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Abstract. This paper studies the concepts of a totally compatible dialgebra and a totally compat-
ible Lie dialgebra, defined to be a vector space with two binary operations that satisfy individual
and mixed associativity conditions and Lie algebra conditions respectively. We show that totally
compatible dialgebras are closely related to bimodule algebras and semi-homomorphisms. More
significantly, Rota-Baxter operators on totally compatible dialgebras provide a uniform framework
to generalize known results that Rota-Baxter related operators give tridendriform algebras. Free
totally compatible dialgebras are constructed guided by the general principle of universal algebra.
We also show that a Rota-Baxter operator on a totally compatible Lie dialgebra gives rise to a
PostLie algebra, generalizing the fact that a Rota-Baxter operator on a Lie algebra gives rise to a
PostLie algebra.
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1. Introduction

In recent years, there have been quite much interests on (linearly) compatible products from
both mathematics and physics. For example two Lie brackets [ , ]1 and [ , ]2 on a vector space
are called compatible if all linear combination of the two brackets are still Lie brackets. Such
structures are studied in [13, 14, 15, 24] in the contexts of the classical Yang-Baxter equation
and principal chiral field, loop algebras over Lie algebras and elliptic theta functions. The corre-
sponding operad is obtained in [9]. Compatible associative products are studied in [22, 23, 25]
in connection with Cartan matrices of affine Dynkin diagrams, integrable matrix equations, in-
finitesimal bialgebras and quiver representations. In this case, the corresponding operad and free
objects are obtained in [8]. More general compatible products are defined in [27].
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In this paper we consider the Koszul dual of compatible associative dialgebra and compatible
Lie dialgebras. These dual structures have been introduced in [9, 27], called totally compati-
ble associative and Lie dialgebras respectively. Our motivation in studying such structures comes
from the facts [1, 10] that Rota-Baxter algebras give rise to dendriform algebras and tridendriform
algebras, and the facts that Rota-Baxter Lie algebras give the structures of pre-Lie and PostLie
algebras. This connection has been studied by several subsequent papers such as [3, 5, 7, 11, 28]
in the associative algebra case and [4, 10, 12, 20] in the Lie algebra case. It has been found that
some other structures, such as TD-algebras [19], also give tridendriform algebras. See Section 3
for details. Given the importance of the concepts of Rota-Baxter algebras and tridendriform alge-
bras, it is interesting to ask what kind of Rota-Baxter related structures can give rise to a triden-
driform algebra. We show that totally compatible algebra is a more general structure on which
a Rota-Baxter operator gives a tridendriform algebra, allowing us to give a uniform approach
that combine known results such as those mentioned above. We also show that a Lie algebraic
analogue holds.

In Section 2, we begin with the concept of a totally compatible dialgebra and its relation-
ship with A-bimodule k-algebras and semi-homomorphisms. We then investigate in Section 3
Rota-Baxter operators on totally compatible dialgebras and establish their close relationship with
tridendriform algebras. Free totally compatible dialgebras are constructed in Section 4 and are
used to give examples of Rota-Baxter totally compatible dialgebras. The concepts of various
compatible Lie dialgebras and Rota-Baxter totally compatible Lie dialgebras are introduced in
Section 5. Their relationship with Rota-Baxter compatible dialgebras and PostLie algebras is
established. This relationship refines the already established relationship [4] of Rota-Baxter Lie
algebras and PostLie algebras.

2. Totally compatible dialgebras and their Rota-Baxter operators

In this section, we consider totally compatible dialgebras and their Rota-Baxter operators. The
relations of Rota-Baxter totally compatible dialgebras with tridendriform algebras, A-bimodule
k-algebras and semi-homomorphisms are established.

2.1. Totally compatible dialgebras. Let k be a commutative unitary ring. The tensor product
over k is denoted by ⊗k or simply by ⊗ if it causes no confusion.

Definition 2.1. (a) A totally compatible (associative) dialgebra (TCDA) is a k-module R
with two binary operations:

∗,� : R ⊗ R −→ R,

satisfying the TCDA axioms:
(i) ∗ and � are associative.

(ii)

(1) (a ∗ b) � c = a ∗ (b � c) = (a � b) ∗ c = a � (b ∗ c), ∀a, b, c ∈ R.

(b) Let (R, ∗,�) and (R′, ∗′,�′) be two totally compatible dialgebras. A linear map f : R→ R′

is a homomorphism of totally compatible dialgebras if f is a k-module homomorphism
and, for all a, b ∈ R,

(2) f (a ∗ b) = f (a) ∗′ f (b) and f (a � b) = f (a) �′ f (b).
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(c) A totally compatible disemigroup is a set S with two binary operations ∗,� on S that
satisfy the TCDA axioms in Items (a).

(d) The concept of a homomorphism of totally compatible disemigroups is defined in the same
way.

The operad of totally compatible dialgebras is denoted by 2As in [27]. It is the Koszul dual of
the operad As2 of compatible dialgebras, defined to be k-modules V with binary operations ∗ and
� that are associative and satisfy the relation

(x�y)∗z + (x∗y)�z = x∗(y�z) + x�(y∗z), ∀x, y, z ∈ V.

A compatible dialgebra is also called an algebra with two compatible associative products [8,
27]. The term compatible comes from the fact that, for a k-module V with two associative prod-
ucts ∗ and �, (V, ∗,�) is a compatible dialgebra if and only if linear combinations of ∗ and � are
still associative.

It is easy to see that if (R, ∗,�) is a totally compatible dialgebra, then, for any r, s ∈ k, the
triple (R, r∗, s�) is again a totally compatible dialgebra. It is also easy to check that the tensor
product of two totally compatible dialgebras is naturally a totally compatible dialgebra. Similarly,
let Mn(R) be the k-module of n × n-matrices α := (αi j) with entries αi j, 1 ≤ i, j ≤ n, in a totally
compatible dialgebra (R, ∗,�). For α = (αi j), β = (βi j) ∈Mn(R), define

α∗̃β := ((α∗̃β)i j), α�̃β := ((α�̃β)i j),

where

(α∗̃β)i j =

n∑

k=1

αik ∗ βk j and (α�̃β)i j =

n∑

k=1

αik � βk j.

