Gröbner-Shirshov bases for associative algebras, Lie

algebras and metabelian Lie algebras

Yongshan Chen

South China Normal University
joint work with L.Bokut and Yuqun Chen

Operads and Rewriting
November 2011

What is a Gröbner-Shirshov basis

Let $A=\langle X \mid R\rangle$ (say, associative,Lie...) and " $<$ " a monomial ordering (linear ordering compatible with multiplications) on the set of monomials on X with DCC.

For $\forall f \in\langle X\rangle$, denote \bar{f} to be the leading monomial w.r.t. " $<$ ". In particular, $\forall r \in R, r=\bar{r}-\Sigma_{r_{i}<\bar{r}} \alpha_{i} r_{i}$ in $\langle X\rangle$, which means $\bar{r}=\Sigma_{r_{i}<\bar{r}} \alpha_{i} r_{i}$ in $A=\langle X \mid R\rangle$.

For $\forall f \in\langle X\rangle, f \rightarrow^{*}$ a linear combination of so called irreducible words. $\operatorname{Irr}(R)=$ the set of all irreducible words w.r.t. R.

Then we have

$$
A=\operatorname{span} \operatorname{Irr}(R)
$$

What is a Gröbner-Shirshov basis

Definition

R is a Gröbner-Shirshov basis if $\operatorname{Irr}(R)$ is a linear basis of A.

What is a Gröbner-Shirshov basis

Definition

R is a Gröbner-Shirshov basis if $\operatorname{Irr}(R)$ is a linear basis of A.
$\Leftrightarrow(\forall f \in I=I d(R), \exists r \in R) \bar{f}$ contains \bar{r} as its subword.

What is a Gröbner-Shirshov basis

Definition

R is a Gröbner-Shirshov basis if $\operatorname{Irr}(R)$ is a linear basis of A.
$\Leftrightarrow(\forall f \in I=I d(R), \exists r \in R) \bar{f}$ contains \bar{r} as its subword.
\star What is Gröbner-Shirshov basis?

What is a Gröbner-Shirshov basis

Definition

R is a Gröbner-Shirshov basis if $\operatorname{Irr}(R)$ is a linear basis of A.
$\Leftrightarrow(\forall f \in I=I d(R), \exists r \in R) \bar{f}$ contains \bar{r} as its subword.
\star What is Gröbner-Shirshov basis?
Answer: Gröbner-Shirshov basis is NOT a basis but a GOOD set of defining relations, say R, such that $\operatorname{lrr}(R)$ is a linear basis of A;
R has GOOD leading terms property: \bar{l} is "generated" by \bar{R}.

What is a Gröbner-Shirshov basis

Definition

R is a Gröbner-Shirshov basis if $\operatorname{Irr}(R)$ is a linear basis of A.
$\Leftrightarrow(\forall f \in I=I d(R), \exists r \in R) \bar{f}$ contains \bar{r} as its subword.
\star What is Gröbner-Shirshov basis?
Answer: Gröbner-Shirshov basis is NOT a basis but a GOOD set of defining relations, say R, such that $\operatorname{lrr}(R)$ is a linear basis of A;
R has GOOD leading terms property: \bar{l} is "generated" by \bar{R}.

Main Goal:
\star Criterion $=$ a list of necessary and sufficient conditions for a set of defining relations to be a Gröbner-Shirshov basis $=$ the Composition-Diamond Lemma.
\star Algorithm: Shirshov's, Buchberger's, rewriting system (Composition=critical monomials=S-polynomials).

Affine Lie algebras over commutative algebras

Let \mathbf{k} be a field, K a commutative associative \mathbf{k}-algebra with $1, \mathcal{L}$ a Lie K-algebra, and $\operatorname{Lie}_{K}(X)$ the free Lie K-algebra generated by X. Then, of course, \mathcal{L} can be presented as K-algebra by generators X and some defining relations S,

$$
\mathcal{L}=\operatorname{Lie}_{K}(X \mid S) .
$$

On the other hand, K has a presentation

$$
K=\mathbf{k}[Y \mid R]
$$

as a quotient algebra of a polynomial algebra $\mathbf{k}[Y]$ over \mathbf{k}.
Then the Lie K-algebra \mathcal{L} as a $\mathbf{k}[Y]$-algebra has a presentation as follow

$$
\mathcal{L}=L i e_{\mathbf{k}[Y]}\left(X \mid S, r x_{i}, r \in R, x_{i} \in X\right)
$$

Affine Lie algebras over commutative algebras

A Gröbner-Shirshov basis T of the last presentation will be called a Gröbner-Shirshov basis of $\mathcal{L}=\operatorname{Lie}_{K}(X \mid S)$ relative to $K=\mathbf{k}[Y \mid R]$.

It means that to defined Gröbner-Shirshov bases of Lie algebras over commutative algebras, it is enough to define Gröbner-Shirshov bases (sets) in "double free" Lie algebras $L i e_{\mathbf{k}[Y]}(X)$, i.e., free Lie algebras over polynomial algebras.

A double free Lie algebra $\operatorname{Lie}_{\mathbf{k}[Y]}(X)$ is a \mathbf{k}-tensor product

$$
\mathbf{k}[Y] \otimes \operatorname{Lie} e_{\mathbf{k}}(X)
$$

Affine Lie algebras over commutative algebras

Let $X=\left\{x_{i} \mid i \in I\right\}$ be a linearly ordered set, consder $\operatorname{Lie}(X) \subset \mathbf{k}\langle X\rangle$ the free Lie algebra under the Lie bracket $[x y]=x y-y x$. Let
$Y=\left\{y_{j} \mid j \in J\right\}$ be a linearly ordered set. Then [Y], the free commutative monoid generated by Y, is a linear basis of $\mathbf{k}[Y]$. Regard $\operatorname{Lie}_{\mathbf{k}[Y]}(X) \cong \mathbf{k}[Y] \otimes \operatorname{Lie}_{\mathbf{k}}(X)$ as the Lie subalgebra of $\mathbf{k}[Y]\langle X\rangle \cong \mathbf{k}[Y] \otimes \mathbf{k}\langle X\rangle$ the free associative algebra over polynomial algebra $\mathbf{k}[Y]$, which is generated by X under the Lie bracket $[u, v]=u v-v u$. Then $\operatorname{NLSW}(X)$ forms a $\mathbf{k}[Y]$-basis of $\operatorname{Lie}_{\mathbf{k}[Y]}(X)$.
For any $f \in \operatorname{Lie}_{\mathbf{k}[Y]}(X)$,

$$
f=\sum \alpha_{i} \beta_{i}\left[u_{i}\right]
$$

where $\alpha_{i} \in \mathbf{k}, \beta_{i} \in[Y]$ and $\left[u_{i}\right] \in \operatorname{NSLW}(X)$.

