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Shock structure due to the stochastic forcing of waves

Motivation: WAVEFORM INVERSION/Refocusing

A FANTASTIC APPLICATION!

2D linear HYPERBOLIC waves ⇒ 1D nonlinear waves
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Shock structure due to the stochastic forcing of waves

I n a room inside the Waves and Acoustics Laboratory in
Paris is an array of microphones and loudspeakers. If
you stand in front of this array and speak into it, any-

thing you say comes back at you, but played in reverse. Your
“hello” echoes—almost instantaneously—as “olleh.” At first
this may seem as ordinary as playing a tape backward, but
there is a twist: the sound is projected back exactly toward
its source. Instead of spreading throughout the room from

the loudspeakers, the sound of the “olleh” converges onto
your mouth, almost as if time itself had been reversed. In-
deed, the process is known as time-reversed acoustics, and
the array in front of you is acting as a “time-reversal mirror.”

Such mirrors are more than just a novelty item. They have
a range of applications, including destruction of tumors and
kidney stones, detection of defects in metals, and long-
distance communication and mine detection in the ocean.
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TIME-REVERSED
ACOUSTICS

Arrays of transducers can re-create a sound and send it back to its source

as if time had been reversed. The process can be used to destroy kidney

stones, detect defects in materials and communicate with submarines

by Mathias Fink
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Shock structure due to the stochastic forcing of waves

Acoustic chamber

They can also be used for elegant experiments in pure physics.
The magic of time-reversed acoustics is possible because

sound is composed of waves. When you speak you produce
vibrations in the air that travel like ripples on a pond
spreading out from the point where a stone splashed in. A
fundamental property of waves is that when two of them
pass through the same location, they reinforce each other if
their peaks and troughs correspond, and they tend to cancel
each other out if the peaks of one combine with the troughs
of the other. This process takes place constantly wherever
sound propagates. Echoes reflect back from walls and other
obstacles, mixing together different portions of the same
wave. Architects of concert halls must pay careful attention
to such factors so that their designs result in high-quality
sound arriving in the part of the auditorium where the audi-
ence sits.

The other essential property that makes time-reversed
acoustics possible is that the underlying physical processes
of waves would be unchanged if time were reversed. If you
play a movie of waves backward, the waves still obey the
correct equations. This is also true of ordinary particle me-
chanics, which governs objects such as billiard balls, but ex-
cept in simple cases one cannot “time-reverse” particle me-
chanics in practice. The problem is the phenomenon of
chaos. A small change in a particle’s initial position can re-
sult in a large change in its final position. 

For example, consider a kind of pinball machine where a
ball is fired through a fixed array of 100 randomly arranged
obstacles. Even in a computer simulation the ball cannot be
sent back to retrace its path in reverse: after a dozen or so
collisions the ball misses an obstacle that it should have hit
(or vice versa), and the subsequent path is utterly different.
In a simulation, tiny truncation and round-off errors (which
occur when a computer stores numbers and performs arith-
metic) are enough to set the time reversal awry. And in a
real-life experiment, it would be impossible to start the ball

back on exactly the reversed trajectory, which again would
totally alter the final outcome.

In contrast, wave propagation is linear. That is, a small
change in the initial wave results in only a small change in
the final wave. Likewise, reproducing the “final” wave,
moving in reverse but with the inevitable small inaccuracies,
will result in the wave propagating and re-creating the “ini-
tial” wave, also moving in reverse and having only relative-
ly minor imperfections.

Time-Reversal Mirrors

This is how the time-reversal acoustic mirror succeeds in
playing back “olleh” onto the mouth of the visitor at

the lab in Paris. The final wave is the sound of the “hello”
arriving at the array of microphones after traveling outward
from the visitor’s mouth. Each microphone detects the
acoustic wave (that is, the sound) that arrives at its location
and passes the ongoing signal to a computer that stores the
data. When the last of the “hello” dies down, the computer
reverses each microphone’s signal and plays it back through
the corresponding loudspeaker in exact synchrony with the
other reversed signals. What emerges from the array of
speakers is a close approximation to the final wave, now
traveling in reverse, which propagates across the room, re-
tracing the path of the original “hello” back to the speaker’s
mouth.