Then (Mn(A), ∗̃, �̃) is a totally compatible dialgebra.

2.2. Totally compatible dialgebras, A-bimodule k-algebras and semi-homomorphisms. We
now study the relationship between totally compatible dialgebras and A-bimodule k-algebra in-
troduced in [3] and semi-homomorphisms.

2.2.1. A-bimodule k-algebras.

Definition 2.2. Let (A, ∗) be a k-algebra with multiplication ∗. Let (R, ◦) be a k-algebra with
multiplication ◦. Let `, r : A → Endk(R) be two linear maps. We call (R,�, `, r) or simply R an
A-bimodule k-algebra if (R, `, r) is an A-bimodule that is compatible with the multiplication ◦
on R in the sense that the following equations hold.

(3) `(x ∗ y)v = `(x)(`(y)v), vr(x ∗ y) = (vr(x))r(y), (`(x)v)r(y) = `(x)(vr(y)),

(4) `(x)(v ◦ w) = (`(x)v) ◦ w, (v ◦ w)r(x) = v ◦ (wr(x)), (vr(x)) ◦ w = v ◦ (`(x)w),

for all x, y ∈ A, v,w ∈ R.

Proposition 2.3. ([2, 3])Let (A, ∗) be a k-algebra. Then (R, ◦, `, r) is an A-bimodule k-algebra if
and only if the direct sum A ⊕ R of k-modules is turned into a k-algebra (the semidirect sum) by
defining multiplication in A ⊕ R by

(x1, v1) ? (x2, v2) = (x1 ∗ x2, `(x1)v2 + v1r(x2) + v1 ◦ v2), ∀x1, x2 ∈ A, v1, v2 ∈ R.
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We denote this algebra by A n`,r R or simply A n R.

Proposition 2.4. Let (A, ∗,�) be a totally compatible dialgebra. Define left and right actions by

L∗(x) : A→ A, L∗(x)(y) := x ∗ y,

R∗(x) : A→ A,R∗(x)(y) := y ∗ x, ∀x, y ∈ A.

Then the quadruple (A,�, L∗,R∗) is an A-bimodule k-algebra. Conversely, if (A, ∗) is a k-algebra
and (A,�, L∗,R∗) is an A-bimodule k-algebra with the left and right actions L∗ and R∗ defined
above, then the triple (A, ∗,�) is a totally compatible dialgebra.

Proof. By the definition of A-bimodule k-algebra, it suffices to verify the equations in Defini-
tion 2.2. It is well-known that, for the associative k-algebra (A, ∗), (A, L∗,R∗) is an A-bimodule.
Hence the equations in Eq. (3) hold. For the equations in Eq. (4), we check that

L∗(x)(y � z) = x ∗ (y � z) = (x ∗ y) � z = (L∗(x)y) � z,
(x � y)R∗(z) = (x � y) ∗ z = x � (y ∗ z) = x � (yR∗(z)),
(xR∗(y)) � z = (x ∗ y) � z = x � (y ∗ z) = x � (L∗(y)z).

Conversely, if A is an A-bimodule k-algebra, then we have

x ∗ (y � z) = L∗(x)(y � z) = (L∗(x)y) � z = (x ∗ y) � z,
(x � y) ∗ z = (x � y)R∗(z) = x � (yR∗(z)) = x � (y ∗ z),
(x ∗ y) � z = (xR∗(y)) � z = x � (L∗(y)z) = x � (y ∗ z).

Since ∗ and � are already associative, (A, ∗,�) is a totally compatible dialgebra. �

Corollary 2.5. With the conditions as above, the following conditions are equivalent:
(a) (A, ∗,�) is a totally compatible dialgebra.
(b) (A,�, L∗,R∗) is an A-bimodule k-algebra.
(c) There is a k-algebra structure A nL∗,R∗ A on the k-module A ⊕ A defined by

(5) (x, y) ? (z,w) = (x ∗ z, x ∗ w + y ∗ z + y � w), ∀x, y, z,w ∈ A.

Proof. The equivalence between Item (a) and Item (b) is just Proposition 2.4. The equivalence
between Item (b) and Item (c) follows from Proposition 2.3. �

2.2.2. Semi-homomorphisms.

Definition 2.6. Let (A, ·) be a k-algebra. A linear transformation f : A → A is called semi-
homomorphism of A if f satisfies

(6) f (x · y) = x · f (y) = f (x) · y,∀x, y ∈ A.

The set of all semi-homomorphisms is called the centroid of A.

Proposition 2.7. Let (A, ·) be a k-algebra and let f , g be commuting semi-homomorphisms on A:
f g = g f . Define

(7) x ∗ y := f (x) · y(= f (x · y) = x · f (y)) and x � y := g(x) · y(= g(x · y) = x · g(y)) ∀ x, y ∈ A.
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Then (A, ∗,�) is a totally compatible dialgebra. In particular, for any semi-homomorphism f on
A, define

(8) x ∗ y := x · y, x � y := f (x) · y, ∀ x, y ∈ A.

Then (A, ∗,�) is a totally compatible dialgebra.

Proof. It is straightforward to check that both (A, ∗) and (A,�) are k-algebras. Let x, y, z be in A.
Then we have

(x ∗ y) � z = g( f (x) · y) · z = f (x) · g(y) · z = x ∗ (y � z);
(x � y) ∗ z = f (g(x) · y) · z = g(x) · f (y) · z = x � (y ∗ z);
x ∗ (y � z) = f (x) · g(y) · z = x · f g(y) · z = x · g f (y) · z = g(x) · f (y) · z = x � (y ∗ z).

