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Shock structure due to the stochastic forcing of waves

Motivation: WAVEFORM INVERSION /Refocusing

A FANTASTIC APPLICATION!

2D linear HYPERBOLIC waves = 1D nonlinear waves
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Shock structure due to the stochastic forcing of waves

HYPERBOLIC PDEs,

TIME-REVERSED
ACOUSTICS

Arrays of transducers can re-create a sound and send it back to its source
as if time bad been reversed. The process can be used to destroy kidney
stones, detect defects in materials and communicate with submarines

by Mathias Fink

n a room inside the Waves and Acoustics Laboratory in  the loudspeakers, the sound of the “olleh” converges onto

Paris is an array of microphones and loudspeakers. I your mouth, almost as if time itsclf heen reversed. In-

deed, the process is known as time-reversed acoustics, Jnd

the array in front of you is acting as a “time-reversal mirrc
Ity The
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Acoustic chamber

ACOUSTIC SOURCE
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RECORDING STEP TIME-REVERSAL AND REEMISSION STEP

SARAH L. DONELSON

ACOUSTIC TIME-REVERSAL MIRROR operates in two In the second step (right), each transducer plays back its sound
steps. In the first step (left) a source emits sound waves (orange) ~ signal in reverse in synchrony with the other transducers. The
that propagate out, perhaps being distorted by inhomogeneities ~ original wave is re-created, but traveling backward, retracing its
in the medium. Each transducer in the mirror array detects the passage back through the medium, untangling its distortions
sound arriving at its location and feeds the signal to a computer.  and refocusing on the original source point.
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Solitary wave: Fouque, Garnier, Mufioz & N., PRL '04
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Shock structure due to the stochastic forcing of waves

In order to understand NONLINEAR PDEs
with TIME-REVERSED data

First we address the DIRECT

NONLINEAR SCATTERING PROBLEM

= NonLin Hyperbolic PDEs with
HIGHLY VARIABLE coefficients
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PHYSICAL MODEL: Long propagation distances + detailed TOPOGRAPHY

INUNDATION

PROPOGATION

" GENERATION

Scientific American '99
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Shock structure due to the stochastic forcing of waves

« = nonlinearity = amplitude/depth

3 = dispersion = depth/wavelength

v = disorder/wavelength

h(x) = DISORDERED TOPOGRAPHY PROFILE
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Shock structure due to the stochastic forcing of waves

Reflection-Transmission of waves
&
Time-reversal of waves

...in the diffusion approximation regime:

(a) Linear Hyperbolic: (a« =3 =0) "~ Acoustics
(b) Linear Dispersive: (a« =0;3 = ¢)

(c) Nonlinear Hyperbolic: (a =¢;8=0)
(d) Convection-diffusion: (o =¢; = ¢)

(e) Solitary waves: (o =3 =¢)
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Shock structure due to the stochastic forcing of waves

oVERVIEW of RESULTS and THEORY
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Shock structure due to the stochastic forcing of waves

SETUP for THEORY and SIMULATIONS:

Typical wave profiles: Gaussian, dGaussian/dx and Solitary wave.
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Shock structure due to the stochastic forcing of waves

INVISCID NonlLinear Shallow Water system w/ a dGaussian/dx pulse
2x2 CONSERVATION LAW with DISORDERED variable COEFFICIENTS

RANDOM Forcing = shock structure: Fouque, Garnier & N., Physica D '04.
ASYMPTOTICS = wave elevation = n(x, t) governed by VISCOUS Burgers’

"Apparently viscous" profile att=6.25(1.25)15.0
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MATH TOOL: a LIMIT THEOREM for Stochastic ODEs
Khasminskii’'s Theorem (*): consider the IVP

w e (A P)
dxe
;t =eF(t,x;w), x(0) = xo
and d
y —
dr (.y)7 }’( ) X0,

where F(t,-;w) is a stationary process, ergodic... with

_ 1T 5
F(x) = _lim 7/0 E{F(t, x; w)}dt.

T—oo T

Then

o<t

supE{|xz(t) — y(t)|} ~ v/ on the time scale 1/z.

(*) R.Z. Khasminskii, On stochastic processes defined by differential equations with a small parameter, Theory
Prob. Applications, Volume Xl (1966), pp.211-228.

R.Z. Khasminskii, A limit-theorem for the solutions of differential equations with random right-hand sides, Theory
Prob. Applications, Volume Xl (1966), pp.390-406.
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Shock structure due to the stochastic forcing of waves

Setting up Shallow Water Eqn. for Khasminskii’s theorem...
...include viscosity ;1 = €2 pyp...

on  O(l+eh+an)u

ot + Ox =0
Ou  on . .0u_ 92“
ot T ox  Mox T Moxe:

With the underlying Riemann Invariants, to leading order...
o (A o (A W 1
w(5) - eom(s) () (s )

g ( A+3B ) ot
o (1 1Y P AN o
+€2<1 1>8t2 B + 0(e?),

...and using a Lagrangian frame = random ODE-like setting.
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Shock structure due to the stochastic forcing of waves

Khasminskii’s theorem =- The front pulse/rlght Riemann Inv.
Be(x,7) := B(x/e?,7 + x/?) converges to B

é(XvT) =B (X,T — bo(0) W, — ¢O(O)x> .

