 1 = 1 ◦1 1 .(23),

c ◦1 1 = 1 ◦1c .(23) (for c ∈ C ),

c ◦2 1 =
∑

c(1) ◦1 c(2) (for c ∈ C ),

c ′ ◦1 c ′′.(23) = (−1)|c
′||c ′′|c ′′ ◦1 c ′ (for homogeneous c ′, c ′′ ∈ C ).

These relations give a rewriting system allowing to move the
operation 1 towards the top level of compositions.
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A toy example of a distributive law

The Poisson operad is generated by a symmetric binary operation
· ? · and a skew-symmetric binary operation [·, ·] that satisfy the
relations

[a, [b, c]] + [b, [c, a]] + [c , [a, b]] = 0,

[a ? b, c] = a ? [b, c] + [a, c] ? b,

(a ? b) ? c = a ? (b ? c).

It is built from the operad Lie and the operad Com via the Leibniz
rule that allows to rewrite every expression as a product of several
Lie monomials.

Moreover, it is possible to prove that all possible commutative
products of Lie monomials are linearly independent, so form a
basis. Rewriting rules with this property are called distributive laws.
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A warning example
The nil-Poisson operad is generated by a symmetric binary
operation · ? · and a skew-symmetric binary operation [·, ·] that
satisfy the relations

[a, [b, c]] = 0,

[a ? b, c] = a ? [b, c] + [a, c] ? b,

(a ? b) ? c = a ? (b ? c).

It is built from the nilpotent operad Nil and the operad Com via
the Leibniz rule that allows to rewrite every expression as a
product of brackets.

However, commutative products of brackets are not independent
any more: expanding [a1, [a2, a3 ? a4]] = 0, we obtain

[a1, a4] ? [a2, a3] + [a1, a3] ? [a2, a4] = 0.
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A motivating example

An unconventional presentation of the associative operad
(Livernet–Loday). The operad generated by a symmetric binary
operation · ? · and a skew-symmetric binary operation [·, ·] that
satisfy the relations

[a, [b, c]] + [b, [c, a]] + [c , [a, b]] = 0,

[a ? b, c] = a ? [b, c] + [a, c] ? b,

(a ? b) ? c − a ? (b ? c) = [b, [a, c]]

is isomorphic to the associative operad As.

It looks like a deformation of the Poisson operad, but the product
is no longer associative. Can we still think of As as built from Com
and Lie by some procedure?
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Filtered distributive laws

A = F (V )/(R) and B = F (W )/(S ) are two quadratic
operads. For two S-module mappings

s : R → W • V ⊕ V •W ⊕W •W

and
d : W • V → V •W ⊕W •W ,

one can define a quadratic operad E with generators U = V ⊕W
and relations T = Q ⊕D ⊕S , where

Q = {x − s(x) | x ∈ R}, D = {x − d(x) | x ∈ W • V }.

Here V •W is the span of all elements φ ◦i ψ with φ ∈ V , ψ ∈ W .
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Filtered distributive laws

Generators of E : generators of A and B together.

Relations of E :

a rewriting rule transforming the relations of A into “lower
terms” of degree at most 1 in generators of A

a rewriting rule transforming W • V into a combination of
terms from V •W and “lower terms” of degree 0 in
generators of A

relations of B

Usual rewriting rules for distributive laws (Markl 1994): s = 0,
d : W • V → V •W (no lower terms anywhere).
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Examples — 1

The operad PostLie is generated by a skew-symmetric operation
[·, ·] and an operation · ◦ · without any symmetries that satisfy the
relations

[a, [b, c]] + [b, [c, a]] + [c , [a, b]] = 0,

a ◦ [b, c] = (a ◦ b) ◦ c − a ◦ (b ◦ c)− (a ◦ c) ◦ b + a ◦ (c ◦ b),

[a, b] ◦ c = [a ◦ c , b] + [a, b ◦ c].

