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Overview

Model theory in 7 simple steps. (Syntax/Semantics)

1. Choose a signature σ: a list of basic symbols.
Look at σ-structures: sets and relations interpreting σ.

2. Build a language L: well-formed formulas using σ.
Look at the definable sets on the structures.

3. Choose axioms (a theory, T ): a set of statements from L.
Restrict to models of T (how many are there?).

4. Look at consistent sets of formulas.
Finitely satisfiable conditions: types.

5. Invoke a monster (a structure realizing most types).

6. Look at definable groups and/or automorphism groups.

7. Do dynamics!
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Signature
A signature is a list of

I relation symbols (basic predicates)

I and function symbols,

each with a prescribed arity (a natural number). Function symbols
of arity 0 are called constants.

In continuous logic (CL), a modulus of uniform continuity is also

prescribed.

Examples

I σrings = {+,−, ·, 0, 1}, where +, −, · are binary function
symbols and 0, 1 are constants.

I σgraphs = {R}, where R is a binary predicate.

I σMALG = {µ,∆,∩, ·c , 0, 1}, where µ is a 1-Lipschitz unary predicate,

∆, ∩ are binary function symbols, ·c is a unary function symbol and

0, 1 are constants.



Structures
Fix a signature σ. A (classical) σ-structure M is a set (which we
will also denote by M) together with interpretations for the
symbols in σ:

I each n-ary basic predicate P is interpreted as a relation
PM ⊂ Mn;

I each n-ary function symbol f is interpreted as a function
f M : Mn → M.

In CL: a metric σ-structure M is a bounded complete metric space; an

n-ary predicate P is interpreted as a continuous function

PM : Mn → [0, 1]. Moreover, PM and f M must respect the given moduli

of uniform continuity.

Examples

I Every ring or field is naturally a σrings-structure.
I A measure algebra (with the distance given by the measure of the

symmetric difference) is naturally a σMALG-structure.

I Any complete bounded metric space is a structure over σ = ∅.



The first-order language

First-order formulas are well-formed expressions using the symbols
of σ and the logical symbols: the equality relation, connectives,
variables and quantifiers.

More formally, one starts by defining terms:

I every constant or variable is a term;

I if f is an n-ary function symbol and t0, . . . tn−1 are terms,
then f (t0, . . . , tn−1) is a term.

Examples

I x2 + 2x − 1 is a term in σrings (more formally, replace x2 by
·(x , x), 2 by +(1, 1), etc).

I x ∩ y c is a term in σMALG.



The first-order language

Then one defines basic formulas:

I if t and t ′ are terms, t = t ′ is a basic formula;

I if P is an n-ary basic predicate and t is an n-tuple of terms,
P(t) is a basic formula.

In CL, t = t ′ is replaced by d(t, t ′).

Finally, the set Lσ of formulas is given as follows:

I basic formulas are formulas;

I if ϕ and ψ are formulas, then so are ϕ∧ψ, ϕ∨ψ, ϕ→ ψ, ¬ϕ;

I if ϕ is a formula and x is a variable, then ∀xϕ and ∃xϕ are
formulas.

In CL, connectives are replaced by any continuous combinations
[0, 1]n → [0, 1]. Quantifiers are suprema and infima: supx ϕ, infx ϕ.

One also considers forced limits of sequences of formulas.



The first-order language

Remark: Formulas may or may not have free variables (i.e. not
quantified). Intuitively, in the first case they express properties, in
the second they express statements.

Respectively, in CL, they express functions or statements of a numerical

nature.

Examples

I x2 + 2x − 1 = 0 (“x is a root of the polynomial x2 + 2x − 1”).

I ∃x x2 + 2x − 1 = 0 (“the polynomial x2 + 2x − 1 has a root”).
I ∀y0∀y1∃x x2 + y1x + y0 = 0 (“every monic quadratic

polynomial has a root”).
I 1

4 (‖x + y‖2 − ‖x − y‖2) (the inner product in a real Hilbert space,
in the language of Banach spaces).

