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Motivation

Generation of low-reflecting boundary conditions on open boundaries for
anisotropic elastodynamics is a challenging problem. The PML method is not
stable in this case, see

» Beaches E., Fauqueux S., Joly P., Stability of perfectly matched layers group
velocities and anisotropic waves, JCP, 188, 2003, 399 — 433;

» D. Appelb and G. Kreiss, A New Absorbing Layer for Elastic Waves, JCP, 215,
2006, 642 — 660.

t=2s t=8s t=12s

Figure 13: Some snapshots at different times for the orthotropic media (IV).
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Low-reflecting boundary conditions (LRBC)

LRBC on “open boundaries” are needed for modeling of wave propagation using a
bounded computational domain.

Typical setup:

Domain of interest

Computational domain C

Generation of LRBC on I' is an additional problem which is set up by considering

auxiliary external Initial Boundary Value Problems (IBVPs) outside C.

Remark: In the domain of interest the governing equations and geometry can be
much more complex than outside C.
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Anisotropic elasticity, 2D orthotropic media

We consider 2D elastodynamic equations:
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Here p is density; (V;,7,) is the Cartesian velocities; { } are (constant) elastic
coefficients of the Hook’s law written in the matrix form, " = gm :

In polar coordinates for the velocity vector f = (V,, fue) the system reads:

2
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where A'7(r,0), A'(r,0) are 2x2 matrices
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Generation of LRBC operator, main steps
Governing equation in 2D space: f, —Lf =0

Main steps:

Stage 1: consider a set of auxiliary external IBVPs outside C (set wrt “m”):
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where 0(t) is Dirac’s delta function;

{"(0)}, _,isabasisonI', ie. f(¢,0)= Zcm ()" (0)

(in 2D it is constructed, e.g., by using {sink0,cosk6} )
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Generation of LRBC operator (cont.)

Stage 2: make Laplace transform and pass to elliptic BVPs (parameterized by s ):

————————— e
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. s?€" —LE™ =0 in R*/C
r0 1E™ | =<p'"<0> (2)
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Stage 3: solve (numerically) the problems and evaluate a—gm(r,e) on I’
n

Thus we obtain the Dirichlet-to-Neumann maps

0" (0) =y (O)[s] ( Gi "0,r), r= Rj
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Generation of LRBC operator (cont.)

Stage 4: form matrix of the Poincare-Steklov operator:

we take arbitrary data on I
[(5,0)=2¢" ()" (6)

and write the representation of its normal derivative on I'

= 7s.0)- NLORCENIOWACHO
Thus we obtain the Poincare-Steklov operator in space of Fourier coefficients:
d"(s) = > Pl (s)é"(s) (%f(&@) = ;5’"@)@0"(9))
or, in matrix form:n
d()=Pe)i(s),  e={e e )
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Generation of LRBC operator (cont.)

Stage 5: make inverse Laplace transform for the P-S operator.

First we represent matrix P(S) by sum of three matrices to take into account
asymptotic at § — 00 :

P(s) = Ps+P,+ K(s); P, P, are consts, K(s)=0(1)

Then we calculate rational approximations to each entry in K(s) such that
all poles have negative real parts, i.e.

n L) m
RIM(s)~K"(s)= —2L_ Re(fl)<8 <0
=1S—Buy

Finally the inverse Laplace transform of &(S) = ls(s)é(s) gives:

oc(t)

d(r) =P, +Pye(t) + K(1) *e(2)
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Generation of LRBC operator (cont.)

Remark: the explicit form of kernels [%}fl" (1) is

L,
K'(0)=2 a,' exp(B," 1), Re(B,")<6 <0
=1

that permits to treat convolutions by stable recurrent formulas.

Stage 6: compose azimuth modes:

Denote by Q the operator of Fourier decomposition for f(¢,0) = Zcm ()" (0)

m

i.e. Q:f(t,@)—){cm(t)}. Consequently, Q! :{cm(t)}, {dm(t)}—>f, dg

on
The LRBC in the physical space reads:

o o
ot on

Q'PQ +Q'P,Qf +Q! {K(t) *}Qf — 0
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Setup of the test problem

Governing equations are implemented in the polar system of coordinates. We consider
the task in a circle:

Ry (LRBC)

e At Ry = 2 we prescribe Dirichlet data (pulse) to initiate elastic waves;

e [' with radius Ry = 10 is the external boundary where we put LRBC (with 36

azimuth harmonics).
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Test problem: reference solution

R, (LRBC)

\
o RExtended \—

The verification of LRBC is made by comparing with the reference solution of a
second problem having &x bigger external radius (extended domain).
Comparison of two solutions in C-norm is made at » < R
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Test calculations

Parameters of anisotropic media are taken from

Beaches E., Fauqueux S., Joly P., Stability of perfectly matched layers group velocities

and anisotropic waves, JCP, 188, 2003, 399 — 433:

anisotropic medium, case IV: ci1 =4, c2 =20, e33=2, ¢12="75

ko 827}21 _ 1 827}21 + B3 827}21 N (633 N 612) 827}2 |
ot o, o, oz,0z,

ho 827}22 _ .33 827}22 4 22 827}22 N (033 N 012) 827}1 .
ot o, o, Oz,0z,

s e e
t=2s t=8s t=12s t=20s

Figure 13: Some snapshots at different times for the orthotropic media (IV).
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Anisotropic case-lV, t=0.52
LRBC Reference

W 1205236 mine-0.1 2401 mas=Z.58
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Anisotropic case-lV, t=1.92
LRBC Reference