Each microphone/loudspeaker pair can be combined into
a single device, such as a piezoelectric transducer, which
converts sound into a voltage when the wave passes, and vi-
brates like a loudspeaker to produce sound when a voltage
signal is applied across it [see illustration above].

For time-reversed acoustics to work, the sound wave must
propagate without losing too much energy to heat, which
consists of the random motion of individual air molecules in-
stead of their collective movement in the sound wave. This
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ACOUSTIC TIME-REVERSAL MIRROR operates in two
steps. In the first step (left) a source emits sound waves (orange)
that propagate out, perhaps being distorted by inhomogeneities
in the medium. Each transducer in the mirror array detects the
sound arriving at its location and feeds the signal to a computer.

In the second step (right), each transducer plays back its sound
signal in reverse in synchrony with the other transducers. The
original wave is re-created, but traveling backward, retracing its
passage back through the medium, untangling its distortions
and refocusing on the original source point.
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Shock structure due to the stochastic forcing of waves

Solitary wave: Fouque, Garnier, Muñoz & N., PRL ’04
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Shock structure due to the stochastic forcing of waves

In order to understand NONLINEAR PDEs
with TIME-REVERSED data

First we address the DIRECT
NONLINEAR SCATTERING PROBLEM

⇒ NonLin Hyperbolic PDEs with

HIGHLY VARIABLE coefficients
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PHYSICAL MODEL: Long propagation distances + detailed TOPOGRAPHY

Scientific American ’99
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Shock structure due to the stochastic forcing of waves

α = nonlinearity = amplitude/depth

β = dispersion = depth/wavelength

γ = disorder/wavelength

h(x) ≡ DISORDERED TOPOGRAPHY PROFILE
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Shock structure due to the stochastic forcing of waves

Reflection-Transmission of waves
&

Time-reversal of waves

...in the diffusion approximation regime:

(a) Linear Hyperbolic: (α = β = 0) ∼ Acoustics

(b) Linear Dispersive: (α = 0;β = ε)

(c) Nonlinear Hyperbolic: (α = ε;β = 0)

(d) Convection-diffusion: (α = ε;µ = ε)

(e) Solitary waves: (α = β = ε)
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OVERVIEW of RESULTS and THEORY
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Shock structure due to the stochastic forcing of waves

SETUP for THEORY and SIMULATIONS:

Typical wave profiles: Gaussian, dGaussian/dx and Solitary wave.
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Shock structure due to the stochastic forcing of waves

INVISCID NonLinear Shallow Water system w/ a dGaussian/dx pulse

2x2 CONSERVATION LAW with DISORDERED variable COEFFICIENTS

RANDOM Forcing ⇒ shock structure: Fouque, Garnier & N., Physica D ’04.
ASYMPTOTICS ⇒ wave elevation ≡ η(x , t) governed by VISCOUS Burgers’
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Shock structure due to the stochastic forcing of waves

MATH TOOL: a LIMIT THEOREM for Stochastic ODEs

Khasminskii’s Theorem (*): consider the IVP ω ∈ (Ω,A,P)

dxε

dt
= εF (t, xε; ω), xε(0) = x0

and
dy

dτ
= F (y), y(0) = x0,

where F (t, ·; ω) is a stationary process, ergodic... with

F (x) ≡ lim
T→∞

1

T

Z T

0
E{F (t, x ; ω)}dt.

Then
sup
0≤t

E{|xε(t)− y(t)|} ∼
√

ε on the time scale 1/ε.

(*) R.Z. Khasminskii, On stochastic processes defined by differential equations with a small parameter, Theory
Prob. Applications, Volume XI (1966), pp.211-228.
R.Z. Khasminskii, A limit-theorem for the solutions of differential equations with random right-hand sides, Theory
Prob. Applications, Volume XI (1966), pp.390-406.
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Shock structure due to the stochastic forcing of waves

Setting up Shallow Water Eqn. for Khasminskii’s theorem...
...include viscosity µ = ε2µ0...

