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Abstract

We consider the limit α → 0 for the α–Euler equations in a two-dimensional
bounded domain with Dirichlet boundary conditions. Assuming that the vorticity
is bounded in Lp, we prove the existence of a global solution and we show the con-
vergence towards a solution of the incompressible Euler equation with Lp vorticity.
The domain can be multiply-connected. We also discuss the case of the second grade
fluid when both α and ν go to 0.

1 Introduction

We consider in this paper the incompressible α–Euler equations:

∂t(u− α∆u) + u · ∇(u− α∆u) +
∑
j

(u− α∆u)j∇uj = −∇π, div u = 0, (1.1)

on a 2D smooth domain Ω and assuming Dirichlet boundary conditions:

u
∣∣
∂Ω

= 0. (1.2)

The material constant α is assumed to be positive: α > 0.
We will not discuss in detail the significance of the α–Euler equations as this was

addressed in many other papers. We will simply mention three important facts:

• The α–Euler equations are the vanishing viscosity case of the second grade
fluids found in [11];

• Like the incompressible Euler equations, the α–Euler equations describe geodesic
motion on the group of volume preserving diffeomorphisms for a metric con-
taining the H1 norm of the velocity, see [18].

• The α–Euler equations can also be obtained via an averaging procedure in the
Euler equations, see [18].

When setting α = 0 in (1.1) we formally obtain the incompressible Euler equations

∂tu+ u · ∇u = −∇π, div u = 0. (1.3)
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However the Dirichlet boundary conditions (1.2) are not compatible with the Euler
equations. Instead we must use the no-penetration boundary conditions

u · n
∣∣
∂Ω

= 0 (1.4)

where n is the unit exterior normal to ∂Ω.
A natural question is whether we have convergence of the solutions of (1.1)–

(1.2) towards solutions of (1.3)–(1.4) when α → 0. The main problem in showing
this convergence is that the boundary condition (1.2) is more restrictive than (1.4).
Therefore boundary layers are expected to appear when passing to the limit α → 0
from (1.1)–(1.2) to (1.3)–(1.4). In addition, we cannot have strong estimates uniform
in α for the solutions of (1.1). More precisely, the solutions of (1.1)–(1.2) cannot be
bounded in any space where the trace to the boundary ∂Ω is well-defined. Indeed, if
the solutions are bounded in such a space, then the Dirichlet condition (1.2) passes to
the limit so any limit of these solutions must belong to this space and vanish on the
boundary. But the solutions of (1.3)–(1.4) do not verify (1.2) even if it is imposed
at the initial time, unless some very special situation occurs.

Let us mention at this point that in the case of Navier boundary conditions the
boundary layers are weaker and we were able to show in [4] the expected convergence,
see also [5] for the case of the dimension three. The case of the Dirichlet boundary
conditions was only recently dealt with, and only in dimension two and for a simply-
connected domain. More precisely, the authors of [23] were able to adapt the Kato
criterion for the vanishing viscosity limit, see [20], to the case of the α → 0 limit
obtaining the following result.

Theorem 1.1 ([23]). Assume that Ω ⊂ R2 is simply-connected. Let u0 ∈ H3(Ω) be
divergence free and tangent to the boundary. Assume that uα0 verifies

• uα0 ∈ H3(Ω), div uα0 = 0 and uα0
∣∣
∂Ω

= 0;

• α
1
2 ‖∇uα0 ‖L2(Ω) → 0 and α

3
2 ‖uα0 ‖H3(Ω) is bounded as α→ 0;

• uα0 → u0 in L2(Ω) as α→ 0.

Then the unique global H3 solution of (1.1)–(1.2) with initial data uα0 converges in
L∞loc([0,∞);L2(Ω)) as α → 0 towards the unique global H3 solution of (1.3)–(1.4)
with initial data u0.

Due to the method of proof, the Kato criterion, it seems that the approach of
[23] can only prove convergence towards a H3 solution of the incompressible Euler
equation. But other solutions of the Euler equations exist: the Yudovich solutions
with bounded vorticity, the weak solutions with Lp vorticity and the vortex sheet
solutions where the vorticity is a measure. Our first aim in this paper is to prove
that convergence still holds when the limit solution is a weak solution of the Euler
equation with Lp vorticity. A secondary aim is to be able to consider multiply-
connected domains and also to construct weak solutions of (1.1)–(1.2). Our main
result reads as follows.

