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MotivationMotivation

Generation of low-reflecting boundary conditions on open boundaries for 
anisotropic elastodynamics is a challenging problem.  The PML method is not 
stable in this case, see 

Ø Beaches E., Fauqueux S., Joly P., Stability of perfectly matched layers  group 
velocities and anisotropic waves, JCP, 188, 2003, 399 – 433; 

Ø D. Appelö and G. Kreiss, A New Absorbing Layer for Elastic Waves, JCP, 215, 
2006, 642 – 660. 
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LowLow--reflecting boundary conditions (LRBC)reflecting boundary conditions (LRBC)

LRBC on “open boundaries” are needed for modeling of wave propagation using a 
bounded computational domain.

Typical setup:

Remark: In the domain of interest the governing equations and geometry can be 

much more complex than outside C. 

Generation of LRBC on G is an additional problem which is set up by considering 

auxiliary external Initial Boundary Value Problems (IBVPs) outside C. 

Domain of interest

Computational domain  C

Γ
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Here      is density;          is the Cartesian velocities;     are (constant) elastic 
coefficients of the Hook’s law written in the matrix form,                       .

In polar coordinates for the velocity vector                    the system reads:

Anisotropic elasticity, 2D orthotropic mediaAnisotropic elasticity, 2D orthotropic media

We consider 2D elastodynamic equations: 
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where             is Dirac’s delta function;

is a basis on G , i.e. 

(in 2D it is constructed, e.g., by using       )

Generation of LRBC operator, main stepsGeneration of LRBC operator, main steps

Governing equation in 2D space:                        

{sin ,cos }θ θk k

Main steps:

Stage 1: consider a set of auxiliary external  IBVPs outside C (set wrt “m”):
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Generation of LRBC operator (cont.)Generation of LRBC operator (cont.)

Stage 2: make Laplace transform and pass to elliptic  BVPs (parameterized by    ):   

C

2 2ˆ ˆ 0 in /
ˆ | ( ) (2)
ˆ | 0

m m

m m

m
r

s L R C

ϕ θΓ

→∞

 − =
 =
 =

  

 

 

E E

E

E
Γ

Stage 3: solve (numerically) the problems and evaluate

Thus we obtain the Dirichlet-to-Neumann maps 
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Thus we obtain the Poincare-Steklov operator in space of Fourier coefficients: 

or, in matrix form:

Generation of LRBC operator (cont.)Generation of LRBC operator (cont.)

Stage 4: form matrix of the Poincare-Steklov operator:

we take arbitrary data on G
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Generation of LRBC operator (cont.)Generation of LRBC operator (cont.)

First we represent matrix             by sum of three matrices to take into account 
asymptotic at

Stage 5: make inverse Laplace transform for the P-S operator.
ˆ ( )sP

:→ ∞s
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ˆ ˆ ˆ( ) ( ); , are , ( ) (1)= + + =s s s consts s oP P P K P P K

Then we calculate rational approximations to each entry in          such that 
all poles have negative real parts, i.e.
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Stage 6: compose azimuth modes:

Denote by       the operator of Fourier decomposition for

i.e.                                       Consequently, 

Remark: the explicit form of kernels                   is

that permits to treat convolutions by stable recurrent formulas.

Generation of LRBC operator (cont.)Generation of LRBC operator (cont.)
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Governing equations are implemented in the polar system of coordinates. We consider 
the task in a circle: 
 
                                              
                        

 

 

 

 

 
 
 

• At 0 2R =  we prescribe Dirichlet data (pulse) to initiate elastic waves;  

• G  with radius 10RG =  is the external boundary where we put LRBC (with 36 

azimuth harmonics).   
 

 R0 
Γ

RG (LRBC) 

Setup of the test problemSetup of the test problem



HYP 2006, Lyon,  July 17-21 11

Test problem: reference solutionTest problem: reference solution

RG (LRBC)

The verification of LRBC is made by comparing with the reference solution of a 

second problem having   8x bigger external radius (extended domain).

Comparison of two solutions in C-norm is made at r < RG.