Affine Lie algebras over commutative algebras

Order $[Y]\left(X^{*}\right)$ by deg-lex ordering " $\succ Y^{\prime}$ " (" $\succ X^{\prime}$ ") respectively. Now define an order " \succ " on $[Y] X^{*}$: For $u, v \in[Y] X^{*}$,

$$
u \succ v \text { if }\left(u^{X} \succ x v^{X}\right) \text { or }\left(u^{X}=v^{X} \text { and } u^{Y} \succ Y v^{Y}\right) .
$$

Then consider $f=\sum \alpha_{i} \beta_{i}\left[u_{i}\right]$ as a polynomial in \mathbf{k}-algebra $\mathbf{k}[Y]\langle X\rangle$, the leading word \bar{f} of f in $\mathbf{k}[Y]\langle X\rangle$ is of the form βu, where $\beta \in[Y], u \in \operatorname{ALSW}(X)$. Denote $\bar{f}^{Y}=\beta$ and $\bar{f}^{X}=u$.

Affine Lie algebras over commutative algebras

Note that for any ALSW w, there is a unique bracketing way such that $[w]$ is a NLSW.

Lemma

(Shirshov 1958) Suppose that $w=a u b, w, u \in A L S W$. Then

$$
[w]=[a[u c] d]
$$

where $[u c] \in \operatorname{NLSW}(X)$ and $b=c d$.
Represent c in the form $c=c_{1} c_{2} \ldots c_{k}$, where $c_{1}, \ldots, c_{k} \in \operatorname{ALSW}(X)$ and $c_{1} \leq c_{2} \leq \ldots \leq c_{k}$. Then

$$
[w]=\left[a\left[u\left[c_{1}\right]\left[c_{2}\right] \ldots\left[c_{k}\right]\right] d\right] .
$$

Moreover, the leading term of $[w]_{u}=\left[a\left[\cdots\left[\left[[u]\left[c_{1}\right]\right]\left[c_{2}\right]\right] \ldots\left[c_{k}\right]\right] d\right]$ is exactly w, i.e.,

$$
\overline{[w]}_{u}=w
$$

Affine Lie algebras over commutative algebras

Definition

Let $S \subset \operatorname{Lie}_{\mathbf{k}[Y]}(X)$ be a monic subset. Define the normal s-word $\lfloor u\rfloor_{s}$, where $u=$ asb inductively.
(i) s is normal of s-length 1 ;
(ii) If $\lfloor u\rfloor_{s}$ is normal with s-length k and $[v] \in \operatorname{NLSW}(X)$ such that $|v|=I$, then $[v]\lfloor u\rfloor_{s}$ when $v>{\overline{\lfloor u]_{s}}}_{x}$ and $\lfloor u\rfloor_{s}[v]$ when $v<{\overline{\lfloor u\rfloor_{s}}}_{s}^{x}$ are normal of s-length $k+1$.

Remarks:

1. $\lfloor u\rfloor_{s}$ is normal if and only if ${\overline{\lfloor u\rfloor_{s}}}^{X}=a \bar{s}^{x} b \in \operatorname{ALSW}(X)$ for some $a, b \in X^{*}$;
2. If $a \bar{s}^{x} b \in A L S W(X)$, then by Shirshov's lemma, we have the special bracketing $\left[a \bar{s}^{X} b\right]_{\bar{s}} x$ of $a s^{\bar{x}} b$ relative to $s^{\bar{x}}$. It follows that $\left.\left[a \bar{s}^{X} b\right]_{\bar{s}^{x}}\right|_{\left[\bar{s}^{x}\right] \mapsto s}$ is a special normal s-word, which is denoted by $[a s b]_{\bar{s}}$.

Affine Lie algebras over commutative algebras

Let f, g be monic polynomials of $\operatorname{Lie}_{\mathbf{k}[Y]}(X)$ and $L=\operatorname{Icm}\left(\bar{f}^{Y}, \bar{g}^{Y}\right)$.

Definition

If $\bar{f}^{X}=a \bar{g}^{X} b$ for some $a, b \in X^{*}$, then

$$
C_{1}\langle f, g\rangle_{w}=\frac{L}{\bar{f}^{Y}} f-\frac{L}{\bar{g}^{Y}}[a g b]_{\bar{g}}
$$

is called the inclusion composition of f and g with respect to w, where $w=L \bar{f}^{X}=L a \bar{g}^{X} b$.

Definition

If $\bar{f}^{X}=a a_{0}, \bar{g}^{X}=a_{0} b, a, b, a_{0} \neq 1$, then

$$
C_{2}\langle f, g\rangle_{w}=\frac{L}{\bar{f}^{Y}}[f b]_{\bar{f}}-\frac{L}{\bar{g}^{Y}}[a g]_{\bar{g}}
$$

is called the intersection composition of f and g with respect to w, where $w=L \bar{f}^{X} b=L a \bar{g}^{X}$.

Affine Lie algebras over commutative algebras

Definition

If $\operatorname{gcd}\left(\bar{f}^{Y}, \bar{g}^{Y} \neq 1\right.$, then for any $a, b, c \in X^{*}$ such that $w=L a \bar{f}^{X} b \bar{g}^{X} c \in T_{A}$, the polynomial

$$
C_{3}\langle f, g\rangle_{w}=\frac{L}{\bar{f}^{Y}}\left[a f b \bar{g}^{X} c\right]_{\bar{f}}-\frac{L}{\bar{g}^{Y}}\left[a \bar{f}^{X} b g c\right]_{\bar{g}}
$$

is called the external composition of f and g with respect to w.

Definition

If $\bar{f}^{Y} \neq 1$, then for any normal f-word $[a f b]_{\bar{f}}, a, b \in X^{*}$, the polynomial

$$
C_{4}\langle f\rangle_{w}=\left[a \bar{f}^{X} b\right][a f b]_{\bar{f}}
$$

is called the multiplication composition of f with respect to w, where $w=a \bar{f}^{X} b a \bar{f} b$.

Affine Lie algebras over commutative algebras

Immediately, we have that $\overline{C_{i}(. .)_{w}} \prec w, i \in\{1,2,3,4\}$.