Theorem 1.2. Let Ω be a smooth bounded domain of R2 and 1 < p < ∞. Let
u0 ∈W 1,p(Ω) be divergence free and tangent to the boundary. Let uα0 be such that
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• uα0 ∈W 3,p(Ω), div uα0 = 0 and uα0
∣∣
∂Ω

= 0;

• α
1
2 ‖∇uα0 ‖L2(Ω) and ‖ curl(uα0 − α∆uα0 )‖Lp(Ω) are bounded independently of α;

• uα0 → u0 in L2(Ω) as α→ 0.

Then there exists a global solution uα ∈ L∞(R+;W 3,p(Ω)) of (1.1)–(1.2). More-
over, there exists a subsequence of solutions uαk and a global solution u of the
Euler equations (1.3)–(1.4) with initial data u0 and vorticity bounded in Lp(Ω),
curlu ∈ L∞(R+;Lp(Ω)), such that uαk → u in L∞loc([0,∞);W s,p(Ω)) for all s < 1

p as
αk → 0.

A few remarks are needed to understand this result. Let us observe first that the
conclusion of this theorem cannot be true for s > 1

p . More precisely, the solutions uα

are in general unbounded in Laloc([0,∞);W s′,p(Ω)) for any s′ > 1
p and a > 1. Indeed,

assume by absurd that uα is bounded in Laloc([0,∞);W s′,p(Ω)) for some s′ > 1
p and

a > 1. Then the subsequence uαk from Theorem 1.2 will also converge weakly in
Laloc([0,∞);W s′,p(Ω)). It is well-known that the trace operator is well defined on
W s′,p(Ω) if s′ > 1

p , see for example [26]. Since the trace of uαk on ∂Ω vanishes thanks

to (1.2), the weak convergence of uαk to u in Laloc([0,∞);W s′,p(Ω)) implies that the
limit solution u must vanish on the boundary too. This is not true for solutions of
the Euler equations unless some very special situation arises. We conclude that, in
general, uα is unbounded in Laloc([0,∞);W s′,p(Ω)) for any s′ > 1

p and a > 1.
A second remark is that, by Sobolev embeddings, we have that uαk → u in the

space L∞loc([0,∞);L2(Ω)) as in the result of [23]. More generally, we obtain that
uαk → u in L∞loc([0,∞);Hs(Ω)) for all s < min(1− 1

p ,
1
2).

A third remark is that even though we assume p <∞ in Theorem 1.2, it is quite
easy to obtain a similar result for the case p =∞. Modifying slightly the conclusion,
we can prove in this case convergence towards the Yudovich solution of the Euler
equation. Moreover, the Yudovich solutions are unique so we get convergence of the
whole sequence uα and not only for a subsequence uαk . More details can be found
in Remark 5.1.

A last remark is that for any divergence free and tangent to the boundary vec-
tor field u0 ∈ W 1,p(Ω), one can construct a family of initial data uα0 verifying the
hypothesis of Theorem 1.2, see Proposition 3.5 below. Therefore, a consequence of
Theorem 1.2 is that any W 1,p solution of the incompressible Euler equation is the
limit when α → 0 of a sequence of W 3,p solutions of the α–Euler equations with
Dirichlet boundary conditions.

Let us comment now on the existence part of Theorem 1.2. The main improve-
ment about existence of solutions is that we allow the domain Ω to be multiply-
connected and moreover we construct weak solutions. As far as we know, all previous
global existence results for α–Euler or second grade fluids with Dirichlet boundary
conditions are given for simply-connected domains or with some conditions on the
coefficient α and the initial data, see [9, 7, 14, 15]. Here we deal with multiply-
connected domains by keeping track of the circulations of u−α∆u on the connected
components of the boundary and by exploiting the transport equation that the vor-
ticity q = curl(u − α∆u) verifies. Even for simply-connected domains the existence
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part of Theorem 1.2 is new, although in the absence of boundaries [24] shows global
existence of solutions in the full plane if the initial vorticity curl(u0 − α∆u0) is a
bounded measure.