It is based on a rewriting rule between the operads Lie and Mag.
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Examples — 2

The Koszul dual operad PostLie! = ComTrias of commutative
trialgebras is generated by a symmetric operation · • · and an
operation · ? · without any symmetries; the identities between them
can be expressed as follows:

(a ? b) ? c = a ? (b • c),

a ? (b ? c) = a ? (b • c),

a ? (c ? b) = a ? (b • c),

a • (b ? c) = (a • b) ? c ,

(a • b) • c = a • (b • c).

It is based on a rewriting rule between the operads Nil and Com.
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generated by a symmetric operation · ? · and an operation · ≺ ·
without any symmetries that satisfy the relations
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It is based on a rewriting rule between the operads Zinb and Com.
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(a • b) • c = a • (b • c) + (a • c) • b.

It is based on a rewriting rule between the operads Lie and Leib.



Examples — 5

The operad of based two-point cacti is generated by the operations
·0 and ·1 without any symmetries that satisfy the relations

(a ·0 b) ·0 c = a ·0 (b ·0 c) = (−1)|b||c|(a ·0 c) ·0 b,

(a ·0 b) ·1 c = (−1)|b||c|(a ·1 c) ·0 b,

a ·1 (b ·0 c) = (a ·0 b) ·0 c ,

(a ·1 b) ·1 c = (−1)|b||c|(a ·1 c) ·1 b.

The operation a, b 7→ a ·0 b is permutative, the operation
a, b 7→ a ·1 b is nonassociative permutative, and the remaining
defining relations give a rewriting rule between the operads Perm
and NAP.
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Examples — 6

The operad of based S1-cacti is generated by the operations · and
• without any symmetries that satisfy the relations

(a · b) · c = a · (b · c),

(a · b) · c = (−1)|b||c|(a · c) · b,
(a · b) • c = (−1)|b||c|(a • c) · b,

a • (b · c) = (a · b) • c + (a • b) · c ,
(a • b) • c = (−1)1+|b||c|(a • c) • b.

The operation a, b 7→ a · b is permutative, the operation
a, b 7→ a • b is nonassociative permutative of degree 1, and the
defining relations give a rewriting rule between the operads Perm
and NAP[1].
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Back to filtered distributive laws

A = F (V )/(R) and B = F (W )/(S ) are two quadratic
operads. For two S-module mappings

s : R → W • V ⊕ V •W ⊕W •W

and
d : W • V → V •W ⊕W •W ,

one can define a quadratic operad E with generators U = V ⊕W
and relations T = Q ⊕D ⊕S , where

Q = {x − s(x) | x ∈ R}, D = {x − d(x) | x ∈ W • V }.



The filtered distributive laws criterion
Assume that the natural projection of S-modules π : E � A splits
(for example, it is always true in characteristic zero, or in arbitrary
characteristic whenever the relations of A remain undeformed,
including the case of usual distributive laws). Then the composite
of natural mappings

F (V ) ◦F (W ) ↪→ F (V ⊕W ) � F (V ⊕W )/(T )

gives rise to a surjection of S-modules

ξ : A ◦B � E .

Definition

We say that the mappings s and d define a filtered distributive law
between the operads A and B if π : E � A splits, and the
restriction of ξ to weight 3 elements

ξ3 : (A ◦B)(3) → E(3)

is an isomorphism.
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The filtered distributive laws criterion

Theorem (V.D., 2007)

Assume that the operads A and B are Koszul, and that the
mappings s and d define a filtered distributive law between them.
Then the operad E is Koszul, and the S-modules A ◦B and E are
isomorphic.

For example,

in the case of the associative operad, we get the well known
result As ' Com ◦ Lie;

as S-modules, PostLie ' Lie ◦Mag; the suboperad of PostLie
generated by · ◦ · is isomorphic to Mag;

as S-modules, CTD! ' Lie ◦ Leib.
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Koszulness of the operad of cacti

Theorem

For any choice of an augmented graded cocommutative coalgebra
C , the operad BCactC is Koszul, and as S-modules,

BCactC ' Perm ◦NAPC .

Here NAPC is the operad of NAP-algebras enriched in the graded
vector space C . It is based on rooted trees whose edges are
decorated by C .
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