∂η

∂t
+

∂(1 + εh + αη)u

∂x
= 0,

∂u

∂t
+

∂η

∂x
+ αu

∂u

∂x
= µ

∂2u

∂x2
.

With the underlying Riemann Invariants, to leading order...

∂

∂x

(
A
B

)
= Q(x)

∂

∂t

(
A
B

)
− ε

h′

2

(
1 1
1 1

) (
A
B

)
+ε2 α0

4

(
3A + B 0

0 A + 3B

)
∂

∂t

(
A
B

)
+ε2 µ0

2

(
1 1
1 1

)
∂2

∂t2

(
A
B

)
+ O(ε3),

...and using a Lagrangian frame ⇒ random ODE-like setting.
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Shock structure due to the stochastic forcing of waves

Khasminskii’s theorem ⇒ The front pulse/right Riemann Inv.
Bε(x , τ) := B(x/ε2, τ + x/ε2) converges to B̃

B̃(x , τ) = B̃0

 
x , τ −

p
b0(0)√

2
Wx −

φ0(0)

2
x

!
.

where B̃0 satisfies the deterministic Burgers equation

∂B̃0

∂x
= LB̃0 +

3α0

4
B̃0

∂B̃0

∂τ
,

B̃0(0, τ) = f (τ), τ ≡ t − z , z ≡
∫ x

0
c−1(s)ds.

L can be written explicitly in the Fourier domain asZ ∞

−∞
LB(τ)e iωτdτ = −

„
µ0ω

2

2
+

b0(2ω)ω2

4

«Z ∞

−∞
B(τ)e iωτdτ.

Garnier & N., PRL 2004, PhysFlu, May 2006 ⇒EDDY VISCOSITY

b0(ω) =

Z ∞

0

E[h(0)h(x)] exp(iωx)dx

HYPERBOLIC PDEs/Lyon, 2006 André Nachbin IMPA http://www.impa.br/∼nachbin
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Direct SWE numerics versus effective Burgers equation
GAUSSIAN WAVE PROFILE
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Shock structure due to the stochastic forcing of waves

DETERMINISTIC PROFILES with RANDOM ARRIVAL TIMES
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Very Recent! Solitary wave DECAY: Garnier, Muñoz & N., submitted ’06

Using underlying Riemann Invariants for the zero-dispersion system

Get coupled variable-coefficient KdV system
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Shock structure due to the stochastic forcing of waves

How do we address this non-hyperbolic problem?

with IMPROVED

Boussinesq systems

Muñoz & N. IMA Appl. Math. 2006
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Shock structure due to the stochastic forcing of waves

Evaluating the horizontal velocity at an INTERMEDIATE depth
ζ = Z0 ∈ [0, 1]

φξ(ξ,Z0, t) ≡ u(ξ, t) = fξ −
β

2
Z0

2fξξξ + O(β2)

FREE SURFACE CONDITIONS reduce to...

...the BOUSSINESQ-family of equations

M(ξ)ηt +

[(
1 +

α η

M(ξ)

)
u

]
ξ

+
β

2

[(
Z0

2 − 1

3

)
uξξ

]
ξ

= 0

ut + ηξ + α

(
u2

2M2(ξ)

)
ξ

+
β

2
(Z0

2 − 1)uξξt = 0
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Shock structure due to the stochastic forcing of waves

BOUSSINESQ-family of equations

M(ξ)ηt +

[(
1 +

α η

M(ξ)

)
u

]
ξ

+
β

2

[(
Z0

2 − 1

3

)
uξξ

]
ξ

= 0

ut + ηξ + α

(
u2

2M2(ξ)