Therefore (A, ∗,�) is a totally compatible dialgebra.
To prove the last statement, we just note that the identity map id and f are commuting semi-

homomorphisms on A. �

Example 2.8. Let (A, ∗) be a k-algebra.
(a) The identity map Id on (A, ∗) is obviously a semi-homomorphism. The corresponding

totally compatible dialgebra is (A, ∗, ∗).
(b) Let w be in the center of A and define f (x) = x ∗ w for all x ∈ A. Then f is a semi-

homomorphism. Thus by Proposition 2.7, for

x � y := x ∗ w ∗ y(= w ∗ x ∗ y = x ∗ y ∗ w), ∀x, y ∈ A,

the triple (A, ∗,�) is a totally compatible dialgebra. This gives another way to obtain the
totally compatible dialgebra in Lemma 3.4.(b). See Remark 3.5.

3. Rota-Baxter totally compatible dialgebras and tridendriform algebras

In this section we study the close relationship between Rota-Baxter totally compatible dialge-
bra and tridendriform algebras. We begin with recalling the basis concepts and results.

Definition 3.1. (a) ([6, 16, 17, 26]) Let λ ∈ k be given. A linear operator P on a k-algebra R
is called a Rota-Baxter operator of weight λ if

(9) P(x)P(y) = P(xP(y)) + P(P(x)y) + P(λxy), ∀x, y ∈ R,

Then the pair (R, P) is called a Rota-Baxter algebra of weight λ.
(b) ([21]) A tridendriform algebra is a quadruple (T,≺,�, ·) consisting of a k-module T and

three bilinear products ≺, � and · such that

(x ≺ y) ≺ z = x ≺ (y ? z), (x � y) ≺ z = x � (y ≺ z),
(x ? y) � z = x � (y � z), (x � y) · z = x � (y · z),(10)
(x ≺ y) · z = x · (y � z), (x · y) ≺ z = x · (y ≺ z), (x · y) · z = x · (y · z)

for all x, y, z ∈ T . Here ? =≺ + � + · .
It has been established [1, 10] that if P is a Rota-Baxter operator of weight λ on a k-algebra R,

then
x ≺P y := xP(y), x �P y := P(x)y, x ·P y := λxy, ∀x, y ∈ R,
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define a tridendriform algebra structure on R. It has been found later that some other Rota-Baxter
algebra type structures also give tridendriform algebras. For example, a TD operator P on a
unitary k-algebra R is a linear operator P : R→ R such that

P(x)P(y) = P(xP(y)) + P(P(x)y) − P(xP(1)y),∀x, y ∈ R.

By [19, Proposition 2.5], a TD operator T also gives a dendriform trialgebra by

x ≺P y := xP(y), x �P y := P(x)y, x ·P y := −xP(1)y, ∀x, y ∈ R.

As another example, for a given w ∈ R, define a Rota-Baxter operator of weight w to be a linear
operator P : R→ R such that

P(x)P(y) = P(xP(y)) + P(P(x)y) + P(xwy), ∀x, y ∈ R.

Suppose w is in the center of R. Then

x ≺P y := xP(y), x �P y := P(x)y, x ·P y := xwy, ∀x, y ∈ R,

define a tridendriform algebra structure on R.
In each of the above cases, the products xP(1)y (resp. xwy) are derived from the default product

of R. Our motivation is to consider a new product on R and study its “compatibility” conditions
with the default product on R in order to still obtain a tridendriform algebra from a Rota-Baxter
operator. As we will see in Theorem 3.6, such a structure is exactly the totally compatible dialge-
bra.

We now consider variations of a totally compatible dialgebra that allow a Rota-Baxter operator.

Definition 3.2. (a) A restricted Rota-Baxter totally compatible dialgebra is a quadruple
(R, ∗,�, P) where R is a k-module, ∗,� are associative multiplications on R, P : R → R is
a linear operator, satisfying the following compatibility conditions.

(11) (P(x) ∗ y)� z = P(x) ∗ (y� z), (x ∗ P(y))� z = x� (P(y) ∗ z), (x� y) ∗ P(z) = x� (y ∗ P(z)),

(12) P(x) ∗ P(y) = P(x ∗ P(y)) + P(P(x) ∗ y) + P(x � y), ∀x, y, z ∈ R.

(b) Let (R, ∗,�) be a totally compatible dialgebra. A linear operator P : R → R is called a
Rota-Baxter operator if

P(x) ∗ P(y) = P(x ∗ P(y)) + P(P(x) ∗ y) + P(x � y), ∀x, y ∈ R.

If the equation holds, then (R, ∗,�, P) is called a Rota-Baxter totally compatible dialge-
bra.

Remark 3.3. (a) Note that we did not assign a weight to the Rota-Baxter operator in Defi-
nition 3.2. This is because the effect of a weight can be achieved by a variation of the
product �: instead of considering λx � y, we could consider x �′ y with x �′ y := λx � y.
Such an instance can be found in Proposition 4.3.

(b) It follows from the definitions that a Rota-Baxter totally compatible dialgebra is a re-
stricted Rota-Baxter totally compatible dialgebra. If P is surjective, then the two concepts
agree with each other.

The following lemma shows that the concept of restricted Rota-Baxter totally compatible di-
algebra gives a suitable context to combine known cases of Rota-Baxter type operators that give
tridendriform algebras. See also Corollary 3.7.
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Lemma 3.4. (a) Let R be a k-algebra, let w be in R and let P : R → R be a linear operator.
Suppose wP(x) = P(x)w for all x ∈ R and

P(x)P(y) = P(xP(y) + P(x)y + xwy), ∀x, y ∈ R.

Define

(13) x ∗ y := xy, x � y := xwy, ∀x, y ∈ R.

Then the quadruple (R, ∗,�, P) is a restricted Rota-Baxter totally compatible dialgebra.
(b) Let R be a k-algebra and let w ∈ R be in the center of R. Let P : R→ R be a Rota-Baxter

operator of weight w. Then the quadruple (R, ∗,�, P) with ∗,� defined in Eq. (13) is a
restricted Rota-Baxter totally compatible dialgebra.