Definition

Given a monic subset $S \subset \operatorname{Lie}_{\mathbf{k}[Y]}(X)$ and $w \in[Y] X^{*}$, an element $h \in \operatorname{Lie}_{\mathbf{k}[Y]}(X)$ is called trivial modulo (S,w), denoted by $h \equiv 0 \bmod (S, w)$, if h can be presented as a $\mathbf{k}[Y]$-linear combination of normal S-words with leading words less than w, i.e., $h=\sum_{i} \alpha_{i} \beta_{i}\left[a_{i} s_{i} b_{i}\right]_{\bar{s}_{i}}$, where $\alpha_{i} \in \mathbf{k}, \beta_{i} \in[Y], a_{i}, b_{i} \in X^{*}, s_{i} \in S$, and $\beta_{i} a_{i} \bar{s}_{i} b_{i} \prec w$. In general, for $p, q \in \operatorname{Lie}_{\mathbf{k}[Y]}(X)$, we write $p \equiv q \bmod (S, w)$ if $p-q \equiv 0 \bmod (S, w)$.
S is a Gröbner-Shirshov basis in $\operatorname{Lie}_{\mathbf{k}[Y]}(X)$ if all the possible compositions of elements in S are trivial modulo S and corresponding w.

Affine Lie algebras over commutative algebras

Lemma

Let S be a monic subset of $\operatorname{Lie}_{\mathrm{k}[Y]}(X)$ in which each multiplication composition is trivial. Then for any normal s-word $\lfloor u\rfloor_{s}=(a s b)$ and $w=a \bar{s} b=\overline{\lfloor u\rfloor_{s}}$, where $a, b \in X^{*}$, we have

$$
\lfloor u\rfloor_{s} \equiv[a s b]_{\bar{s}} \bmod (S, w) .
$$

Affine Lie algebras over commutative algebras

Lemma

Let S be a monic subset of $\operatorname{Lie}_{\mathrm{k}[Y]}(X)$ in which each multiplication composition is trivial. Then for any normal s-word $\lfloor u\rfloor_{s}=(a s b)$ and $w=a \bar{s} b=\overline{\lfloor u\rfloor_{s}}$, where $a, b \in X^{*}$, we have

$$
\lfloor u\rfloor_{s} \equiv[a s b]_{\bar{s}} \bmod (S, w) .
$$

From above lemma, we have for such $S \subset \operatorname{Lie}_{\mathbf{k}[Y]}(X)$, the elements of the $\mathbf{k}[Y]$-ideal generated by S can be written as a $\mathbf{k}[Y]$-linear combination of special normal S-words.

Affine Lie algebras over commutative algebras

Lemma

Let S be a monic subset of $\operatorname{Lie}_{\mathrm{k}[Y]}(X)$ in which each multiplication composition is trivial. Then for any normal s-word $\lfloor u\rfloor_{s}=(a s b)$ and $w=a \bar{s} b=\overline{\lfloor u]_{s}}$, where $a, b \in X^{*}$, we have

$$
\lfloor u\rfloor_{s} \equiv[a s b]_{\bar{s}} \bmod (S, w) .
$$

From above lemma, we have for such $S \subset \operatorname{Lie}_{\mathbf{k}[Y]}(X)$, the elements of the $\mathbf{k}[Y]$-ideal generated by S can be written as a $\mathbf{k}[Y]$-linear combination of special normal S-words.

Lemma

Let S be a Gröbner-Shirshov basis in $\operatorname{Lie}_{\mathbf{k}[Y]}(X)$. For any $s_{1}, s_{2} \in S, \beta_{1}, \beta_{2} \in[Y], a_{1}, a_{2}, b_{1}, b_{2} \in X^{*}$ such that $w=\beta_{1} a_{1} \bar{s}_{1} b_{1}=\beta_{2} a_{2} \bar{s}_{2} b_{2} \in T_{A}$, we have

$$
\beta_{1}\left[a_{1} s_{1} b_{1}\right]_{\bar{s}_{1}} \equiv \beta_{2}\left[a_{2} s_{2} b_{2}\right]_{\bar{s}_{2}} \bmod (S, w)
$$

Main Theorem (BCC 2011)

Theorem

Let $S \subset L e_{\mathrm{k}[Y]}(X)$ be nonempty set of monic polynomials and $\operatorname{Id}(S)$ be the ideal of $\operatorname{Lie}_{\mathrm{k}[Y]}(X)$ generated by S. Then the following statements are equivalent.
(i) S is a Gröbner-Shirshov basis in $\operatorname{Lie}_{\mathbf{k}[Y]}(X)$.
(ii) $f \in \operatorname{Id}(S) \Rightarrow \bar{f}=a \bar{s} b \in T_{A}$ for some $s \in S$ and $a, b \in[Y] X^{*}$.
(iii) $\operatorname{lrr}(S)=\left\{[u] \mid[u] \in T_{N}, u \neq a \bar{s} b\right.$, for any $\left.s \in S, a, b \in[Y] X^{*}\right\}$ is a \mathbf{k}-basis for $\left(\operatorname{Lie}_{\mathbf{k}[Y]}(X)\right) / \operatorname{Id}(S)$.

Affine Lie algebras over commutative algebras

We give applications of Gröbner-Shirshov bases theory for Lie algebras over a commutative algebra K (over a field \mathbf{k}) to the Poincaré-Birkhoff-Witt theorem.

Affine Lie algebras over commutative algebras

We give applications of Gröbner-Shirshov bases theory for Lie algebras over a commutative algebra K (over a field \mathbf{k}) to the Poincaré-Birkhoff-Witt theorem.
$\star \mathcal{L}_{k} \hookrightarrow U_{k}(\mathcal{L})$.

Affine Lie algebras over commutative algebras

We give applications of Gröbner-Shirshov bases theory for Lie algebras over a commutative algebra K (over a field \mathbf{k}) to the Poincaré-Birkhoff-Witt theorem.
$\star \mathcal{L}_{k} \hookrightarrow U_{k}(\mathcal{L})$.
\star ? $\mathcal{L}_{K} \hookrightarrow U_{K}(\mathcal{L})$, where K is a commutative associative k-algebra.

Affine Lie algebras over commutative algebras

We give applications of Gröbner-Shirshov bases theory for Lie algebras over a commutative algebra K (over a field \mathbf{k}) to the Poincaré-Birkhoff-Witt theorem.
$\star \mathcal{L}_{k} \hookrightarrow U_{k}(\mathcal{L})$.
\star ? $\mathcal{L}_{K} \hookrightarrow U_{K}(\mathcal{L})$, where K is a commutative associative k-algebra.
Following P.M. Cohn (1963), a Lie algebra with the PBW property is said to be "special".

Affine Lie algebras over commutative algebras

We give applications of Gröbner-Shirshov bases theory for Lie algebras over a commutative algebra K (over a field \mathbf{k}) to the Poincaré-Birkhoff-Witt theorem.
$\star \mathcal{L}_{k} \hookrightarrow U_{k}(\mathcal{L})$.
\star ? $\mathcal{L}_{K} \hookrightarrow U_{K}(\mathcal{L})$, where K is a commutative associative k-algebra.
Following P.M. Cohn (1963), a Lie algebra with the PBW property is said to be "special".
\star The first non-special example was given by A.I. Shirshov in 1953.
Another classical non-special example was given by P. Cartier in 1958. In both examples the Lie algebras are taken over commutative algebras over $G F(2)$.

