Separably categorical structures and Banach representations

Tomás Ibarlucía

Institut Camille Jordan Université Claude Bernard Lyon 1

Paris, December 8, 2014.

Setting

Let G be a Polish group, and fix a compatible left-invariant metric d_L . The corresponding completion $M = \widehat{G}_L$ can be seen as a metric first-order structure with automorphism group G.

A compactification of G (equivalently, of M) will be a uniformly continuous G-map $\nu:G\to X$ with dense image, where X is a compact G-space.

The continuous functions $f: G \to \mathbb{R}$ that factor through a compactification of G are exactly the Roelcke uniformly continuous functions (i.e. functions uniformly continuous with respect to both the left and right uniformities of G). They form an algebra, UC(G).

Banach representations of compact *G*-spaces

If X is a compact G-space and V is a Banach space, a representation of X on V is given by a pair

$$\alpha: X \to V^*,$$

 $h: G \to \mathsf{Iso}(V),$

where h is a continuous homomorphism and α is a weak*-continuous G-map with respect to the dual action $G \times V^* \to V^*$, $(g\phi)(v) = \phi(h(g)^{-1}(v))$.

If $\mathcal K$ is a class of Banach spaces, the G-space X is said $\mathcal K$ -approximable if the family of its representations on Banach spaces $V \in \mathcal K$ separates points of X.

The dynamical hierarchy after Glasner and Megrelishvili

Theorem

Good dynamical properties of a continuous function $f:G\to\mathbb{R}$ are related to good classes $\mathcal K$ and the possibility of factoring f through a $\mathcal K$ -approximable compactification X, as follows.

Name:
$$f$$
 is The orbit $Gf \subset \mathcal{C}(X) \subset \mathcal{C}(G)$ \mathcal{K} is the class of AP is precompact Euclidean was weakly precompact reflexive Asplund has metrizable closure in \mathbb{R}^X Asplund Tame_u is precompact in $\mathcal{B}_1(X)$ Rosenthal UC $(-)$ Banach spaces

$$AP(G) \subset WAP(G) \subset Asp(G) \subset Tame_u(G) \subset UC(G)$$

Roelcke precompact Polish groups after Ben Yaacov and Tsankov

G is Roelcke precompact if for every open $U \subset G$ there is a finite $F \subset G$ such that UFU = G.

Theorem

Equivalently, G acts approximately oligomorphically on M: $M^n \not\mid G$ is compact for every n; in other words, M is an \aleph_0 -categorical structure.

Examples: S_{∞} , $\operatorname{Aut}(\mathbb{Q},<)$, $\operatorname{Aut}(RG)$, $\operatorname{Homeo}(2^{\omega})$, $\operatorname{Iso}(\mathbb{U}_1)$, $\operatorname{Aut}(\mu)$, $\operatorname{Aut}^*(\mu)$, $\operatorname{\mathcal{U}}(H)$, $\operatorname{Homeo}_+([0,1])$, etc.

Proposition

Take $f \in UC(G)$ and define $\varphi : G^2 \to \mathbb{R}$ by $\varphi(h,g) = f(h^{-1}g)$. Then φ extends to an invariant continuous function $\varphi : M^2 \to \mathbb{R}$.

f	V	φ
AP	Euclidean	
WAP	reflexive	
Asp	Asplund	
$Tame_u$	Rosenthal	
UC	Banach	any formula

Proposition

Take $f \in UC(G)$ and define $\varphi : G^2 \to \mathbb{R}$ by $\varphi(h,g) = f(h^{-1}g)$. Then φ extends to an invariant continuous function $\varphi : M^2 \to \mathbb{R}$.

f	V	arphi
AP	Euclidean	
WAP	reflexive	$\varphi(x,y)$ is stable
Asp	Asplund	
$Tame_u$	Rosenthal	
UC	Banach	any formula

Proposition

Take $f \in UC(G)$ and define $\varphi : G^2 \to \mathbb{R}$ by $\varphi(h,g) = f(h^{-1}g)$. Then φ extends to an invariant continuous function $\varphi : M^2 \to \mathbb{R}$.

V	arphi
Euclidean	$arphi_1 \in \mathit{acl}^{eq}(\emptyset)$
reflexive	$\varphi(x,y)$ is stable
Asplund	
Rosenthal	
Banach	any formula
	reflexive Asplund Rosenthal

Proposition

Take $f \in UC(G)$ and define $\varphi : G^2 \to \mathbb{R}$ by $\varphi(h,g) = f(h^{-1}g)$. Then φ extends to an invariant continuous function $\varphi : M^2 \to \mathbb{R}$.

f	V	arphi
AP	Euclidean	$arphi_1 \in \mathit{acl}^{eq}(\emptyset)$
WAP	reflexive	$\varphi(x,y)$ is stable
Asp	Asplund	
$Tame_u$	Rosenthal	$\varphi(x,y)$ is NIP
UC	Banach	any formula

Examples

- ▶ For the groups S_{∞} , $\operatorname{Aut}(\mu)$, $\operatorname{Aut}^*(\mu)$ and $\mathcal{U}(H)$ we have $\operatorname{WAP}(G) = \operatorname{UC}(G)$.
- ▶ For $Aut(\mathbb{Q}, <)$ we have $WAP(G) \subsetneq Tame_u(G) = UC(G)$.
- ▶ For Aut(RG), WAP(G) = Tame_u(G) \subsetneq UC(G).
- ▶ For Homeo(2^{ω}), WAP(G) = Tame_u(G) \subseteq UC(G).
- ▶ For $Iso(U_1)$, $Tame_u(G)$ is trivial.