I supx infy |µ(x ∩ y)− µ(x ∩ y c)| (the measure of the largest atom in

a measure algebra).



Intepretation of formulas

Let ϕ be a σ-formula. We usually write ϕ(x) to indicate that the
free variables of ϕ are contained in x (a tuple of distinct variables).

Let M be a σ-structure and let a ∈ M |x |. We write

ϕM(a)

for the truth value of ϕ(x) on M when x is interpreted to denote
the tuple a. Of course, quantifiers are interpreted as ranging over
elements of M.

We omit the formal (recursive, natural) definition.

In CL, ϕM(a) is a real number.



Satisfaction, definable sets

We write
M |= ϕ(a)

to say that ϕM(a) is true.

A subset D ⊂ Mn is definable if there is a formula ϕ(x), |x | = n,
such that

D = {a ∈ Mn : M |= ϕ(a)}.

Sometimes this set is denoted by ϕ(M).

In CL one can think of truth as given by the value zero, then write

M |= ϕ(a)

to mean that ϕM(a) = 0. A function P : Mn → [0, 1] is a definable

predicate if there is a formula ϕ(x) such that ϕM = P as functions on

Mn.



Definability with parameters

It is useful to admit parameters: if M is a σ-structure and B ⊂ M
is any subset, then D ⊂ Mn is B-definable if there is a formula
ϕ(x , y) and a tuple b ∈ Bm such that

D = {a ∈ Mn : M |= ϕ(a, b)}.

Equivalently: D is definable in the σB -structure MB , where we
have expanded σ to a signature σB with constants cb for each
b ∈ B, and MB is just M with the obvious interpretation of this
constants.

We denote the set of σB -formulas by Lσ(B). Thus, with a small
abuse of notation, ϕ(x , b) ∈ Lσ(B).



Theories

A theory (on a given signature) is a set of statements (formulas
with no free variables). A structure M is a model of a theory T ,
denoted M |= T , if each ϕ ∈ T is true in M.

A theory T implies a statement ϕ if ϕ is true in every model of T :

if M |= T , then M |= ϕ.

Each structure M induces a theory,

Th(M) = {ϕ : M |= ϕ},

which is complete in the sense that, for every statement ϕ, either
T |= ϕ or T |= ¬ϕ.



Theories

Examples

I The theory of infinite sets is axiomatized by the statements

ϕn : ∃x0 . . . ∃xn−1

∧
0≤i<j<n

xi 6= xj .

I The usual axioms of fields can be written in the first-order
language of σrings.

I By adding the (infinitely many) axioms saying that 0 is
different from 1, 1 + 1, 1 + 1 + 1, etc, and that every monic
polynomial of degree n ≥ 2 has a root, we obtain the theory of
algebraically closed fields of characteristic 0, denoted by ACF0.

I The theory of measure algebras is also first-order axiomatizable.
Moreover, we have

M |= sup
x

inf
y
|µ(x ∩ y)− µ(x ∩ y c)|

if and only if M is atomless.



Elementary extensions

Let M and N be two σ-structures such that M ⊂ N as sets. Then
N is an extension of M (or M is a substructure of N) if we have

PM(a) = PN(a), f M(a) = f N(a)

for every basic predicate P and function symbol f , and every tuple
a from M.

In CL, M must be a metric subspace of N.

If moreover
ϕM(a) = ϕN(a)

for every ϕ(x) ∈ Lσ, then N is an elementary extension of M,
denoted M ≺ N. In particular, if M ≺ N then Th(M) = Th(N).

E.g.: as linear orders, Q is an extension of Z but Z 6≺ Q. Instead,
Q ≺ R.



Compactness

Let Γ(x) be a set of σ-formulas with free variables from x .

Γ(x) is satisfiable if there is an x-tuple a in some σ-structure M
such that

M |= Γ(a).

We also say that Γ(x) is realized by a.

Γ(x) is finitely realized (in M) if every finite ∆(x) ⊂ Γ(x) is
realized (by some tuple of M).