(c) Let R be a unitary k-algebra and let P : R → R be a TD operator. Then the quadruple
(R, ∗,�, P) where

x ∗ y := xy, x � y := xP(1)y, ∀x, y ∈ R,

is a restricted Rota-Baxter totally compatible dialgebra.

Remark 3.5. The triple (R, ∗,�) in Item (b) is in fact a totally compatible dialgebra, as observed
in Example 2.8.(b), from semi-homomorphisms.

Proof. (a) The multiplications ∗ and � are associative by their definitions. To verify Eq. (11) we
compute

(P(x) ∗ y) � z = (P(x)y)wz = P(x)(ywz) = P(x) ∗ (y � z),
(x ∗ P(y)) � z = xP(y)wz = xwP(y)z = x � (P(y) ∗ z),
(x � y) ∗ P(z) = (xwy)P(z) = xw(yP(z)) = x � (y ∗ P(z)), ∀x, y, z ∈ R.

Eq. (12) is automatic. Therefore (R, ∗,�, P) is a restricted Rota-Baxter totally compatible dialge-
bra.
(b) This is a direct consequence of Item (a).
(c) For a TD operator P, we have [19]

P(x)P(1) = P(xP(1) + P(x) − xP(1)) = P2(x) = P(P(x) + P(1)x − P(1)x)) = P(1)P(x), ∀x ∈ R.

Thus we just need to take w = P(1) in Item (a). �

The following result shows the close relationship between restricted Rota-Baxter totally com-
patible dialgebras and tridendriform algebras.

Theorem 3.6. Let (R, ∗,�, P) be a k-module with two associative multiplications ∗,� and a linear
map P : R→ R such that

P(x) ∗ P(y) = P(x ∗ P(y) + P(x) ∗ y + x � y), ∀x, y ∈ R.

Define

(14) x ≺P y := x ∗ P(y), x �P y := P(x) ∗ y, x ·P y := x � y.

Then (R,≺P,�P, ·P) is a tridendriform algebra if and only if (R, ∗,�, P) is a restricted Rota-Baxter
totally compatible dialgebra.
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Proof. (⇐). We just need to verify the seven axioms for the operations ≺P,�P and ·P in the
definition of a tridendriform algebra in Definition 3.1. Denote ?P =≺P + �P + ·P . From the
associativity of ∗, we obtain

(x ?P y) � z = (P(x) ∗ P(y)) ∗ z = P(x) ∗ (P(y) ∗ z) = x �P (y �P z),

(x ≺P y) ≺P z = (x ∗ P(y)) ∗ P(z) = x ∗ (P(y) ∗ P(z)) = x ≺P (y ?P z)

and
(x �P y) ≺P z = (P(x) ∗ y) ∗ P(z) = P(x) ∗ (y ∗ P(z)) = x �P (y ≺P z).

From Eq. (11), we have

(x ·P y) ≺P z = (x � y) ∗ P(z) = x � (y ∗ P(z)) = x ·P (y ≺P z),

(x �P y) ·P z = (P(x) ∗ y) � z = P(x) ∗ (y � z) = x �P (y ·P z)

and
(x ≺P y) ·P z = (x ∗ P(y)) � z = x � (P(y) ∗ z) = x ·P (y �P z).

Finally from the associativity of �, we obtain

(x ·P y) ·P z = x ·P (y ·P z).

Thus we have verified all the axioms for a tridendriform algebra.
(⇒). Let (R, ∗,�, P) be as given in the theorem and suppose (R,≺P,�P, ·P) defined by Eq. (14) is
a tridendriform algebra. Then we also have

P(x) ∗ P(y) = P(x ∗ P(y) + P(x) ∗ y + x � y) = P(x ? y).

Then the axioms of the dendriform algebra (R,≺P,�P, ·P) imply
(a) (P(x) ∗ y) � z = P(x) ∗ (y � z),
(b) (x ∗ P(y)) � z = x � (P(y) ∗ z),
(c) (x � y) ∗ P(z) = x � (y ∗ P(z)),

giving Eq. (11). �

The following corollary follows directly from Lemma 3.4 and Theorem 3.6.

Corollary 3.7. (a) If (R, ∗,�, P) is a Rota-Baxter totally compatible dialgebra, then (R,≺P

,�P, ·P) defined in Eq. (14) is a tridendriform algebra.
(b) If P is surjective, then the converse of Item (a) holds.
(c) Let R be a k-algebra and let w ∈ R be such that wP(x) = P(x)w for all x ∈ R. Let (R, P)

be a Rota-Baxter algebra of weight w. Then

x ≺P y := xP(y), x �P y := P(x)y, x ·P y := xwy, ∀x, y ∈ R,

define a tridendriform algebra structure on R.
(d) ([19]) Let (R, P) be a TD algebra. Then

x ≺P y := xP(y), x �P y := P(x)y, x ·P y := xP(1)y, ∀x, y ∈ R,

define a tridendriform algebra structure on R.

We end this section by showing that a Rota-Baxter operator on a totally compatible dialgebra
is equivalent to a Rota-Baxter operator on a larger k-algebra.
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Theorem 3.8. Let (R, ∗,�) be a totally compatible dialgebra. Let (RnL∗,R∗ R, ?) be the k-algebra
in Corollary 2.5 with the product ? defined by Eq. (5). Then a linear operator P : R → R is a
Rota-Baxter operator on the totally compatible dialgebra (R, ∗,�), in the sense of Definition 3.2,
if and only if

P̂ : R nL∗,R∗ R→ R nL∗,R∗ R, P̂(x, y) = (−x + P(y), 0), ∀x, y ∈ R,

is a Rota-Baxter operator of weight 1 on the k-algebra R nL∗,R∗ R.