The group $\mathsf{Homeo}_+([0,1])$, for which it is known that $\mathsf{WAP}(G)$ is trivial but $\mathsf{Tame}_u(G) = \mathsf{UC}(G)$, offers an example of a completely unstable NIP structure.

Functions as formulas, back

Proposition

Take $f \in UC(G)$ and define $\varphi : G^2 \to \mathbb{R}$ by $\varphi(h,g) = f(h^{-1}g)$. Then φ extends to an invariant continuous function $\varphi : M^2 \to \mathbb{R}$.

f	V	arphi
AP	Euclidean	$arphi_1 \in \mathit{acl}^{eq}(\emptyset)$
WAP	reflexive	$\varphi(x,y)$ is stable
Asp	Asplund	
$Tame_u$	Rosenthal	$\varphi(x,y)$ is NIP
UC	Banach	any formula

Functions as formulas, back

Proposition

Take $f \in UC(G)$ and define $\varphi : G^2 \to \mathbb{R}$ by $\varphi(h,g) = f(h^{-1}g)$. Then φ extends to an invariant continuous function $\varphi : M^2 \to \mathbb{R}$.

f	V	arphi
AP	Euclidean	$arphi_1 \in \mathit{acl}^{eq}(\emptyset)$
WAP	reflexive	$\varphi(x,y)$ is stable
Asp	Asplund	(?)
$Tame_u$	Rosenthal	$\varphi(x,y)$ is NIP
UC	Banach	any formula

Functions as formulas, back

Proposition

Take $f \in UC(G)$ and define $\varphi : G^2 \to \mathbb{R}$ by $\varphi(h,g) = f(h^{-1}g)$. Then φ extends to an invariant continuous function $\varphi : M^2 \to \mathbb{R}$.

f	V	arphi
AP	Euclidean	$arphi_1 \in \mathit{acl}^{eq}(\emptyset)$
WAP	reflexive	$\varphi(x,y)$ is stable
Asp	Asplund	(?): stable!
$Tame_u$	Rosenthal	$\varphi(x,y)$ is NIP
UC	Banach	any formula

Strongly uniformly continuous functions

A continuous $f: G \to \mathbb{R}$ is called strongly uniformly continuous if it factors through a compactification X such that, for all $x \in X$, the map

$$g \in G \mapsto gx \in X$$

is left uniformly continuous.

The algebra SUC(G) is the greatest subalgebra of UC(G) whose associated compactification has the structure of a right topological semigroup.

We have $\mathsf{Asp}(G) \subset \mathsf{SUC}(G)$. Glasner and Megrelishvili showed that $\mathsf{SUC}(\mathsf{Homeo}_+([0,1]))$ is trivial.

$$WAP(G) = Asp(G) = SUC(G)$$

Theorem (I.)

If M is \aleph_0 -categorical and $f \in SUC(M)$, then the associated formula is stable.

Corollary

Let G be a Roelcke precompact Polish group. Then WAP(G) = Asp(G) = SUC(G).

An easy crucial example

Consider the function f on $G = \operatorname{Aut}(\mathbb{Q},<)$ given by $f(g) = \begin{cases} 1 & \text{if } 0 \leq g(0) \\ 0 & \text{otherwise} \end{cases}.$ Thus, $f(g^{-1}h) = 1$ means $g(0) \leq h(0)$.

f is Tame_u but not WAP.

If it was SUC (sketch):

- ▶ we factor f through an SUC compactification X;
- ▶ an irrational $r \in \mathbb{R} \setminus \mathbb{Q}$ can be seen as an element $x_r \in X$;
- ▶ since f factors through X and $g \mapsto gx_r$ is left uniformly continuous, there is a neighborhood U of the identity such that h(a) < r for every a < r $(a \in \mathbb{Q})$ and $h \in U$;
- ▶ a neighborhood of the identity of *G* is the stabilizer of a finite tuple of rationals.

Contradiction.



References

I. Ben Yaacov and T. Tsankov. Weakly almost periodic functions, model-theoretic stability, and minimality of topological groups, preprint, arXiv:1312.7757.

▶ E. Glasner and M. Megrelishvili. Representations of dynamical systems on Banach spaces not containing ℓ_1 , Trans. Amer. Math. Soc. 364 (2012). New algebras of functions on topological groups arising from

Fund. Math. 201 (2008).

G-spaces,

► T. Ibarlucía.

The dynamical hierarchy for Roelcke precompact Polish groups, preprint, arXiv:1405.4613.