Affine Lie algebras over commutative algebras

We give applications of Gröbner-Shirshov bases theory for Lie algebras over a commutative algebra K (over a field \mathbf{k}) to the
Poincaré-Birkhoff-Witt theorem.
$\star \mathcal{L}_{k} \hookrightarrow U_{k}(\mathcal{L})$.
\star ? $\mathcal{L}_{K} \hookrightarrow U_{K}(\mathcal{L})$, where K is a commutative associative k-algebra.
Following P.M. Cohn (1963), a Lie algebra with the PBW property is said to be "special".
\star The first non-special example was given by A.I. Shirshov in 1953.
Another classical non-special example was given by P. Cartier in 1958. In both examples the Lie algebras are taken over commutative algebras over $G F(2)$.
\star P.M. Cohn proved that any Lie algebra over ${ }_{k} K$, where $\operatorname{char}(\mathbf{k})=0$, is special. Also he gave an example of non-special Lie algebra over a truncated polynomial algebra over a filed of characteristic $p>0$.

Affine Lie algebras over commutative algebras

Let $K=\mathbf{k}\left[y_{1}, y_{2}, y_{3} \mid y_{i}^{p}=0, i=1,2,3\right]$ be an algebra of truncated polynomials over a field k of characteristic $p>0$. Let

$$
\mathcal{L}_{p}=\operatorname{Lie}_{K}\left(x_{1}, x_{2}, x_{3} \mid y_{3} x_{3}=y_{2} x_{2}+y_{1} x_{1}\right) .
$$

Then is \mathcal{L}_{p} non-special?

Affine Lie algebras over commutative algebras

Let $K=\mathbf{k}\left[y_{1}, y_{2}, y_{3} \mid y_{i}^{p}=0, i=1,2,3\right]$ be an algebra of truncated polynomials over a field k of characteristic $p>0$. Let

$$
\mathcal{L}_{p}=\operatorname{Lie}_{K}\left(x_{1}, x_{2}, x_{3} \mid y_{3} x_{3}=y_{2} x_{2}+y_{1} x_{1}\right) .
$$

Then is \mathcal{L}_{p} non-special?

Note that in $U\left(\mathcal{L}_{p}\right)$ we have

$$
0=\left(y_{3} x_{3}\right)^{p}=\left(y_{2} x_{2}\right)^{p}+\Lambda_{p}\left(y_{2} x_{2}, y_{1} x_{1}\right)+\left(y_{1} x_{1}\right)^{p}=\Lambda_{p}\left(y_{2} x_{2}, y_{1} x_{1}\right)
$$

where Λ_{p} is a Jacobson-Zassenhaus Lie polynomial.
Cohn conjectured that $\Lambda_{p}\left(y_{2} x_{2}, y_{1} x_{1}\right) \neq 0$ in \mathcal{L}_{p}.

Affine Lie algebras over commutative algebras

Let $K=\mathbf{k}\left[y_{1}, y_{2}, y_{3} \mid y_{i}^{p}=0, i=1,2,3\right]$ be an algebra of truncated polynomials over a field k of characteristic $p>0$. Let

$$
\mathcal{L}_{p}=\operatorname{Lie} \kappa_{K}\left(x_{1}, x_{2}, x_{3} \mid y_{3} x_{3}=y_{2} x_{2}+y_{1} x_{1}\right) .
$$

Then is \mathcal{L}_{p} non-special?
Note that in $U\left(\mathcal{L}_{p}\right)$ we have

$$
0=\left(y_{3} x_{3}\right)^{p}=\left(y_{2} x_{2}\right)^{p}+\Lambda_{p}\left(y_{2} x_{2}, y_{1} x_{1}\right)+\left(y_{1} x_{1}\right)^{p}=\Lambda_{p}\left(y_{2} x_{2}, y_{1} x_{1}\right)
$$

where Λ_{p} is a Jacobson-Zassenhaus Lie polynomial.
Cohn conjectured that $\Lambda_{p}\left(y_{2} x_{2}, y_{1} x_{1}\right) \neq 0$ in \mathcal{L}_{p}.

Theorem

(BCC 2011) $\Lambda_{p}\left(y_{2} x_{2}, y_{1} x_{1}\right) \neq 0$ in \mathcal{L}_{p} and \mathcal{L}_{p} is non-special when $p=2,3,5$. Moreover, Λ_{p} for \mathcal{L}_{p} can be computed by an algorithm for any p.

Consider $p=3$.

$$
\begin{aligned}
& S_{x^{3}}=\left\{s \in S^{C} \mid \operatorname{deg}\left(\bar{s}^{X}\right) \leq 3\right\} \\
& =\left\{y_{3} x_{3}=y_{2} x_{2}+y_{1} x_{1}, y_{i}^{3} x_{j}=0, \quad y_{3}^{2} y_{2} x_{2}=y_{3}^{2} y_{1} x_{1}, y_{3}^{2} y_{2}^{2} y_{1} x_{1}=0,\right. \\
& y_{2}\left[x_{3} x_{2}\right]=-y_{1}\left[x_{3} x_{1}\right], y_{3}^{2} y_{1}\left[x_{2} x_{1}\right]=0, \quad y_{2}^{2} y_{1}\left[x_{3} x_{1}\right]=0, \\
& y_{3} y_{2}^{2}\left[x_{2} x_{2} x_{1}\right]=y_{3} y_{2} y_{1}\left[x_{2} x_{1} x_{1}\right], \quad y_{3} y_{2}^{2} y_{1}\left[x_{2} x_{1} x_{1}\right]=0, \\
& \left.y_{3} y_{2} y_{1}\left[x_{2} x_{2} x_{1}\right]=y_{3} y_{1}^{2}\left[x_{2} x_{1} x_{1}\right] .\right\}
\end{aligned}
$$

Thus, $y_{2}^{2} y_{1}\left[x_{2} x_{2} x_{1}\right], y_{2} y_{1}^{2}\left[x_{2} x_{1} x_{1}\right] \in \operatorname{Irr}\left(S^{C}\right)$, which implies $\Lambda_{3}=y_{2}^{2} y_{1}\left[x_{2} x_{2} x_{1}\right]+y_{2} y_{1}^{2}\left[x_{2} x_{1} x_{1}\right] \neq 0$ in \mathcal{L}_{3}.

Affine Lie algebras over commutative algebras

We give new class of special Lie algebras in terms of defining relations.