)
ξ

+
β

2
(Z0

2 − 1)uξξt = 0

C 2 =
ω2

k2
=

1− (β/2)(Z0
2 − 1

3)k2

1− (β/2)(Z0
2 − 1)k2
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Shock structure due to the stochastic forcing of waves

The underlying Riemann invariants satisfy, up to order α,

At − Aξ +
α

4
(3A + B)Aξ −

β

6
Aξξt =

β

2
(
2

3
− Z 2

0 )Bξξt

+
1

2
(

1

M
− 1)(Aξ − Bξ) +

1

2
(

1

M
)ξ(A− B)

+αAAξ(1−
1

M2
) +

α

8
(

2

M2
− 1

M
− 1)(A− B)(Aξ − Bξ)

− α

16
(

1

M
)ξ

[
(A− B)2 +

4

M
(3A2 + 2AB − B2)

]
,

Bt + Bξ +
α

4
(3B + A)Bξ +

β

6
Bξξt =

β

2
(
2

3
− Z 2

0 )Aξξt

+
1

2
(

1

M
− 1)(Aξ − Bξ) +

1

2
(

1

M
)ξ(A− B)

+αBBξ(1−
1

M2
) +

α

8
(

2

M2
− 1

M
− 1)(A− B)(Aξ − Bξ)

− α

16
(

1

M
)ξ

[
(A− B)2 +

4

M
(−A2 + 2AB + 3B2)

]
.
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Coupled KdV equations for the Riemann-Invariants:

In absence of random perturbations (M ≡ 1):

At − Aξ +
α

4
(3A + B)Aξ −

β

6
Aξξξ =

β

2
(
2

3
− Z0

2)Bξξt

Bt + Bξ +
α

4
(3B + A)Bξ +

β

6
Bξξξ =

β

2
(
2

3
− Z0

2)Aξξt

By choosing

Z0
2 =

2

3

the system then supports pure left- and right-going waves
satisfying a KdV-like equation.
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B̃0 is the solution of the deterministic equation

∂B̃0

∂ξ
= LB̃0 +

3α0

4
B̃0

∂B̃0

∂τ
+

β0

6

∂3B̃0

∂τ3
, (1)

B̃0(0, τ) = f (τ), (2)

where the operator L can be written explicitly in the Fourier
domain as∫ ∞

−∞
LB(τ)e iωτdτ = −b0(2ω)ω2

4

∫ ∞

−∞
B(τ)e iωτdτ

L results from the action of the effective pseudo-viscosity
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Thank you for your attention.

IMPA, Rio de Janeiro, Brazil.
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Limit Theorem versus Mean Field Theory:
Over-estimation of attenuation

HYPERBOLIC problem: advection with a random speed
Gaussian pulse (initial data) with a normally distributed speed.
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Shock structure due to the stochastic forcing of waves

Let Z0 =
√

2/3 and uξ(ξ, t) = −M(ξ)ηt + O(α, β):

(M(ξ)η)t +

[(
1 +

α η

M(ξ)

)
u

]
ξ

− β

6
(M(ξ)η)ξξt = 0

ut + ηξ + α

(
u2

2M2(ξ)

)
ξ

− β

6
uξξt = 0

Quintero and Muñoz (Meth.Appl.Anal. ’04) proved existence, uniqueness etc... by

finding a conserved quantity. Main tool: Bona & Chen ’98(
I− β

6
∂ξξ

)
−1[U] = Kβ ∗ U, Kβ(s) ≡ −1

2

√
6

β
sign(s)e−

√
6/β|s|

E(t) ≡ 1

2

Z
<

»„
1 + α

η(ξ, t)

M(ξ)

«
[M(ξ)η(ξ, t)]2 + M(ξ)η2(ξ, t)

–
dξ
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TIME-REVERSAL REFOCUSING: WAVEFORM inversion

I linear hyperbolic ⇒ Statistical Stability
I complete refocusing ⇒ recover original profile
I Solitary wave: TR in reflection and transmission.
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Shock structure due to the stochastic forcing of waves

Statistical stability: 10 realizations

Alfaro et al., submitted ’06
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