Eberlein oligomorphic groups

Tomás Ibarlucía

Institut Camille Jordan Université Claude Bernard Lyon 1

When topological dynamics meets model theory

Marseille, July 2nd, 2015.

Based on joint work with Itaï Ben Yaacov and Todor Tsankov.

The Fourier–Stieltjes algebra

Let G be a topological group. We denote by C(G) the algebra of complex-valued bounded continuous functions on G.

A function $f \in C(G)$ is positive definite if

$$\sum_{ij}c_i\overline{c_j}f(g_j^{-1}g_i)\geq 0$$

for every $g_1, \ldots, g_n \in G$ and $c_1, \ldots, c_n \in \mathbb{C}$.

The linear span of the family of positive definite functions on G is denoted by B(G). It is actually a subalgebra of C(G), the Fourier-Stieltjes algebra of G.

Fact (Gelfand–Naimark–Segal construction)

The following are equivalent:

- 1. $f \in B(G)$.
- 2. There is a continuous unitary representation $\pi : G \to U(\mathcal{H})$ and vectors $v, w \in \mathcal{H}$ such that, for every $g \in G$,

$$f(g) = \langle v, \pi(g)w \rangle.$$

The WAP algebra

A function $f \in C(G)$ is weakly almost periodic if the orbit Gf is weakly precompact in C(G). They form an algebra, WAP(G).

Fact (Grothendieck's double limit criterion, Megrelishvili's reflexive representation theorem)

The following are equivalent:

- 1. $f \in WAP(G)$.
- 2. For any sequences $g_i, h_j \in G$ we have (whenever both limits exist)

$$\lim_{i} \lim_{j} f(g_i h_j) = \lim_{j} \lim_{i} f(g_i h_j).$$

3. There exists a continuous reflexive representation $\pi: G \rightarrow Iso(V)$ and vectors $v \in V$, $w \in V^*$ such that

$$f(g) = \langle v, \pi(g)w \rangle$$
 for all $g \in G$.

Eberlein groups

It follows that $B(G) \subset WAP(G)$. However, WAP(G) is always closed in the norm topology of C(G), whereas B(G) is almost never closed.

Definition

A topological group G is Eberlein if $\overline{B(G)} = WAP(G)$.

Examples

- Compact groups are Eberlein (Peter–Weyl).
- ► The group Z is *not* Eberlein (Rudin). Neither is any locally compact noncompact nilpotent group (Chou).
- ► Eberlein groups include SL_n(ℝ) (Veech), U(ℓ²) (Megrelishvili), Aut([0,1], μ) (Glasner) or S(ℕ) (Glasner–Megrelishvili).

The algebra UC(G)

A function $f \in C(G)$ is UC if for every $\epsilon > 0$ there is a neighborhood $1 \in U \subset G$ such that

$$|f(ugu') - f(g)| < \epsilon$$

for every $g \in G$ and $u, u' \in U$. We have $WAP(G) \subset UC(G)$.

Definition

We say that G is a WAP group if WAP(G) = UC(G), and that it is strongly Eberlein if $\overline{B(G)} = UC(G)$.

Problem (Glasner–Megrelishvili) Show a WAP group that is not Eberlein.

Oligomorphic groups

A topological group G is oligomorphic if it can be presented as a closed permutation group $G \leq S(X)$ of a countable set whose orbit spaces X^n/G are finite for every n.

Equivalently: G = Aut(M) for some \aleph_0 -categorical classical structure M (Ryll-Nardzewski).

Generalization: closed groups of isometries $G \leq Iso(X)$ of Polish metric spaces with compact closed-orbit spaces $X^n /\!\!/ G$ are exactly the Roelcke precompact Polish groups (Ben Yaacov–Tsankov, Rosendal).

Equivalently: G = Aut(M) for some \aleph_0 -categorical metric structure M.

A number of tools are available for oligomorphic groups.

- Unlike many other cases, B(G) is separable.
 (UC(G) is separable.)
- We have a Classification Theorem for unitary representations of oligomorphic groups (Tsankov).
- We have a model-theoretic interpretation of the WAP semigroup compactification (Ben Yaacov–Tsankov).