Our initial goal was to improve the result of [23]. We achieved that in several
aspects. The most important one is that we allow for much weaker solutions of the
Euler equations, i.e. we prove convergence towards weak solutions with Lp vorticity
instead of H3 solutions. The second improvement is that we prove stronger conver-
gence, i.e. we prove strong convergence in W s,p(Ω), s < 1

p , uniformly in time. The
third improvement is that we allow for multiply-connected domains.

Our approach is quite different from that of [23]. In [23], the authors make a direct
estimate of the L2 norm of uα − u via energy estimates. Here, we use compactness
methods and we obtain the required estimates uniform in α by using the analyticity
of the Stokes semi-group.

The plan of the paper is the following. In the next section we introduce some
notation, we recall some basic facts about the Stokes operator and prove some prelim-
inary results. In Section 3 we prove our main estimates with constants independent
of α. These estimates rely on the analyticity of the Stokes semi-group. In Section 4
we prove the existence part of Theorem 1.2. In Section 5 we pass to the limit α→ 0
and complete the proof of Theorem 1.2. We end this paper with Section 6 where we
extend Theorem 1.2 to the case of second grade fluids.

2 Notation and preliminary results

Throughout this paper C denotes a generic constant independent of α (except
in Section 4 where it is allowed to depend on α) whose value may change from one
relation to another. The constant 1 < p <∞ is fixed once and for all.

All function spaces are defined on Ω unless otherwise specified. We denote by
Lp = Lp(Ω), H1 = H1(Ω), W s,p = W s,p(Ω) the usual Sobolev spaces with the usual
norms where for s non-integer W s,p is defined by interpolation. We shall also use the
H1
α norm defined by

‖u‖H1
α

=
(
‖u‖2L2 + α‖∇u‖2L2

) 1
2 .

The space Lpσ = Lpσ(Ω) is the subspace of Lp formed by all divergence free and
tangent to the boundary vector fields. We endow Lpσ with the Lp norm. Recall that
the divergence free condition allows to define the normal trace of an Lp vector field
on the boundary, see [13].

We denote by P the standard Leray projector, that is the L2 orthogonal projection
from L2 to L2

σ. It is well-known that P extends by density to a bounded operator
from Lp to Lpσ.

We denote by A = −P∆ the classical Stokes operator that we view as an un-
bounded operator on Lpσ. It is well-known that the domain of A is

D(A) = {u ∈W 2,p ; div u = 0 and u
∣∣
∂Ω

= 0}.

We know that for any λ ∈ C \ (−∞, 0) the operator λ + A is invertible and for
any f ∈ Lpσ we have that (λ+ A)−1f ∈ D(A), see for example [16, Proposition 2.1].
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A property that will be crucial in what follows is the analyticity of the Stokes
semi-group which can be expressed in terms of the following inequality proved in [16,
Theorem 1]:

Theorem 2.1 ([16]). For any ε > 0 there exists a constant Cε such that for all
λ ∈ C \ {0}, | arg λ| 6 π − ε, and for all f ∈ Lpσ the following inequality holds true:

‖(λ+ A)−1f‖Lp 6
Cε
|λ|
‖f‖Lp .

We will also need to characterize the domains of the powers of A. The following
proposition is a consequence of [17, Theorem 3] and of the results of [12].

Proposition 2.2. Let 0 6 s 6 2. We have that D(A
s
2 ) ↪→ W s,p where D(A

s
2 ) is

endowed with the norm ‖u‖ = ‖A
s
2u‖Lp. Moreover,

D(A
s
2 ) = {f ∈W s,p ; div f = 0 and f is tangent to the boundary } if s <

1

p

and

D(A
s
2 ) = {f ∈W s,p ; div f = 0 and f

∣∣
∂Ω

= 0} if s >
1

p
.

We assume that Ω is a smooth domain with holes. The boundary ∂Ω has a finite
number of connected components which are closed curves. We denote by Γ the outer
connected component and by Γ1, . . . ,ΓN the inner connected components. In other
words, we have that ∂Ω = Γ ∪ Γ1 ∪ · · · ∪ ΓN where Γ,Γ1, . . . ,ΓN are smooth closed
curves and Γ1, . . . ,ΓN are located inside Γ. We denote by n the unit outer normal
to ∂Ω.