Affine Lie algebras over commutative algebras

We give new class of special Lie algebras in terms of defining relations.

It gives an extension of the list of known "special" Lie algebras (ones with valid PBW Theorems) (see P.-P. Grivel (2004)):

1. \mathcal{L} is a free K-module (G. Birkhoff (1937), E. Witt(1937)),
2. K is a principal ideal domain (M. Lazard (1952)),
3. K is a Dedekind domain (P. Cartier (1958)),
4. K is over a field \mathbf{k} of characteristic 0 (P.M. Cohn (1963)),
5. \mathcal{L} is K-module without torsion (P.M. Cohn (1963)),
6. 2 is invertible in K and for any $x, y, z \in \mathcal{L},[x[y z]]=0(Y$. Nouaze, P. Revoy (1971)).

Affine Lie algebras over commutative algebras

Theorem

For an arbitrary commutative \mathbf{k}-algebra $K=\mathbf{k}[Y \mid R]$, if S is a Gröbner-Shirshov basis in $\operatorname{Lie}_{\mathbf{k}[Y]}(X)$ such that for any $s \in S$, s is $\mathbf{k}[Y]$-monic, then $\mathcal{L}=\operatorname{Lie}_{K}(X \mid S)$ is special.

Affine Lie algebras over commutative algebras

Theorem

For an arbitrary commutative \mathbf{k}-algebra $K=\mathbf{k}[Y \mid R]$, if S is a Gröbner-Shirshov basis in $\operatorname{Lie}_{\mathbf{k}[Y]}(X)$ such that for any $s \in S$, s is $\mathbf{k}[Y]$-monic, then $\mathcal{L}=\operatorname{Lie}_{K}(X \mid S)$ is special.

Corollary

Any Lie K-algebra $L_{K}=\operatorname{Lie}_{K}(X \mid f)$ with one monic defining relation $f=0$ is special.

Affine Lie algebras over commutative algebras

Theorem

For an arbitrary commutative \mathbf{k}-algebra $K=\mathbf{k}[Y \mid R]$, if S is a Gröbner-Shirshov basis in $\operatorname{Lie}_{\mathbf{k}[Y]}(X)$ such that for any $s \in S$, s is $\mathbf{k}[Y]$-monic, then $\mathcal{L}=\operatorname{Lie}_{K}(X \mid S)$ is special.

Corollary

Any Lie K-algebra $L_{K}=\operatorname{Lie} e_{K}(X \mid f)$ with one monic defining relation $f=0$ is special.

Corollary

If L_{K} is a free K-module, then L_{K} is special.

Non-commutative Gröbner-Shirshov bases for commutative algebras

\star Mikhalev and Zolotykh (1998) established the GSB theory and proved the CD-lemma for associative algebra over K where K is a commutative associative k-algebra. The free object they considered is $k[X] \otimes k\langle Y\rangle$.

Non-commutative Gröbner-Shirshov bases for commutative algebras

\star Mikhalev and Zolotykh (1998) established the GSB theory and proved the CD-lemma for associative algebra over K where K is a commutative associative k-algebra. The free object they considered is $k[X] \otimes k\langle Y\rangle$.
\star Bokut, Yuqun Chen and Yongshan Chen (2010) established the "same" theory for associative algebra over K where K is an associative k-algebra. The free object we take is $k\langle X\rangle \otimes k\langle Y\rangle$.

Non-commutative Gröbner-Shirshov bases for commutative algebras

* Mikhalev and Zolotykh (1998) established the GSB theory and proved the CD-lemma for associative algebra over K where K is a commutative associative k-algebra. The free object they considered is $k[X] \otimes k\langle Y\rangle$.
\star Bokut, Yuqun Chen and Yongshan Chen (2010) established the "same" theory for associative algebra over K where K is an associative k-algebra. The free object we take is $k\langle X\rangle \otimes k\langle Y\rangle$.

Question: What is the relation between these two Gröbner-Shirshov bases.

Non-commutative Gröbner-Shirshov bases for commutative algebras

First, let us consider the relation between Gröbner-Shirshov bases in $k\langle X\rangle$ and $k[X]$.

Non-commutative Gröbner-Shirshov bases for commutative algebras

First, let us consider the relation between Gröbner-Shirshov bases in $k\langle X\rangle$ and $k[X]$.

Theorem

(Eisenbud, Peeva, Sturmfels, 1998) Let k be an infinite field and $I \subset k[X]$ be an ideal. Then after a general linear change of variables, the ideal $\gamma^{-1}(I)$ in $k\langle X\rangle$ has a finite Gröbner-Shirshov basis.

Non-commutative Gröbner-Shirshov bases for commutative algebras

First, let us consider the relation between Gröbner-Shirshov bases in $k\langle X\rangle$ and $k[X]$.

Theorem

(Eisenbud, Peeva, Sturmfels, 1998) Let k be an infinite field and
$I \subset k[X]$ be an ideal. Then after a general linear change of variables, the ideal $\gamma^{-1}(I)$ in $k\langle X\rangle$ has a finite Gröbner-Shirshov basis.

Idea of the proof: Let R be a minimal GSB for I in $k[X]$. Then R together with all the commutators on X generates $\gamma^{-1}(I)$ in $k\langle X\rangle$, but it is not a GSB in general.
Construct a set $\operatorname{EPS}(R)$ such that $\operatorname{EPS}(R)$ together with all the commutators is a GSB for $\gamma^{-1}(I)$ in $k\langle X\rangle$. But the set is not finite in general.
Lemma: If k is infinite, then there exists a generic change of variables such that $|E P S(R)|<\infty$.

Non-commutative Gröbner-Shirshov bases for commutative algebras

$$
\text { Let } \gamma \otimes 1: k\langle X\rangle \otimes k\langle Y\rangle \rightarrow k[X] \otimes k\langle Y\rangle, u^{X} u^{Y} \mapsto \gamma\left(u^{X}\right) u^{Y} .
$$

Non-commutative Gröbner-Shirshov bases for commutative algebras

Let $\gamma \otimes 1: k\langle X\rangle \otimes k\langle Y\rangle \rightarrow k[X] \otimes k\langle Y\rangle, u^{X} u^{Y} \mapsto \gamma\left(u^{X}\right) u^{Y}$. We construct a Gröbner-Shirshov basis for $k\langle X\rangle \otimes k\langle Y\rangle$ by lifting a given Gröbner-Shirshov basis in $k[X] \otimes k\langle Y\rangle$.

Non-commutative Gröbner-Shirshov bases for commutative algebras

Let $\gamma \otimes 1: k\langle X\rangle \otimes k\langle Y\rangle \rightarrow k[X] \otimes k\langle Y\rangle, u^{X} u^{Y} \mapsto \gamma\left(u^{X}\right) u^{Y}$. We construct a Gröbner-Shirshov basis for $k\langle X\rangle \otimes k\langle Y\rangle$ by lifting a given Gröbner-Shirshov basis in $k[X] \otimes k\langle Y\rangle$.