Algebras	Matrix coefficients	Formulas
$f \in A$	$egin{aligned} f(g) &= \langle v, \pi(g) w angle, \ \pi: \mathcal{G} & o lso(\mathcal{V}) \end{aligned}$	$f(g) = \varphi(a, gb)$

Matrix coefficients	Formulas
$egin{aligned} f(g) &= \langle v, \pi(g) w angle, \ \pi: G & o lso(V) \end{aligned}$	$f(g) = \varphi(a, gb)$
$V = \mathcal{H}$ Hilbert V reflexive	
	$egin{aligned} f(g) &= \langle v, \pi(g) w angle, \ \pi &: \mathcal{G} o Iso(\mathcal{V}) \ \mathcal{V} &= \mathcal{H} ext{ Hilbert} \end{aligned}$

Algebras	Matrix coefficients	Formulas
$f \in A$	$egin{aligned} f(g) &= \langle v, \pi(g) w angle, \ \pi: G & o lso(V) \end{aligned}$	$f(g) = \varphi(a, gb)$
B(G)	$V = \mathcal{H}$ Hilbert	
WAP(G)	V reflexive	
Tame(G)	V Rosenthal	
RUC(G)	V Banach	

Algebras	Matrix coefficients	Formulas $(A \cap UC(G))$
$f \in A$	$egin{aligned} f(g) &= \langle v, \pi(g) w angle, \ \pi: G & o lso(V) \end{aligned}$	$f(g) = \varphi(a, gb)$
B(G) WAP(G) Tame(G) RUC(G)	$V = \mathcal{H}$ Hilbert V reflexive V Rosenthal V Banach	arphi stable $arphi$ NIP all formulas

Algebras	Matrix coefficients	Formulas $(A \cap UC(G))$
$f \in A$	$egin{aligned} f(g) &= \langle v, \pi(g) w angle, \ \pi: G & o lso(V) \end{aligned}$	$f(g) = \varphi(a, gb)$
B(G) WAP(G) Tame(G) RUC(G)	$V = \mathcal{H}$ Hilbert V reflexive V Rosenthal V Banach	$arsigma arphi ? \ arphi \$ stable $arphi \$ NIP all formulas

Formulas generating B(G) for oligomorphic G

Let *M* be a classical \aleph_0 -categorical structure, G = Aut(M). The first basic observation is the following.

Lemma

If a formula $\varphi(x, y)$ defines an equivalence relation on M^n (more generally, if $\varphi(x, b)$ defines a weakly normal set), then $g \mapsto \varphi(a, gb)$ is in B(G).

Proof.

We have $\varphi(a, gb) = \langle e_{[a]_{\varphi}}, \pi(g) e_{[b]_{\varphi}} \rangle$ for the natural map $\pi : G \to \mathcal{U}(\ell^2(M^n/\varphi)).$

Before we give a converse to this statement we recall the general form of the unitary representations of G.

Classification theorem for unitary representations of oligomorphic groups

Fact (Tsankov)

Let G be an oligomorphic group.

- Every unitary representation of G is a direct sum of irreducible representations.
- Every irreducible unitary representation is a subrepresentation of the quasi-regular representation π_V : G → U(ℓ²(G/V)) for some open subgroup V ≤ G.

Remark: the matrix coefficients induced by π_V are generated by the basic ones

$$g \mapsto \langle e_{h_0V}, \pi_V(g)e_{h_1V} \rangle \ (= \langle e_{h_0V}, e_{gh_1V} \rangle).$$

Formulas generating B(G) for oligomorphic G

Now, every open subgroup $V' \leq G$ is the stabilizer of an imaginary element of M: there is a definable equivalence relation $\varphi(x, y)$ and a tuple $b \in M^n$ such that $V' = \{g \in G : M \models \varphi(b, gb)\}$.

Applying this to $V' = h_1 V h_1^{-1}$ and taking $a = h_0 h_1^{-1} b$, we have

$$\langle e_{h_0V}, \pi_V(g)e_{h_1V} \rangle = \varphi(a, gb).$$

We obtain the following:

Proposition

 $\overline{B(G)}$ is the closed algebra generated by the functions $g \mapsto \varphi(a, gb)$ where $\varphi(x, y)$ is a definable equivalence relation on M.

Semitopological semigroup compactifications

A semitopological semigroup compactification of G is a compact semitopological semigroup S together with a continuous homomorphism $\alpha : G \to S$ with dense image.

There is a one-to-one correspondence:

 $\begin{array}{ccc} \text{closed } G\text{-bi-invariant} \\ \text{subalgebras of WAP}(G) & \leftrightarrow & \text{semitopological semigroup} \\ A \subset \text{WAP}(G) & \mapsto & \text{maximal ideal space of } A \\ \hline functions \ f \in C(G) \ \text{that} \\ factor \ \text{through } \alpha & \leftarrow & \alpha : G \to S \\ & \text{inclusions} & \leftrightarrow & \text{quotients} \end{array}$

The WAP and Hilbert compactifications

In particular, the compactifications $G \to W$ and $G \to H$ corresponding to WAP(G) and $\overline{B(G)}$ have the structure of semitopological semigroups. We have a continuous surjective commuting homomorphism $W \to H$.

Moreover, they are semitopological *-semigroup compactifications, that is, they admit continuous involutions

 $^*: W \rightarrow W$ and $^*: H \rightarrow H$

extending the inverse function on the image of G.