We continue with a remark on the circulations of v = u−α∆u on each connected
component of the boundary. The circulation of v on Γi is defined by

∫
Γi
v ·n⊥ where

n⊥ = (−n2, n1).

Lemma 2.3. Let u ∈ L∞([0, T ];W 3,p(Ω)) be a solution of (1.1)–(1.2). Then for
every i ∈ {1, . . . , n} the circulation of v = u− α∆u on Γi is conserved in time.

Proof. The vector field v verifies the following PDE:

∂tv + u · ∇v +
∑
j

vj∇uj = −∇π.

We multiply by n⊥ and integrate on Γi. Recalling that u vanishes on the boundary
we get

d

dt

∫
Γi

v · n⊥ +

∫
Γi

n⊥ · ∇u · v = −
∫

Γi

n⊥ · ∇π

where n⊥ · ∇u · v =
∑

i,j(n
⊥)i∂iujvj . Since n⊥ · ∇ is a tangential derivative and u

vanishes on the boundary we have that n⊥ · ∇u = 0 at the boundary so the second
term above vanishes. Finally, using that n⊥ is the unit tangent vector field and
recalling that Γi is a closed curve we infer that the term on the right-hand side
vanishes too. This completes the proof.

5



We recall now some well-known facts about the harmonic vector fields associated
to the domain Ω introduced above, we refer to [21, 2, 1] and the references therein
for details. We call harmonic vector field an Lp vector field defined on Ω which is
divergence free, curl free and tangent to the boundary of Ω. A harmonic vector field is
smooth and the space of all harmonic vector fields is finite dimensional of dimension
N . A harmonic vector field is uniquely determined by its circulations on Γ1, . . . ,ΓN .
A basis of the space of harmonic vector fields is given by {Y1, . . . , YN} where Yi is
the unique harmonic vector field with vanishing circulation on all Γ1, . . . ,ΓN except
on Γi where the circulation must be 1.

If f is a divergence free vector field tangent to the boundary we define f̃ to be
the unique vector field of the form

f̃ = f −
N∑
i=1

aiYi (2.1)

where the ai are constants and f̃ has vanishing circulation on all Γ1, . . . ,ΓN . Equiv-
alently, the constant ai is the circulation of f on Γi.

We conclude this preliminary section with a Poincaré-like inequality.

Lemma 2.4. Suppose that f ∈ W 1,p is a divergence free vector field tangent to the
boundary such that its circulation on each Γ1, . . . ,ΓN vanishes. Then there exists
some constant C that depends only on Ω and p such that

‖f‖W 1,p 6 C‖ curl f‖Lp . (2.2)

Proof. Since f is divergence free and tangent to the boundary, we know from classical
elliptic estimates that the following inequality holds true:

‖f‖W 1,p 6 C(‖f‖Lp + ‖ curl f‖Lp) (2.3)

so in order to prove (2.2) it suffices to show that

‖f‖Lp 6 C‖ curl f‖Lp . (2.4)

Assume by absurd that (2.4) fails to be true. Then (2.4) fails for C = n so there
exists a sequence fn of divergence free vector fields tangent to the boundary with
vanishing circulation on each Γ1, . . . ,ΓN and such that

‖fn‖Lp = 1 and ‖ curl fn‖Lp <
1

n
.

Using the estimate (2.3) for fn we see that fn is bounded in W 1,p. Using the compact
embedding of W 1,p into Lp we deduce that there exists a subsequence fnk and some
f ∈ W 1,p such that fnk → f weakly in W 1,p and strongly in Lp. In particular
‖f‖Lp = 1. Moreover, fnk being divergence free, tangent to the boundary with
vanishing circulation on each Γi and the weak convergence in W 1,p imply that so is
f . Moreover, since curl fnk → 0 we have that f is also curl free. So f is a harmonic
vector field with vanishing circulation on each Γi. This implies that f = 0 which is
a contradiction because ‖f‖Lp = 1. This completes the proof.
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3 Main estimate

In this section we consider some vector field u ∈W 3,p which is divergence free and
vanishing on the boundary ∂Ω. We define v = u − α∆u. The aim of this section is
to estimate u as best as possible in terms of ‖u‖H1

α
and of ‖ curl v‖Lp with constants

independent of α. To do that we will distinguish two parts in u: one part that comes
from curl v and another part which comes from the circulations of v on Γ1, . . . ,ΓN .