Proof. Let x, y, z,w ∈ R. Then

P̂(x, y) ? P̂(z,w) = (−x + P(y), 0) ? (−z + P(w), 0)
= (x ∗ z − x ∗ P(w) − P(y) ∗ z + P(y) ∗ P(w), 0);

P̂(P̂(x, y) ? (z,w)) = P̂((−x + P(y), 0) ? (z,w)) = P̂(−x ∗ z + P(y) ∗ z,−x ∗ w + P(y) ∗ w)
= (x ∗ z − P(y) ∗ z − P(x ∗ w) + P(P(y) ∗ w), 0);

P̂((x, y) ? P̂(z,w)) = P̂((x, y) ? (−z + P(w), 0)) = P̂(−x ∗ z + x ∗ P(w),−y ∗ z + y ∗ P(w))
= (x ∗ z − x ∗ P(w) − P(y ∗ z) + P(y ∗ P(w)), 0);

P̂((x, y) ? (z,w)) = P̂(x ∗ z, x ∗ w + y ∗ z + y � w)
= (−x ∗ z + P(x ∗ w) + P(y ∗ z) + P(y � w), 0).

Therefore P(y) ∗ P(w) = P(y ∗ P(w) + P(y) ∗ w + y � w) if and only if

P̂(x, y) ? P̂(z,w) = P̂(P̂(x, y) ? (z,w)) + P̂((x, y) ? P̂(z,w)) + P̂((x, y) ? (z,w)).

That is, P : R→ R is a Rota-Baxter operator on (R, ∗,�) if and only if P̂ is a Rota-Baxter operator
of weight 1 on R nL∗,R∗ R. �

4. Free totally compatible dialgebras

In this section, we construct free totally compatible dialgebras and use them to provide exam-
ples of Rota-Baxter totally compatible dialgebras.

Let X be a set. Let

S (X) =

{
x1 · · · xn

∣∣∣∣ xi ∈ X, 1 ≤ i ≤ n, n ≥ 1
}

be the free semigroup generated by X and let M(X) be the free monoid generated by X. Then the
semigroup algebra k〈X〉0 := k S (X) is the noncommutative nonunitary polynomial algebra gener-
ated by X and the semigroup algebra k〈X〉 := k M(X) is the noncommutative unitary polynomial
algebra generated by X. Consider the k-module underlying the tensor product

(15) F(X) := k〈X〉0 ⊗ k〈X〉 � k(S (X) × M(X)),

with S (X) × M(X) as a canonical basis. As such, (u, v) ∈ S (X) × M(X), with u ∈ S (X) and
v ∈ M(X), corresponds to u ⊗ v in F(X). Thus we will use u ⊗ v to denote (u, v).

With these notations, we define two binary operations ∗̄ and �̄ on S (X) × M(X) as follows.
Consider two elements

(16) a = (x1 · · · xm) ⊗ (xm+1 · · · xm+n), b = (xm+n+1 · · · xm+n+k) ⊗ (xm+n+k+1 · · · xm+n+k+l)
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in S (X) × M(X), where m, k ≥ 1 and n, ` ≥ 0 with the convention that xm+1 · · · xm+n = 1 if n = 0
and xm+n+k+1 · · · xm+n+k+` = 1 if ` = 0. Here 1 is the identity in k. Define

a∗̄b = (x1 · · · xm+k) ⊗ (xm+k+1 · · · xm+n+k+l),(17)
a�̄b = (x1 · · · xm+k−1) ⊗ (xm+k · · · xm+n+k+l).(18)

In particularly, when n = ` = 0, we define

((x1 · · · xm) ⊗ 1)∗̄((xm+1 · · · xm+k) ⊗ 1) = (x1 · · · xm+k) ⊗ 1,(19)
((x1 · · · xm) ⊗ 1)�̄((xm+1 · · · xm+k)) ⊗ 1) = (x1 · · · xm+k−1) ⊗ xm+k.(20)

These two binary operations expand to binary operations on F(X) by k-bilinearity that we still
denote by ∗̄ and �̄.

Theorem 4.1. Let X be a set.
(a) The set S (X)×M(X), with the multiplications ∗̄ and �̄ defined in Eqs. (17) – (20), and the

embedding

(21) iX : X → S (X) × M(X), x 7→ x ⊗ 1, x ∈ X,

is the free totally compatible disemigroup on X.
(b) The k-module F(X) = k〈X〉0 ⊗ k〈X〉, with the multiplications ∗̄ and �̄ defined in Eqs. (17)

– (20), and the embedding

(22) iX : X → F(X), x 7→ x ⊗ 1, x ∈ X,

is the free totally compatible dialgebra on X.

Proof. (a). We first check that the triple (S (X) × M(X), ∗̄, �̄) is a totally compatible disemigroup.
For a, b in Eq. (16) and

c = (xm+n+k+`+1 · · · xm+n+k+`+p) ⊗ (xm+n+k+`+p+1 · · · xm+n+k+`+p+q)

with p ≥ 1 and q ≥ 0. We have

(a∗̄b)∗̄c = (x1 ⊗ · · · xm+k+p) ⊗ (xm+k+p+1 · · · xm+k+p+n+`+q) = a∗̄(b∗̄c).
Hence ∗̄ is associative. Similarly,

(a�̄b)�̄c = (x1 ⊗ · · · xm+k+p−2) ⊗ (xm+k+p−1 · · · xm+k+p+n+`+q) = a�̄(b�̄c),
showing that �̄ is associative.

On the other hand, for these choices of a, b, c, each term in Eq. (1) equals to

(x1 · · · xm+k+p−1) ⊗ (xm+k+p · · · xm+n+k+`+p+q),

proving Eq. (1).
We next show that the totally compatible disemigroup S (X) × M(X) is free on X by checking

that (S (X) × M(X), ∗̄, �̄) satisfies the universal property of a free totally compatible disemigroup
over X: Let (S , ∗,�) be a totally compatible disemigroup with operations ∗ and �. Let f : X → S
be a set map. Then there exists a unique homomorphism

f : S (X) × M(X) −→ S

of totally compatible disemigroups such that f = f � iX for the iX defined in Eq. (21).
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Let a set map f : X → S be given. Define

f̄ : S (X) ⊗ M(X)→ S ,
(x1 · · · xm) ⊗ (xm+1 · · · xm+n) 7→ ( f (x1) ∗ · · · ∗ f (xm)) � ( f (xm+1) � · · · � f (xm+n)),(23)

(x1 · · · xm) ⊗ 1 7→ f (x1) ∗ · · · ∗ f (xm).