Representations of semigroups

If V is a reflexive Banach space, we denote by $\Theta(V)$ the compact semitopological semigroup of linear contractions of V:

$$\Theta(V) = \{T \in L(V) : \|T\| \leq 1\}.$$

Fact (Shtern)

Every compact semitopological semigroup can be embedded in $\Theta(V)$ for some reflexive Banach space V.

Definition

A semitopological semigroup S is Hilbert representable if it can be embedded in $\Theta(\mathcal{H})$ for a Hilbert space \mathcal{H} .

Representations of semigroup compactifications

Fact

- H is Hilbert representable.
- If S is a Hilbert representable semitopological semigroup compactification of G, then it is a quotient of H.
- G is Eberlein if and only if W is Hilbert representable.

Question (Glasner-Megrelishvili)

Conversely, if a S is a semigroup quotient of H, is it Hilbert representable?

Theorem Yes if G is oligomorphic.

Regular elements, inverse semigroups

Let S be a semigroup. An element $p \in S$ is regular if there is $q \in S$ such that p = pqp. If moreover q = qpq, then q is an inverse of p. S is an inverse semigroup if every element has a unique inverse.

E.g. the inverse semigroup of partial bijections of a set.

Fact

- S is an inverse semigroup if and only if every element is regular and the idempotents commute.
- Let G → S be a semitopological *-semigroup compactification of G. The following are equivalent for any element p ∈ S.

1. p is regular.

- 2. p has a unique inverse.
- 3. $p = pp^*p$.

Stable independence, one-based structures

Let *M* be a saturated structure. A formula $\varphi(x, y)$ is stable if for every type $t \in S(M)$, the function $d_t \varphi : M^n \to \mathbb{C}$,

$$d_t\varphi(b)=\varphi(x,b)^t$$

is M-definable.

Given sets $A, B, C \subset M^{eq}$ (we fix an enumeration of A), we say that A is stably independent from C over B,

$$A \bigcup_{B} C$$

if for every stable formula φ the type $tp_{\varphi}(A/BC)$ extends to a type $t \in S(M)$ such that $d_t\varphi(y)$ is definable over $acl^{eq}(B)$.

We say that M is one-based for stable independence if for any algebraically closed sets $A, B \subset M^{eq}$ we have

$$A \bigcup_{A \cap B} B$$

Characterization

Theorem

Let G be an oligomorphic group, say G = Aut(M) for an \aleph_0 -categorical classical structure M.

- ► H is the semigroup of partial elementary maps of M^{eq} with algebraically closed domain. Equivalently, H is the closure of G in Θ(ℓ²(M^{eq})). In particular, H is an inverse semigroup (and so are all of its semigroup quotients).
- ► The following are equivalent:
 - 1. W is an inverse semigroup.
 - 2. The idempotents of W commute.
 - 3. *M* is one-based for stable independence.
 - 4. G is Eberlein.

• G is strongly Eberlein if and only if M is \aleph_0 -stable.

Examples

Remark: $\Theta(\ell^2)$ is not an inverse semigroup (but it is the WAP compactification of the Eberlein Roelcke precompact group $U(\ell^2)$).

Examples

- ► The groups S(N), Aut(Q, <), Homeo(2^ω) and Aut(RG) are Eberlein oligomorphic groups.
- ► The automorphism group of Hrushovski's ℵ₀-categorical stable pseudoplane is a WAP group that is not Eberlein.

A model-theoretic description of W

Let $G = \operatorname{Aut}(M)$ where M is an \aleph_0 -categorical metric structure. The left-completion $E = \widehat{G}_L$ is the semigroup of elementary embeddings $M \to M$. The UC-compactification coincides with $R = (E \times E) // G$. Then R can be seen as the space of types $[x, y]_R$ of pairs of embeddings.

The WAP-compactification is the quotient formed by the types [x, y] restricted to stable formulas.

The *-semigroup structure of W is as follows:

•
$$[x, y]^* = [y, x].$$

•
$$[x,y][y,z] = [x,z]$$
 if $x \perp_y z$.

Restriction to equivalence relations

By our characterization of $\overline{B(G)}$ we have that *H* is the quotient formed by the types $[x, y]_H$ restricted to definable equivalence relations.

Then the map

$$[x,y]_{\mathcal{H}}\mapsto x^{-1}\circ y$$

gives the identification of H with the semigroup of partial elementary maps $M^{eq} \rightarrow M^{eq}$ with algebraically closed domain.

The key to the equivalences of the main theorem is the following description of idempotents and regular elements.

Lemma

Let $p = [x, y] \in W$.

▶ p is an idempotent if and only if $x \equiv_{x \cap y} y$ and $x \bigcup_{x \cap y} y$.

• p is regular if and only if $x \bigcup_{x \cap y} y$.

Merci beaucoup.