Theorem

(BCC, 2010) Let R be a minimal GSB for $I \triangleleft k[X] \otimes k\langle Y\rangle$. Then $\operatorname{EPS}(R)$ together with all the commutators on X is a $G S B$ for $\gamma^{-1}(I)$ in $k\langle X\rangle \otimes k\langle Y\rangle$.

Gröbner-Shirshov bases for metabelian Lie algebras

From now on, all algebras will be considered over a field \mathbf{k} of arbitrary characteristic. Suppose that \mathcal{L} is a Lie algebra. Then \mathcal{L} is called a metabelian Lie algebra if $\mathcal{L}^{(2)}=0$, where $\mathcal{L}^{(0)}=\mathcal{L}$, $\mathcal{L}^{(n+1)}=\left[\mathcal{L}^{(n)}, \mathcal{L}^{(n)}\right]$. More precisely, the variety of metabelian Lie algebras is given by the identity

$$
\left(x_{1} x_{2}\right)\left(x_{3} x_{4}\right)=0
$$

Gröbner-Shirshov bases for metabelian Lie algebras

From now on, all algebras will be considered over a field \mathbf{k} of arbitrary characteristic. Suppose that \mathcal{L} is a Lie algebra. Then \mathcal{L} is called a metabelian Lie algebra if $\mathcal{L}^{(2)}=0$, where $\mathcal{L}^{(0)}=\mathcal{L}$, $\mathcal{L}^{(n+1)}=\left[\mathcal{L}^{(n)}, \mathcal{L}^{(n)}\right]$. More precisely, the variety of metabelian Lie algebras is given by the identity

$$
\left(x_{1} x_{2}\right)\left(x_{3} x_{4}\right)=0
$$

We begin with the construction of a free metabelian Lie algebra. Let $\operatorname{Lie}(X)$ the free Lie algebra generated by X. Then $\mathcal{L}_{(2)}(X)=\operatorname{Lie}(X) / \operatorname{Lie}(X)^{(2)}$ is the free metabelian Lie algebra generated by X. Then any metabelian Lie algebra $\mathcal{M L}$ can be presented by

$$
\mathcal{M L}=\mathcal{L}_{(2)}(X \mid S)
$$

Gröbner-Shirshov bases for metabelian Lie algebras

\star Linear basis of free metabelian Lie algebras:

Gröbner-Shirshov bases for metabelian Lie algebras

\star Linear basis of free metabelian Lie algebras:
A non-associative monomial on X is left-normed if it is of the form $(\cdots((a b) c) \cdots) d$.
Let X be well-ordered. For an arbitrary set of indices $j_{1}, j_{2}, \cdots, j_{m}$, define an associative word $\left\langle a_{j_{1}} \cdots a_{j_{m}}\right\rangle=a_{i_{1}} \cdots a_{i_{m}}$, where $a_{i_{1}} \leq \cdots \leq a_{i_{m}}$ and $i_{1}, i_{2}, \cdots, i_{m}$ is a permutation of the indices $j_{1}, j_{2}, \cdots, j_{m}$.

Let
$R=\left\{u=a_{0} a_{1} a_{2} \cdots a_{n} \mid u\right.$ is left-normed, $\left.a_{i} \in X, a_{0}>a_{1} \leq \cdots \leq a_{n}, n \geq 1\right\}$
and $N=X \cup R$. Then N forms a linear basis of the free metabelian Lie algebra $\mathcal{L}_{(2)}(X)$ (Bokut, 1963).

Gröbner-Shirshov bases for metabelian Lie algebras

For any $f \in \mathcal{L}_{(2)}(X), f$ has a unique presentation $f=f^{(1)}+f^{(0)}$, where $f^{(1)} \in \mathbf{k} R$ and $f^{(0)} \in \mathbf{k} X$.

Moreover, the multiplication table of N is the following, $u \cdot v=0$ if both $u, v \in R$, and

$$
a_{0} a_{1} a_{2} \cdots a_{n} \cdot b= \begin{cases}a_{0}\left\langle a_{1} a_{2} \cdots a_{n} b\right\rangle & \text { if } a_{1} \leq b, \\ a_{0} b a_{1} a_{2} \cdots a_{n}-a_{1} b\left\langle a_{0} a_{2} \cdots a_{n}\right\rangle & \text { if } a_{1}>b .\end{cases}
$$

Now we order the set N degree-lexicographically.

Gröbner-Shirshov bases for metabelian Lie algebras
\star Elements of an ideal:

Gröbner-Shirshov bases for metabelian Lie algebras

\star Elements of an ideal:
Let $S \subset \mathcal{L}_{(2)}(X)$. Then the following two kinds of polynomials are called normal S-words:
(i) $s a_{1} a_{2} \cdots a_{n}$, where $a_{i} \in X(1 \leq i \leq n), a_{1} \leq a_{2} \leq \cdots \leq a_{n}$, $s \in S, \bar{s} \neq a_{1}$ and $n \geq 0 ;$
(ii) us, where $u \in R, s \in S$ and $\bar{s} \neq u$.

Gröbner-Shirshov bases for metabelian Lie algebras

\star Elements of an ideal:
Let $S \subset \mathcal{L}_{(2)}(X)$. Then the following two kinds of polynomials are called normal S-words:
(i) $s a_{1} a_{2} \cdots a_{n}$, where $a_{i} \in X(1 \leq i \leq n), a_{1} \leq a_{2} \leq \cdots \leq a_{n}$, $s \in S, \bar{s} \neq a_{1}$ and $n \geq 0 ;$
(ii) $u s$, where $u \in R, s \in S$ and $\bar{s} \neq u$.

It is easy to see that for any $f \in I d(S), f$ can be written as a linear combination of normal S-words.

Gröbner-Shirshov bases for metabelian Lie algebras

\star Elements of an ideal:
Let $S \subset \mathcal{L}_{(2)}(X)$. Then the following two kinds of polynomials are called normal S-words:
(i) $s a_{1} a_{2} \cdots a_{n}$, where $a_{i} \in X(1 \leq i \leq n), a_{1} \leq a_{2} \leq \cdots \leq a_{n}$, $s \in S, \bar{s} \neq a_{1}$ and $n \geq 0 ;$
(ii) $u s$, where $u \in R, s \in S$ and $\bar{s} \neq u$.

It is easy to see that for any $f \in \operatorname{ld}(S), f$ can be written as a linear combination of normal S-words.