We will show that f̄ is the unique extension of f that is a homomorphism of totally compatible
disemigroups.

We first show that f̄ is indeed a homomorphism of totally compatible disemigroups. For any

a = (x1 · · · xm) ⊗ (xm+1 · · · xm+n), b = (xm+n+1 · · · xm+n+k) ⊗ (xm+n+k+1 · · · xm+n+k+l)

in S (X) ⊗ M(X) as expressed in Eq. (16), we have

f̄ (a) ∗ f̄ (b)
=

(
( f (x1) ∗ · · · ∗ f (xm)) � ( f (xm+1) � · · · � f (xm+n))

)

∗(( f (xm+n+1) ∗ · · · ∗ f (xm+n+k)) � ( f (xm+n+k+1) � · · · � f (xm+n+k+l))
)

(by Eq. (23))
= ( f (x1) ∗ · · · ∗ f (xm+k)) � ( f (xm+k+1) � · · · � f (xm+k+n+`)) (by Eq. (1))
= f̄ ((x1 ∗ · · · ∗ xm+k) ⊗ (xm+k+1 · · · xm+k+n+`)) (by Eq. (23))
= f̄ (a∗̄b). (by Eq. (17))

Similarly, we have

f̄ (a) � f̄ (b)
=

(
( f (x1) ∗ · · · ∗ f (xm)) � ( f (xm+1) � · · · � f (xm+n))

)

�(( f (xm+n+1) ∗ · · · ∗ f (xm+n+k)) � ( f (xm+n+k+1) � · · · � f (xm+n+k+l))
)

(by Eq. (23))
= ( f (x1) ∗ · · · ∗ f (xm+k−1)) � ( f (xm+k) � · · · � f (xm+k+n+`)) (by Eq. (1))
= f̄ ((x1 ∗ · · · ∗ xm+k−1) ⊗ (xm+k · · · xm+k+n+`)) (by Eq. (23))
= f̄ (a∗̄b). (by Eq. (18))

Thus it remains to show that any homomorphism of totally compatible disemigroups from
S (X) ⊗ M(X) that extends f is uniquely determined by Eq. (23). Suppose

f̄ ′ : S (X) ⊗ M(X)→ S

is a homomorphism of totally compatible disemigroups that extends f . We will prove f̄ ′ = f̄ .
Note that the set

X := S (X) × M(X) := {(x1 · · · xm) ⊗ (xm+1 · · · xm+n) | xi ∈ X, 1 ≤ i ≤ m + n,m ≥ 1, n ≥ 0}
is a disjoint union

(24) X = X1 t X2 t X3,

where

X1 : = {(x1 · · · xm) ⊗ (xm+1 · · · xm+n) ∈ X |m ≥ 1, n = 0}(25)
= {(x1 · · · xm) ⊗ 1 | xi ∈ X, 1 ≤ i ≤ m,m ≥ 1},

X2 : = {(x1 · · · xm) ⊗ (xm+1 · · · xm+n) ∈ X |m = 1, n ≥ 1}(26)
= {x1 ⊗ (x2 · · · xn+1) | xi ∈ X, 1 ≤ i ≤ n + 1, n ≥ 1},

X3 : = {(x1 · · · xm) ⊗ (xm+1 · · · xm+n) ∈ X |m ≥ 2, n ≥ 1}.(27)
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Thus in order to prove f̄ ′ = f̄ , we just need to show that f̄ ′ agrees with f̄ on the three subsets
Xi, 1 ≤ i ≤ 3, of X.

Case 1. f̄ ′ = f̄ on X1. Note that, by Eq. (19), X1 = S (X) ⊗ 1 is the free semigroup on X with
respect to the product ∗̄. Since f̄ ′ is in particular a semigroup homomorphism with respect to ∗̄,
f̄ ′ must agree with the unique extension of f to a semigroup homomorphism

(S (X) ⊗ 1, ∗̄)→ (R, ∗).
Thus we must have

f̄ ′((x1 · · · xm) ⊗ 1)
= f̄ ((x1 ⊗ 1)∗̄ · · · ∗̄(xm ⊗ 1))(28)
= f̄ (x1 ⊗ 1) ∗ · · · ∗ f̄ (xm ⊗ 1)
= f (x1) ∗ · · · ∗ f (xm).

This agrees with the definition of f̄ in Eq. (23).

Case 2. f̄ ′ agrees with f̄ on X2. We first prove a lemma.

Lemma 4.2. For any n ≥ 1, we have

(29) x1 ⊗ (x2 · · · xn+1) = (x1 ⊗ 1)�̄ · · · �̄(xn+1 ⊗ 1).

Proof. We prove Eq. (29) by induction on n ≥ 1. When n = 1, this follows from Eq. (20). Assume
that Eq. (29) has been proved for n = k ≥ 1 and consider the case when n = k + 1. So we have
x1 ⊗ (x2 · · · xk+2). By Eq. (20) and the induction hypothesis, we have

x1 ⊗ (x2 · · · xk+1) = (x1 ⊗ 1)�̄(x2 ⊗ (x3 · · · xk+2))
= (x1 ⊗ 1)�̄((x2 ⊗ 1)�̄ · · · �̄(xk+1 ⊗ 1)),

as needed. �

Thus, in order to get a totally compatible disemigroup homomorphism, the restriction of f̄ ′ on
X2 must satisfy

f̄ ′(x1 ⊗ (x2 · · · xn+1)) = f̄ ′((x1 ⊗ 1)�̄ · · · �̄(xn+1 ⊗ 1))
= f̄ ′(x1 ⊗ 1) � · · · � f̄ ′(xn+1 ⊗ 1)(30)
= f (x1) � · · · � f (xn+1). (by Eq. (28))

This again agrees with f̄ in Eq. (23).