V2 2

where B, satisfies the deterministic Burgers equation

0B, 3@0 dBO
LByt 2R
Ox ot or
Bo(0,7) = (), r=t-z 2= / ¢ 1(s)ds.
JO

L can be written explicitly in the Fourier domain as

() W 2 S .
| cBryear - (‘”‘" ¢ B2 ) | Btrerar

Garnier & N., PRL 2004, PhysFlu, May 2006 = EDDY VISCOSITY

bo(w) = /000 E[h(0)h(x)] exp(iwx)dx
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Direct SWE numerics versus effective Burgers equation

GAUSSIAN WAVE PROFILE
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DETERMINISTIC PROFILES with RANDOM ARRIVAL TIMES

Impulse responses based on data and analysis
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Very Recent! Solitary wave DECAY: Garnier, Mufioz & N., submitted '06

Using underlying Riemann Invariants for the zero-dispersion system

Get coupled variable-coefficient KdV system

0'20 10

Dotted line: solitary wave o
Solid line: linear regime o
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03, 19 realizations.
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_ Shock structure due to the stochastic forcing of waves
How do we address this non-hyperbolic problem?

with IMPROVED

Boussinesq systems

Mufioz & N. IMA Appl. Math. 2006
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Shock structure due to the stochastic forcing of waves

Evaluating the horizontal velocity at an INTERMEDIATE depth
(=20 €|0,1]

be(&, 2o, t) = u(&, t) = fe — 2202,%& +0(62)

FREE SURFACE CONDITIONS reduce to...
...the BOUSSINESQ-family of equations

M(&)ne + Kl - 5(2)) uLJrz {(202 — ;) u&L -0

u? I}
ur +ne +a (> +‘§(Zo2—1)u55t20
'3

2M>(¢)
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Shock structure due to the stochastic forcing of waves

BOUSSINESQ-family of equations

M(&)ne + Kl + Aj(Z)) U:|£Jr§ KZO2 - ;) u5§L —0

2 /
u 3
U + ¢ + () + 2(Zg% = 1)uger = 0
3

2M2(¢) 2
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The underlying Riemann invariants satisfy, up to order q,

2
Ar — Ac + (3A+B)A£—§Aggt 2(3 Zo)ngt
11
+§(M*1)(A§*B£) 2(I\/l) ¢(A—B)
1 a, 2 1
+OZAA€(]. — W) + g(m — M — 1)(A — B)(Ag — B&)
a,l 5 5
16(M)§ (A—B)? + M(3A +2AB — BY)
«o 2
Br+35+4(3B+A)Bg+§Bsst §(3 Z§)Age
11 1
S5 S 1)(Ae— Be) 4 (- )e(A—B
50— DA = Be) + S (57l )
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Shock structure due to the stochastic forcing of waves

Coupled KdV equations for the Riemann-Invariants:

In absence of random perturbations (M = 1):

8 8.2
A —Ac+ (3A +B)A; — 6A5££ = §(§ — 70%)Bger
B, +B 3B +A)B /33 52 Z02)A
e+ £+4( +A)Be + €££—§(§— 0°)Aget
By choosing
2

the system then supports pure left- and right-going waves
satisfying a KdV-like equation.

HYPERBOLIC PDEs/Lyon, 2006 André Nachbin

IMPA  http://www.impa.br/~nachbin



Shock structure due to the stochastic forcing of waves

By is the solution of the deterministic equation

890 ~ 30&0 83() ﬁo 63 Bo
— =LBy + —B 1
¢ LBy + 05 6 9.3 (1)
By(0,7) = f(7), (2)
where the operator £ can be written explicitly in the Fourier
domain as
00 . ba(2 2 00 .
/ LB(T)e"“ dT = _ bo(2w)e Z})w / B(r)e'“ dr

L results from the action of the effective pseudo-viscosity
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Thank you for your attention.

IMPA, Rio de Janeiro, Brazil.

HYPERBOLIC PDEs/Lyon, 2006 André Nachbin  IMPA  http://www.impa.br/~nachbin



Shock structure due to the stochastic forcing of waves

Limit Theorem versus Mean Field Theory:
Over-estimation of attenuation

HYPERBOLIC problem: advection with a random speed

Gaussian pulse (initial data) with a normally distributed speed.

40 realizations 200 realizations
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Shock structure due to the stochastic forcing of waves

Let Zo = v/2/3 and ue(§, t) = —M(&)ne + O(a, B):

P

(M()n)e + [(1 + A%) UL - g(/w(g)n)&t ~0

Ug+ne + o u72 —gu =0
t T ¢ 2M2(§) ; 6 &t —

Quintero and Mufioz (Meth.Appl.Anal. '04) proved existence, uniqueness etc... by

finding a conserved quantity. Main tool: Bona & Chen '98

<I — 2055> Ul =Ks U,  Ks(s) = —;\/gsign(s)e_\/%s

/% Kl + a”/\(ﬂé(,;))) IM(E)n(&, )] + M(E)n (€, t)] de

N =
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TIME-REVERSAL REFOCUSING: WAVEFORM inversion

» linear hyperbolic = Statistical Stability
» complete refocusing = recover original profile
» Solitary wave: TR in reflection and transmission.
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Statistical stability: 10 realizations

Alfaro et al., submitted '06

10 REALIZATIONS

0.8

o

pulse AMPLITUDE

[ arrival TIME about the center of the refocused pulse
-1 [ 1 5
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