Simple observation:

$$
\overline{s a_{1} a_{2} \cdots a_{n}}= \begin{cases}c_{0}\left\langle c_{1} \cdots c_{k} a_{1} a_{2} \cdots a_{n}\right\rangle & \text { if } \bar{s}=c_{0} c_{1} \cdots c_{k} \\ c_{0} a_{1} a_{2} \cdots a_{n} & \text { if } \bar{s}=c_{0}>a_{1} \\ a_{1} c_{0} a_{2} \cdots a_{n} & \text { if } \bar{s}=c_{0}<a_{1}\end{cases}
$$

and $\overline{u s}=a_{0}\left\langle a_{1} \cdots a_{k} \overline{s^{(0)}}\right\rangle$, where $u=a_{0}\left\langle a_{1} \cdots a_{k}\right\rangle$.

Gröbner-Shirshov bases for metabelian Lie algebras

\star Elements of an ideal:
Let $S \subset \mathcal{L}_{(2)}(X)$. Then the following two kinds of polynomials are called normal S-words:
(i) $s a_{1} a_{2} \cdots a_{n}$, where $a_{i} \in X(1 \leq i \leq n), a_{1} \leq a_{2} \leq \cdots \leq a_{n}$, $s \in S, \bar{s} \neq a_{1}$ and $n \geq 0 ;$
(ii) $u s$, where $u \in R, s \in S$ and $\bar{s} \neq u$.

It is easy to see that for any $f \in I d(S), f$ can be written as a linear combination of normal S-words.

Simple observation:

$$
\overline{s a_{1} a_{2} \cdots a_{n}}= \begin{cases}c_{0}\left\langle c_{1} \cdots c_{k} a_{1} a_{2} \cdots a_{n}\right\rangle & \text { if } \bar{s}=c_{0} c_{1} \cdots c_{k} \\ c_{0} a_{1} a_{2} \cdots a_{n} & \text { if } \bar{s}=c_{0}>a_{1} \\ a_{1} c_{0} a_{2} \cdots a_{n} & \text { if } \bar{s}=c_{0}<a_{1}\end{cases}
$$

and $\overline{u s}=a_{0}\left\langle a_{1} \cdots a_{k} \overline{s^{(0)}}\right\rangle$, where $u=a_{0}\left\langle a_{1} \cdots a_{k}\right\rangle$.
That is to say, if u_{s} is normal, then $\overline{u_{s}}$ is a S-irreducible(which contains neither \bar{s} as a subword nor $\overline{s^{(0)}}$ as a strict subword).

Gröbner-Shirshov bases for metabelian Lie algebras
\star Compositions:

Gröbner-Shirshov bases for metabelian Lie algebras

\star Compositions:

Let f and g be momic polynomials of $\mathcal{L}_{(2)}(X)$ and α and β are the coefficients of $\overline{f^{(0)}}$ and $\overline{g^{(0)}}$ respectively. We define seven different types of compositions as follow:

1. If $\bar{f}=a_{0} a_{1} \cdots a_{n}, \bar{g}=a_{0} b_{1} \cdots b_{m},(n, m \geq 0)$ and $\operatorname{lcm}(A B) \neq\left\langle a_{1} \cdots a_{n} b_{1} \cdots b_{m}\right\rangle$, where $\operatorname{Icm}(A B)$ denotes the least common multiple in $[X]$ of associative words $a_{1} \cdots a_{n}$ and $b_{1} \cdots b_{m}$, then let $w=a_{0}\langle/ c m(A B)\rangle$. The composition of type I of f and g relative to w is defined by

$$
C_{l}(f, g)_{w}=f\left\langle\frac{\operatorname{lcm}(A B)}{a_{1} \cdots a_{n}}\right\rangle-g\left\langle\frac{\operatorname{lcm}(A B)}{b_{1} \cdots b_{m}}\right\rangle .
$$

2. If $\bar{f}=\overline{f^{(1)}}=a_{0} a_{1} \cdots a_{n}, \overline{g^{(0)}}=a_{i}$ for some $i \geq 2$ or $\overline{g^{(0)}}=a_{1}$ and $a_{0}>a_{2}$, then let $w=\bar{f}$ and the composition of type II of f and g relative to w is defined by

Gröbner-Shirshov bases for metabelian Lie algebras

3. If $\bar{f}=\overline{f^{(1)}}=a_{0} a_{1} \cdots a_{n}, \bar{g}=\overline{g^{(0)}}=a_{1}$ and $a_{0} \leq a_{2}$ or $n=1$, then let $w=\bar{f}$ and the composition of type III of f and g relative to w is defined by

$$
C_{I I I}(f, g)_{\bar{f}}=f+g a_{0} a_{2} \cdots a_{n}
$$

4. If $\bar{f}=\overline{f^{(1)}}=a_{0} a_{1} \cdots a_{n}, g^{(1)} \neq 0, \overline{g^{(0)}}=a_{1}$ and $a_{0} \leq a_{2}$ or $n=1$, then for any $a<a_{0}$ and $w=a_{0}\left\langle a_{1} \cdots a_{n} a\right\rangle$, the composition of type IV of f and g relative to w is defined by

$$
C_{I V}(f, g)_{w}=f a-\beta^{-1} a_{0} a a_{2} \cdots a_{n} \cdot g .
$$

5. If $\bar{f}=\overline{f^{(1)}}=a_{0} a_{1} \cdots a_{n}, f^{(0)} \neq 0, g^{(1)} \neq 0$ and $\overline{g^{(0)}}=b \notin\left\{a_{i}\right\}_{i=1}^{n}$, then let $w=a_{0}\left\langle a_{1} \cdots a_{n} b\right\rangle$ and the composition of type V of f and g relative to w is defined by

$$
C_{V}(f, g)_{w}=f b-\beta^{-1} a_{0} a_{1} \cdots a_{n} \cdot g
$$

Gröbner-Shirshov bases for metabelian Lie algebras

6. If $\overline{f^{(0)}}=\overline{g^{(0)}}=a$ and $f^{(1)} \neq 0$, then for any $a_{0} a_{1} \in R$ and $w=a_{0}\left\langle a_{1} a\right\rangle$, the composition of type VI of f and g relative to w is defined by

$$
C_{V I}(f, g)_{w}=\left(a_{0} a_{1}\right)\left(\alpha^{-1} f-\beta^{-1} g\right)
$$

7. If $f^{(1)} \neq 0, g^{(1)} \neq 0$ and $\overline{f^{(0)}}=a>\overline{g^{(0)}}=b$, then for any $a_{0}>a$ and $w=a_{0} b a$, the composition of type VII of f and g relative to w is defined by

$$
C_{V I I}(f, g)_{w}=\alpha^{-1}\left(a_{0} b\right) f-\beta^{-1}\left(a_{0} a\right) g .
$$

Gröbner-Shirshov bases for metabelian Lie algebras

Theorem

(Composition-Diamond lemma for metabelian Lie algebras) Let $S \subset \mathcal{L}_{(2)}(X)$ be a nonempty set of monic polynomials and Id (S) be the ideal of $\mathcal{L}_{(2)}(X)$ generated by S. Then the following statements are equivalent.
(i) S is a Gröbner-Shirshov basis.
(ii) $f \in \operatorname{Id}(S) \Rightarrow \bar{f}=\overline{u_{s}}$ for some normal S-word u_{s}.
(iii) $\operatorname{lrr}(S)=\left\{u \mid u \in N, u \neq \overline{v_{s}}\right.$ for any normal S-word $\left.v_{s}\right\}$ is a \mathbf{k}-basis for $\mathcal{L}_{(2)}(X \mid S)=\mathcal{L}_{(2)}(X) / I d(S)$.