Case 3. f̄ ′ agrees with f̄ on X3. By Eq. (17), we have

(x1 · · · xm) ⊗ (xm+1 · · · xm+n) = ((x1 · · · xm−1) ⊗ 1)∗̄(xm ⊗ (xm+1 · · · xm+n)).

Thus the f̄ ′ in Eq. (30) can be uniquely defined on

f̄ ′ : X3 → S
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by

f̄ ′((x1 · · · xm) ⊗ (xm+1 · · · xm+n))
= f̄ ′(((x1 · · · xm−1) ⊗ 1)∗̄(xm ⊗ (xm+1 · · · xm+n)))
= f̄ ′(((x1 ⊗ 1)∗̄ · · · ∗̄(xm−1 ⊗ 1))∗̄((xm ⊗ 1)�̄ · · · �̄(xm+n ⊗ 1)))(31)
= ( f̄ ′(x1 ⊗ 1) ∗ · · · ∗ f̄ ′(xm−1 ⊗ 1)) ∗ ( f̄ ′(xm ⊗ 1) � · · · � f̄ ′(xm+n ⊗ 1))
= ( f (x1) ∗ · · · ∗ f (xm−1)) ∗ ( f (xm) � · · · � f (xm+n)).

This again agrees with f̄ . Therefore f̄ ′ = f̄ and the uniqueness of f̄ is proved.

(b). Let TCDA, TCDS and Sets be the category of totally compatible dialgebras, the category of
totally compatible semigroups and the category of sets, respectively. Then the forgetful functor
from TCDA to Sets is the composition of the forgetful functor from TCDA to TCDS followed
by the forgetful functor from TCDS to Sets. Thus the corresponding adjoint (free) functor from
Sets to TCDA is the composition of the free functor from Sets to TCDS followed by the free
functor from TCDS to TCDA. The former is given by Item (a) and the latter is given by taking the
disemigroup algebra:

k(S (X) × M(X)) � (kS (X)) ⊗ (kM(X)) = k〈X〉0 ⊗ k〈X〉,
with the operations ∗̄ and �̄ extended by bilinearity. �

As an application of Theorem 4.1, we show that free totally compatible algebras provide ex-
amples of Rota-Baxter totaly compatible dialgebras as well as totally compatible dialgebras.

Proposition 4.3. Let (F(X), ∗̄, �̄) be the free totally compatible dialgebra on X in Theorem 4.1.
Then (F(X), ∗̄,− �̄) has a Rota-Baxter operator P given by

P((x1 · · · xm) ⊗ (xm+1 · · · xm+n)) = (x1 · · · xm+n) ⊗ 1,

P((x1 · · · xm) ⊗ 1) = (x1 · · · xm) ⊗ 1, ∀xi ∈ X, 1 ≤ i ≤ m + n.

Proof. Let x = (x1 · · · xm) ⊗ (xm+1 · · · xm+n) and y = (xm+n+1 · · · xm+n+k) ⊗ (xm+n+k+1 · · · xm+n+k+`).
Then from the definitions of ∗̄, �̄ and P, we directly check that each of P(x)∗̄P(y), P(x∗̄P(y)),
P(P(x)∗̄y) and P(x�̄y) equals to (x1 · · · xm+n+k+`) ⊗ 1. Hence,

P(x)∗̄P(y) = P(x∗̄P(y)) + P(P(x)∗̄y) + P(x(−�̄)y).

Therefore, (F(X), ∗̄, �̄, P) is Rota-Baxter totally compatible dialgebra. �

5. Totally compatible Lie dialgebras, Rota-Baxter operators and PostLie algebras

In this section we study variations of compatible Lie dialgebra and Rota-Baxter operators on
them. We generalize the relationship between associative algebras and Lie algebras to the rela-
tionship between totally compatible dialgebras and totally compatible Lie dialgebras. We also
generalize the relationship between Rota-Baxter Lie algebras and PostLie algebras to the rela-
tionship between Rota-Baxter totally compatible Lie dialgebras and PostLie algebras.
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5.1. Compatible Lie dialgebras. The origin of compatible Lie dialgebras is the following defi-
nition.

Definition 5.1. [13, 14, 18, 24] Let (V, [ , ]1) and (V, [ , ]2) be two Lie algebras. They are called
compatible if for any α, β ∈ k, the following product

(32) [x, y] = α[x, y]1 + β[x, y]2,∀x, y ∈ V,

defines a Lie algebra.

Proposition 5.2. [18, 13, 14, 24]. Let (V, ∗) and (V,�) be two Lie algebras. Then the following
conditions are equivalent:

(a) (V, [ , ]1) and (V, [ , ]2) are compatible.
(b) The following equation holds:

(33) [[x, y]1, z]2+[[z, x]1, y]2+[[y, z]1, x]2+[[x, y]2, z]1+[[z, x]2, y]1+[[y, z]2, x]1 = 0, ∀x, y, z ∈ V.

Following [27], we give the following definitions.

Definition 5.3. Consider a triple (V, [ , ]1, [ , ]2) where [ , ]1 and [ , ]2 are Lie brackets.
(a) The triple is called a compatible Lie dialgebra if Eq. (33) holds.
(b) The triple is called a totally compatible Lie dialgebra if

[[x, y]1, z]2 = [[x, y]2, z]1,(34)
[[x, y]1, z]2 + [[z, x]1, y]2 + [[y, z]1, x]2 = 0, ∀x, y, z ∈ V.(35)

A compatible Lie dialgebra is a Lie2-algebra for the operad Lie2 in [27, Proposition 1.15] and
a totally compatible Lie dialgebra is a 2Lie-algebra for the operad 2Lie in [27, Definition 1.13].