Theorem
If Γ(x) is finitely realized (in M) then it is satisfiable (realized in
some elementary extension of M, e.g. in an ultrapower of M).



Compactness

In CL, the same definition says that Γ(x) is satisfiable (or realized in M)
if for some a in some structure (resp., in M) we have ϕ(a) = 0 for every
ϕ ∈ Γ(x).

Γ(x) is approximately finitely realized (in M) if for any ε > 0 and finitely
many formulas ϕi (x) ∈ Γ(x), i < n, there is a tuple a (in M) such that

|ϕi (a)| < ε

for every i < n.

(Equivalently: the closed ideal generated by {ϕM : ϕ ∈ Γ(x)} in the
space of real-valued continuous bounded functions C (M |x|) is proper.)

Theorem
If Γ(x) is approximately finitely realized (in M) then it is satisfiable
(realized in some elementary extension of M, e.g. in an ultrapower of M).



Types

Fix a σ-structure M, B ⊂ M. A (partial) type in x over B in M is
a set π(x) ⊂ Lσ(B) that is (approximately) finitely realized in M.
When |x | = n, π(x) is also called an n-type over B.

Given an x-tuple a in M, we define the type of a over B by

tp(a/B) = {ϕ ∈ Lσ(B) : M |= ϕ(a)}.

These are complete types: maximal for inclusion. That is, complete
types over A are ultrafilters in the algebra of B-definable sets.

If B ⊂ M ≺ N, then any set Γ(x) ⊂ Lσ(B) is (app.) finitely
realized in M if and only if it is (app.) finitely realized in N.
In particular, types over B in M or in N coincide.

By the compactness theorem, every type over B ⊂ M is realized in
some elementary extension of M.



Types, quantifier elimination

A theory has quantifier elimination if tp(a/B) is determined by the
basic formulas in Lσ(B) satisfied by a. Using that this is true for
dense linear orders and for pure sets, we see that:

Examples

I There is only one 1-type over ∅ in (Q, <), only three 2-types
over ∅, etc: a type over ∅ is determined by the order
isomorphism type of a tuple that realizes it.

I The type {x 6= b : b ∈ N} is the only non-realized 1-type over
B = N in the pure set M = N.

I There as many non-realized 1-types over B = Q in (Q, <) as
there are partitions Q = C t D with c < d for every c ∈ C ,
d ∈ D.



Space of types

Fix B ⊂ M as before. We denote by Sx(B) the space of all
complete types over B in the variable x , or alternatively Sn(B) if
|x | = n. It is a compact Hausdorff totally disconnected space with
basic clopen sets

[ϕ] = {p ∈ Sx(B) : ϕ ∈ p}

for each ϕ(x) ∈ Lσ(B).

In CL, the space of complete types Sx(B) can be seen as the maximal
ideal space of the algebra of B-definable predicates on M, with its usual
Gelfand topology (of course, here it need not be totally disconnected).

In other words, Sx(B) is the minimal compactification of Mn through

which every function ϕM (ϕ(x) ∈ Lσ(B)) factors.



Saturation

Let κ be an infinite cardinal. A structure M is κ-saturated if, for
any B ⊂ M of cardinality |B| < κ, every type in S1(B) is realized
in M (equivalently: any n-type over B).

Examples

1. Every ℵ0-categorical structure is ℵ0-saturated.

2. A model of ACF0 is ℵ0-saturated if and only if it has infinite
transcendence degree.



The monster

Fix a theory T . It is usual and convenient to work inside a fixed
very saturated, homogeneous model of T containing all models of
interest as elementary substructures.

More precisely, for an arbitrarily large cardinal κ one can find a
model M (a monster model) such that:

I (call a set B small if |B| < κ)

I all small models of T are elementary embeddable in M;

I every type over a small subset of M is realized in M;

I every elementary map between small subsets of M can be
extended to an automorphism of M.



Definable groups

Let M be a structure. A definable group in M is given by definable
sets G ⊂ Mn and · ⊂ Mn ×Mn ×Mn such that

M |= “(G , ·) is a group”.