Wh1.ﬂ1ﬂrﬂn—4}_ﬁﬁﬂm‘lm meiaﬂmﬂmmm
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Anisotropic case-lV, t=2.62
LRBC Reference

V. (=2.618 mio=-0.43618 ma=1.0232 W 12618 mins-0 43750 max=1 0851
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Utheta
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Anisotropic case-lV, t=3.32
LRBC Reference
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Anisotropic case-lV, t=4.01
LRBC Reference
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Anisotropic case-lV, t=4.71
LRBC Reference

Wi b= 7124 rrene-0. 28 max=0 17510
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Anisotropic case-lV, t=5.41
LRBC Reference

Vi 15 4105 min=-0. 13426 max=0 16618 VI 254105 mine-0. 15323 ma=0. 16761
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Anisotropic case-lV, t=6.11
LRBC Reference
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Anisotropic case-lV, t=6.81

 Reference
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Anisotropic case-lV, t=7.50
LRBC Reference
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Anisotropic case-lV, t=12.0
LRBC o _@eferen_ce_ |

T,
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Difference between LRBC and Reference solution
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LRBC stability at large times

' I time of reflected wave in Uref

| | | | I | | | | | I | | | | I | | | | I | | | | I | | | | I | | | | I | |
20 40 60 80 100 120 140
time
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Conclusions

* A novel approach to generate numerical LRBCs for anisotropic time-domain
wave propagation problems is proposed and implemented in 2D

* LRBCs are efficient in both isotropic and anisotropic media, including the case
where PML approach fails (case V)

 LRBC operator does not depend on the meshing inside the computational
domain

* LRBC efficiency (amplitude of reflected waves) can be automatically controlled
during generation of the operator

* It is possible to generate in advance a library of LRBC matrices for given media
parameters and geometry of computational domain

 The algorithm is highly parallelized
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Further research

- The approach is still computationally expensive and must be revised and
improved to enhance the performance

- Real*16 accuracy

* 3D problems
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LRBC operator, numerical aspects

Main features of the algorithm for discretized system:

Stages 1-6: we take discrete azimuth basis {sinkf,cosk6},k =0,1,...,M; (M =20);

Stage 2 [Laplace image]: we take a finite interval
[0, S

x 10 Laplace: DtMN(s)
maX T T T

] and choose set of knots {s,} €[0,S

max ]

which are representative enough to consider 05 k

discrete counterparts of kernels f’nm (s j)

for rational approximation (Stage 5).
In particular, the Chebyshev’s nodes are A5}

used: 27

= I PM(s)=PYs— Py
S. :M(l—cos(n] 05)), 7=1..,J 3 n (5)—hy On

100 200 300 400 500

J ~100 i 5
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LRBC operator, numerical aspects (cont.)

Stages 3-4 [P-S operator]: we discretise governing equations by pseudospectral derivatives
in azimuth direction (uniform grid) and finite differences in radial direction (exponential
grid) and make massive calculations to evaluate each f’nm (sj) with a guarantied

accuracy, €pg ~ 10_10 (controlled by mesh convergence). Number of separate tasks is

4* (M +1)*J,;

- -~

. (26" —LE™ =0 in R*/C
GF (ke

r—>0

Em| =0

Thus we form the matrix lA)(SJ-).
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LRBC operator, numerical aspects (cont.)

Stage 5 [inverse Laplace transform|:
Constant matrices P, P, are estimated from the rational approximations

R (s,)~ P'(s,)

on the interval [0, S, ] (R"(s) is calculated by Chebyshev-Pade algorithm),

max

and the reminder matrix is formed:

K(s;):=P(s;)-Ps, - P,

Rational approximations are calculated for each K’ (s;) :

2
L
Z L__K(s;)|] —min, Re(B)<5<0
J

" at K,L,a,ﬂ are omitted); L=§ .

n

(indices

The minimization is made by an optimization algorithm.
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LRBC operator, numerical aspects (cont.)

As a result we obtain the rational functions [Z,T(S) satisfying

K} (s;)—K)'(s;) | < &g (ex~107%)

They are explicitly inverted from the Laplace space:

Lm

K7'(s) - K20y =Y ol exp(Bli),  Re(Br)) <8 <0
/=1

Stage 6 [discrete NRBC]: introducing matrices Q;\/}, Q,, ofthediscrete
Fourier transform for vector-functions [ = (V,,Vg) in sin-cos basis, we write
out our discrete BC:

wPiQu 2{ - 2’; + Qi PyQu / + Qi {K(0)*}Qy f = 0

Remark: in isotropic case P, = pI, P,=p,I, K(¢) is diagonal
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LRBC matrix, residual max | Ky'(s;)- K2 (s i)
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LRBC matrix, amplitude |73 |

. 0 0 . (s
Z\/IIPIQMa_J; _é + QuPQy / + Qyy {K(t) *}QMf =0

O Oe+0 .. le-7

O le-7 .. le-6
0% 0 le-6 .. le-5
1 O le-b .. le-4
i B le-4 .. le-3
. B le-3 .. le-2
= B le-2 .. le-1

B le-1 .. le+0
6].. |I-
'7' | B |

—
8y |
9 | |
10 T T
— — —
| |
o i I .1: 1
12 — — * =
13 “ |
14 -
—

|
15 1
16 -
17 ~ |
18 -
19 =
20 B

01 2 3 45 6 7 8 91011121314151617181920

HYP 2006, Lyon, July 17-21




poles of [é,’,l" (s)

K} (s)

LRBC matrix, entry »n =(14,1) -» m = (18,3)
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