Remark 5.4. If (V, [ , ]1, [ , ]2) is a totally compatible Lie dialgebra, then for any choice of
{i1, i2} = { j1, j2} = {k1, k2} = {1, 2}, we have

(36) [[x, y]i1 , z]i2 + [[z, x] j1 , y] j2 + [[y, z]k1 , x]k2 = 0.

Proposition 5.5. Let (A, ∗,�) be a totally compatible dialgebra. Define

(37) [x, y]1 := x ∗ y − y ∗ x, [x, y]2 := x � y − y � x,∀x, y ∈ A.

Then (A, [ , ]1, [ , ]2) is a totally compatible Lie dialgebra.

Proof. Since ∗ and � are associative, the brackets [ , ]1 and [ , ]2 are Lie brackets. Note that for
any x, y, z ∈ A, we have

[[x, y]1, z]2 = (x ∗ y) � z − (y ∗ x) � z − z � (x ∗ y) + z � (y ∗ x),
[[x, y]2, z]1 = (x � y) ∗ z − (y � x) ∗ z − z ∗ (x � y) + z ∗ (y � x).

Hence Eq. (34) holds. Eq. (35) is verified by a similar calculation. �

5.2. Rota-Baxter totally compatible Lie dialgebras and PostLie algebras. We recall the con-
cept of a PostLie algebra [29].

Definition 5.6. A PostLie algebra is a k-module L with two bilinear operations ◦ and [ , ] that
satisfy the relations:

(38) [x, y] = −[y, x],

(39) [[x, y], z] + [[z, x], y] + [[y, z], x] = 0,
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(40) x ◦ (y ◦ z) − y ◦ (x ◦ z) + (y ◦ x) ◦ z − (x ◦ y) ◦ z + [y, x] ◦ z = 0,

(41) z ◦ [x, y] − [z ◦ x, y] − [x, z ◦ y] = 0,∀x, y ∈ L.

Theorem 5.7. Consider a triple (V, [ , ]1, [ , ]2, P), where

(a) [ , ]1 and [ , ]2 are Lie brackets,
(b)

(42) [[x, y]1, z]2 + [[z, x]2, y]1 + [[y, z]1, x]2 = 0,∀x, y, z ∈ V.

(c)

(43) [P(x), P(y)]1 = P[P(x), y]1 + P[x, P(y)]1 + P[x, y]2,∀x, y ∈ V.

Then the operations

(44) x ◦ y := [P(x), y]1, [x, y] := [x, y]2, ∀x, y ∈ V,

define a PostLie algebra (V, ◦, [ , ]). In particular, if (V, [ , ]1, [ , ]2) is a totally compatible Lie
dialgebra, then the operations in Eq. (44) define a PostLie algebra.

Proof. We only need to verify Eqs. (40) and (41).
By Eq. (44), the left hand side of Eq. (40) is

[P(x), [P(y), z]1]1 − [P[P(x), y]1, z]1 − [P(y), [P(x), z]1]1 + [P[P(y), x]1, z]1 + [P[y, x]2, z]1

= [P(x), [P(y), z]1]1 + [(P[y, P(x)]1 + P[P(y), x]1) , z]1 − [P(y), [P(x), z]1]1 + [P[y, x]2, z]1

= [P(x), [P(y), z]1]1 + [([P(y), P(x)]1 − P([y, x]2)) , z]1

−[P(y), [P(x), z]1]1 + [P[y, x]2, z]1 (by Eq. (43))
= [P(x), [P(y), z]1]1 + [[P(y), P(x)]1, z]1 − [P(y), [P(x), z]1]1

= [[z, P(y)]1, P(x)]1 + [[P(y), P(x)]1, z]1 + [[P(x), z]1, P(y)]1

which is zero by the Jacobi identity of the Lie bracket [ , ]1.
On the other hand, the left hand side of Eq. (41) is

[P(z), [x, y]2]1− [[P(z), x]1, y]2− [x, [P(z), y]1]2 = −[[x, y]2, P(z)]1− [[P(z), x]1, y]2− [[y, P(z)]1, x]2

which is zero by Eq. (42) where x, y, z are replaced by y, P(z), x respectively. �

The following commutative diagram of categories has been established in [4, 5].

Rota-Baxter algebras
of weight 1 (R, ∗, P)

[x,y]:=x∗y−y∗x //

x ≺ y := x ∗ P(y)
x � y := P(x) ∗ y
x · y := x ∗ y

²²

Rota-Baxter Lie algebras
of weight 1 (R, [ , ], P)

x◦y:=[P(x),y] [x,y]:=[x,y]

²²
Tridendriform algebras

(R,≺,�, ·)
x◦y:=x�y−y≺x

[x,y]:=x·y−y·x
// PostLie algebras

(R, ◦, [ , ])
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To summarize, we have the following refinement of the above commutative diagram.

Rota-Baxter algebras
of weight 1 (R, ∗, P)

[x,y]:=x∗y−y∗x //

x ∗ y := x ∗ y
x � y := x ∗ y

²²

Rota-Baxter Lie algebras
of weight 1 (R, [ , ], P)

[x,y]1:=[x,y] [x,y]2:=[x,y]

²²
Rota-Baxter TC dialgebras

of weight 1 (R, ∗,�, P)
[x,y]1:=x∗y−y∗x
[x,y]2:=x�y−y�x

//

x ≺ y := x ∗ P(y)
x � y := P(x) ∗ y
x · y := x � y

²²

Rota-Baxter TC Lie dialgebras
of weight 1 (R, [ , ]1, [ , ]2, P)

x◦y:=[P(x),y]1 [x,y]:=[x,y]2

²²
Tridendriform algebras

(R,≺,�, ·)
x◦y:=x�y−y≺x

[x,y]:=x·y−y·x
// PostLie algebras

(R, ◦, [ , ])

Here the top two vertical maps are inclusions of categories and TC is the abbreviation of totally
compatible.
Acknowledgement C. Bai would like to thank the support by NSFC (10920161) and SRFDP
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