We may abuse notation and identify G and · with the formulas
defining them.

Then for any elementary extension M ≺ N we have that (GN , ·N)
is also a group. In fact it contains (G , ·) as a subgroup, since for
any a, b, c ∈ G we have

M |= a · b = c if and only if N |= a · b = c .



Definable groups

Now let SG (M) be the space of types over M containing the
formula G . That is, the closure of the image of the set G in the
natural embedding tp : Mn → Sn(M). By saturation we have

SG (M) = {tp(g̃/M) : g̃ ∈ GM}.

But G is a subgroup of GM, and this induces an action of G on
SG (M):

g .tp(g̃/M) = tp(g · g̃/M)

for g ∈ G ⊂ Mn and g̃ ∈ GM ⊂Mn. Since the product is
definable, this is a well-defined action by homeomorphisms.
That is, SG (M) is a point-transitive G -flow.



Automorphism groups

Let M be a structure. We denote by Aut(M) the group of
automorphisms of M. Then Aut(M) is a topological group under
the topology of pointwise convergence. If M is countable
(separable) then Aut(M) is a Polish group.

In fact, automorphism groups of classical countable structures are
precisely the closed subgroups of S∞: if G ≤ S(X ), one can define
basic predicates on X to turn it into a structure with G = Aut(X ).

Similarly, any Polish group can be seen as the automorphism group of a

separable metric structure: one chooses a left-invariant metric on G ,

takes X = ĜL its completion and defines appropriate predicates on X to

turn it into a metric structure with G = Aut(M).



Automorphism groups

Aut(M) acts continuously (by isometries) on M. It also acts
continuously on Sx(M). If g ∈ Aut(M), p ∈ Sx(M) then gp is
defined by

ϕ(x ,m)gp = ϕ(x , g−1m)p,

where ϕ(x , y) ranges over σ-formulas, m ∈ M |y |, and ϕ(x , b)q

denotes the value of ϕ(a, b) for any a realizing q ∈ Sx(M).



Categoricity

Let κ be a cardinal. A theory T is κ-categorical if there is only one
model of cardinal κ up to isomorphism.

In CL: if there is only one model of density character κ.

Examples

I The theory of infinite sets is κ-categorical for every infinite κ.

I ACF0 is κ-categorical for every κ ≥ ℵ1 but not for κ = ℵ0.

I Th(Q, <) is κ-categorical for κ = ℵ0 but not for any κ ≥ ℵ1.
I The theory of infinite dimensional Hilbert spaces is categorical in

every infinite cardinal.

I The theory of atomless measure algebras is ℵ0-categorical but not

κ-categorical for larger κ.



ℵ0-categorical structures

Theorem
Let T be a complete theory in a countable signature.
The following are equivalent.

1. T is ℵ0-categorical.

2. Sn(∅) is finite for every n.

Theorem
Let M be a countable structure such that Th(M) is ℵ0-categorical.
Then:

I M is homogeneous: if a, b are finite tuples with
tp(a/∅) = tp(b/∅) then there is g ∈ Aut(M) with ga = b.

I A set D ⊂ Mn is definable if and only if it is Aut(M)-invariant.

I It follows that Sn(∅) can be identified with Mn/G .

Hence the theory of M is ℵ0-categorical if and only if the action of
Aut(M) on M is oligomorphic.



ℵ0-categorical structures

Analogous continuous/approximate statements hold for ℵ0-categorical
structures in CL. Among them:

I Sn(T ) can be identified with the metric quotient Mn � Aut(M)
(in particular these quotients are compact for all n, and this is
equivalent to ℵ0-categoricity).

I A predicate P : Mn → R is definable if and only if it is uniformly
continuous and Aut(M)-invariant.

Suppose M is ℵ0-categorical and denote by E the set of
endomorphisms of M, which is a topological semigroup under the
topology of pointwise convergence. Then by (approximate)

homogeneity we have the following:

Theorem
E is exactly the pointwise closure of G in MM , and it can be
identified with the left-completion ĜL.
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