Gröbner-Shirshov bases for metabelian Lie algebras

Let \mathcal{A} be a metabelian Lie algebra with $Y=\left\{a_{i}, i \in I\right\} \cup\left\{b_{j}, j \in J\right\}$ as a \mathbf{k}-basis, where $\left\{a_{i}\right\}$ is a basis of $\mathcal{A}^{(1)}$ and b_{j} 's are linear independent modulo $\mathcal{A}^{(1)}$. And

$$
\begin{aligned}
& \begin{aligned}
m_{1 i j}: & a_{i} b_{j}-\sum \gamma_{i j}^{k} a_{k}, \\
m_{2 i j}: & b_{i} b_{j}-\sum \delta_{i j}^{k} a_{k},(i>j), \\
m_{3 i j}: & a_{i} a_{j},(i>j) .
\end{aligned} \\
& \text { Let } \mathcal{S}=\mathcal{A} * \mathcal{L}_{(2)}(X)=\mathcal{L}_{(2)}(X \cup Y \mid M) .
\end{aligned}
$$

Theorem

(CC 2011) Let the notion be as above. Then with respect to $x_{h}>a_{i}>b_{j}$, a Gröbner-Shirshov complement M^{C} of M in $\mathcal{L}_{(2)}(X \cup Y)$ consists of M and some X-homogenous polynomials without (0)-part, whose leading words are of the form $x y \cdots$ with an a_{i} as a strict subword, $x \in X, y \in Y$. We say such polynomials satisfy property P_{X}.

Gröbner-Shirshov bases for metabelian Lie algebras

A metabelian Lie algebra is partial commutative related to a graph
$\Gamma=(V, E)$, if $\mathcal{M} \mathcal{L}_{\Gamma}=\mathcal{L}_{(2)}(V \mid[o(e), t(e)]=0, e \in E)$.
The following algorithm gives a Gröbner-Shirshov basis for partial commutative metabelian Lie algebras with a finite relation set.

Algorithm

Input: relations f_{1}, \cdots, f_{s} of $\mathcal{L}_{(2)}(X), f_{i}=x x^{\prime}, F=\left\{f_{1}, \cdots, f_{s}\right\}$.
Output: a Gröbner-Shirshov basis $H=\left\{h_{1}, \cdots, h_{t}\right\}$ for $\mathcal{L}_{(2)}(X \mid F)$. Initialization: $H:=F$

While: $\quad f_{i}=x_{i_{0}} x_{i_{1}} \cdots x_{i_{n}}, f_{i}=x_{j_{0}} x_{j_{1}} \cdots x_{j_{m}}$, and $x_{i_{0}}=x_{j_{0}}, x_{i_{1}} \neq x_{j_{1}}$
Then Do: $\quad h:=\max \left\{x_{i_{1}}, x_{j_{1}}\right\} \min \left\{x_{i_{1}}, x_{j_{1}}\right\}\left\langle x_{t_{1}} x_{t_{2}} \cdots x_{t_{1}}\right\rangle$

$$
\text { where }\left\{x_{t_{1}}, x_{t_{2}}, \cdots, x_{t_{1}}\right\}=\left\{x_{i_{0}}, x_{i_{2}}, \cdots, x_{i_{n}}\right\} \cup\left\{x_{j_{2}}, \cdots, x_{j_{m}}\right\}
$$

If: \quad there is no $f_{j} \in H$ such that f_{j} is a subword of h
Do: $\quad H:=H \cup\{h\}$
End

Gröbner-Shirshov bases for metabelian Lie algebras

By using the above algorithm, we find Gröbner-Shirshov bases for partial commutative metabelian Lie algebras related to any circuits, trees and cubes. For example, we have a Gröbner-Shirshov basis S for the partial commutative metabelian Lie algebra related to 3-cube

$$
\mathcal{M} \mathcal{L}_{C_{u_{3}}}=\mathcal{L}_{(2)}\left(V_{3} \mid \varepsilon \delta, d(\varepsilon, \delta)=1, \varepsilon>\delta\right)
$$

is the union of the following:

$$
\begin{aligned}
& R_{2}=\{\lfloor\varepsilon \delta\rfloor \mid d(\varepsilon, \delta)=1\}, \\
& R_{3}=\left\{\lfloor\varepsilon \delta\rfloor \mu \mid d(\varepsilon, \delta)=2, \mu \varepsilon, \mu \delta \in R_{1}\right\}, \\
& R_{4}=\left\{\lfloor\varepsilon \delta\rfloor \mu \gamma \mid d(\varepsilon, \delta)=3, \mu \varepsilon \in R_{2}, \mu \delta \gamma \in R_{3}\right\}, \\
& R_{5}=\left\{\left\lfloor\delta_{1} \delta_{2}\right\rfloor \gamma\left\langle\mu_{1} \mu_{2}\right\rangle \mid d\left(\delta_{1}, \delta_{2}\right)=2, \gamma \delta_{i} \mu_{i} \in R_{3}, i=1,2\right\}, \\
& R_{5}^{\prime}=\left\{\left\lfloor\delta_{1} \delta_{2}\right\rfloor \gamma \mu \mu^{\prime} \mid d\left(\delta_{1}, \delta_{2}\right)=2, \gamma \delta_{1} \in R_{2}, \gamma_{2} \mu \mu^{\prime} \in R_{4}, d\left(\mu, \delta_{1}\right) \neq 1\right\},
\end{aligned}
$$

where $\lfloor\varepsilon \delta\rfloor=\max \{\varepsilon, \delta\} \min \{\varepsilon, \delta\}$.
Also, we have that a reduced Gröbner-Shirshov basis (it means there is no composition of type I, II, III) for the partial commutative metabelian Lie algebra related to 4-cube consists of 268 relations.

Thank You!