RExtended
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Test calculationsTest calculations

Parameters of anisotropic media are taken from 

anisotropic medium, case IV:
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Beaches E., Fauqueux S., Joly P., Stability of perfectly matched layers  group velocities 
and anisotropic waves, JCP, 188, 2003, 399 – 433:
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Anisotropic caseAnisotropic case--IV,   t=0.52IV,   t=0.52
LRBC                                                   Reference

Ur

Utheta
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Anisotropic caseAnisotropic case--IV,   t=1.92IV,   t=1.92
LRBC                                                   Reference

Ur

Utheta



HYP 2006, Lyon,  July 17-21 15

Anisotropic caseAnisotropic case--IV,   t=2.62IV,   t=2.62
LRBC                                                   Reference

Ur

Utheta
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Anisotropic caseAnisotropic case--IV,   t=3.32IV,   t=3.32
LRBC                                                   Reference

Ur

Utheta
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Anisotropic caseAnisotropic case--IV,   t=4.01IV,   t=4.01
LRBC                                                   Reference

Ur

Utheta
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Anisotropic caseAnisotropic case--IV,   t=4.71IV,   t=4.71
LRBC                                                   Reference

Ur

Utheta
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Anisotropic caseAnisotropic case--IV,   t=5.41IV,   t=5.41
LRBC                                                   Reference

Ur

Utheta
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Anisotropic caseAnisotropic case--IV,   t=6.11IV,   t=6.11
LRBC                                                   Reference

Ur

Utheta
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Anisotropic caseAnisotropic case--IV,   t=6.81IV,   t=6.81
LRBC                                                   Reference

Ur

Utheta
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Anisotropic caseAnisotropic case--IV,   t=7.50IV,   t=7.50
LRBC                                                   Reference

Ur

Utheta
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Anisotropic caseAnisotropic case--IV,   t=12.0IV,   t=12.0
LRBC                                                   Reference

Ur

Utheta
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Difference between LRBC and Reference solutionDifference between LRBC and Reference solution

t=2.6

t=7.5

t=5.4

t=12.7
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LRBC stability at large timesLRBC stability at large times
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• A novel approach to generate numerical LRBCs for anisotropic time-domain 
wave propagation problems is proposed and implemented in 2D

• LRBCs are efficient in both isotropic and anisotropic media, including the case 
where PML approach fails (case IV)

• LRBC operator does not depend on the meshing inside the computational 
domain

• LRBC efficiency (amplitude of reflected waves) can be automatically controlled 
during generation of the operator

• It is possible to generate in advance a library of LRBC matrices for given media 
parameters and geometry of computational domain

• The algorithm is highly parallelized

ConclusionsConclusions
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• The approach is still computationally expensive and must be revised and 
improved to enhance the performance

• Real*16 accuracy

• 3D problems

Further researchFurther research
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Stage 2 [Laplace image]: we take a finite interval

and choose set of knots

which are representative enough to consider

discrete counterparts of  kernels

for rational approximation (Stage 5). 

In particular, the Chebyshev’s nodes are

used: 

Main features of the algorithm for discretized system:

Stages 1–6: we take discrete azimuth basis

LRBC operator, numerical aspectsLRBC operator, numerical aspects
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Stages 3-4 [P-S operator]: we discretise governing equations by pseudospectral derivatives

in azimuth direction (uniform grid) and finite differences in radial direction (exponential

grid) and make massive calculations to evaluate each   with a guarantied

accuracy,                      (controlled by mesh convergence).   Number of separate tasks is         

Thus we form the matrix

LRBC operator, numerical aspects (cont.)LRBC operator, numerical aspects (cont.)
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Stage 5 [inverse Laplace transform]:
Constant matrices are estimated from the rational approximations 

on the interval                 ( is calculated by Chebyshev-Pade algorithm), 

and the reminder matrix is formed:

Rational approximations are calculated for each                 : 

(indices       at            are omitted);   L=8 .
The minimization is made by an optimization algorithm.

1 0,P P
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ˆ ˆ( ) : ( )= − −j j js s sK P P P
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LRBC operator, numerical aspects (cont.)LRBC operator, numerical aspects (cont.)
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nR s
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As a result we obtain the rational functions                 satisfying

They are explicitly inverted from the Laplace space:

Stage 6 [discrete NRBC]: introducing matrices                         of the discrete
Fourier transform for vector-functions                         in  sin-cos basis, we write
out our discrete BC:
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f f- - -f t f
t n

∂ ∂
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1 1 1Q P Q Q P Q Q K Q%
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nK s%
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LRBC operator, numerical aspects (cont.)LRBC operator, numerical aspects (cont.)

Remark: in isotropic case 1 1 0 0, , ( ) is diagonal= = %p p tP I P I K
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LRBC matrix, residualLRBC matrix, residual ˆˆmax | ( ) ( ) |− %
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LRBC matrix, amplitudeLRBC matrix, amplitude max | ( ) |% m
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LRBC matrix, amplitudeLRBC matrix, amplitude 1| |m
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LRBC matrix, entryLRBC matrix, entry (14,1) (18,3)= → =n m
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