We observe first that v and Pv have the same circulation on each Γi. Indeed, the
Leray decomposition says that v and Pv differ by a gradient

v = Pv +∇π′ (3.1)

so ∫
Γi

n⊥ · v −
∫

Γi

n⊥ · Pv =

∫
Γi

n⊥ · ∇π′ = 0

where we used that n⊥ is the unit tangent vector field and Γi is a closed curve.
Let us define P̃v as in relation (2.1), that is

P̃v = Pv −
N∑
i=1

γiYi (3.2)

where γi is the circulation of v on Γi:

γi =

∫
Γi

n⊥ · v.

Recall that the operator 1 +αA is invertible. Let us introduce ũ = (1 +αA)−1P̃v
so that

ũ+ αAũ = P̃v. (3.3)

Now, let us consider some scalar function q ∈ Lp. By the Biot-Savart law, there
exists some divergence-free vector field f ∈W 1,p tangent to the boundary such that
curl f = q. Adding a suitable linear combination of Yi, we can further assume that
f has vanishing circulation on each Γ1, . . . ,ΓN . Moreover, f is the unique vector
field verifying all these properties. We denote f = S(q). This allows us to define the
vector field T(q) = (1 + αA)−1f = (1 + αA)−1S(q).

With the notation introduced above, we remark that if q = curl(u− α∆u) then

T(q) = ũ.

Indeed, we have that

q = curl(u− α∆u) = curl v = curlPv = curl P̃v

where we used (3.1), (3.2) and the fact that the Yi are curl free. The vector field

P̃v is divergence free, tangent to the boundary, has vanishing circulation on each
Γ1, . . . ,ΓN and its curl is q. So P̃v = S(q) and the definition of T(q) allows to

conclude that T(q) = (1 + αA)−1P̃v = ũ.
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We assume in the sequel that q = curl(u− α∆u).
Let us apply the Leray projector P to the relation v = u − α∆u. We get Pv =

u+ αAu that is u = (1 + αA)−1Pv. Let us apply (1 + αA)−1 to (3.2). We obtain

u = (1 + αA)−1Pv = (1 + αA)−1P̃v +

N∑
i=1

(1 + αA)−1γiYi = T(q) +

N∑
i=1

γiY
α
i (3.4)

where we defined
Y α
i = (1 + αA)−1Yi.

We will estimate separately the part due to the vorticity q, i.e. T(q), and the
part due to the circulations γ1, . . . , γN , i.e.

∑N
i=1 γiY

α
i .

We start by estimating T(q).

Proposition 3.1. Let q ∈ Lp. Then T(q) ∈ W 3,p with ‖T(q)‖W 3,p 6 C(α)‖q‖Lp.
Moreover, for any ε > 0 there exists a constant C that depends only on Ω, p and ε
but not on α such that

‖T(q)‖
W

1
p−ε,p

6 C‖q‖Lp , (3.5)

‖T(q)‖W 1,p 6 Cα
− 1

2
+ 1

2p
−ε‖q‖Lp , (3.6)

‖T(q)‖H1 6 Cα
min(− 1

2p
,− 1

4
)−ε‖q‖Lp (3.7)

and
‖T(q)‖

H
min(1− 1

p ,
1
2 )−ε 6 C‖q‖Lp . (3.8)

Proof. Let f = S(q), i.e. f is the unique vector field which is divergence-free, tangent
to the boundary, with vanishing circulation on each Γ1, . . . ,ΓN and such that curl f =
q. Lemma 2.4 implies that

‖f‖W 1,p 6 C‖q‖Lp . (3.9)

Recall that T(q) = (1 + αA)−1f . Since f ∈ W 1,p we deduce from the classical
regularity results for the (elliptic) Stokes operator (see [6]) that T(q) ∈ W 3,p. In
addition, we have the bound ‖T(q)‖W 3,p 6 C(α)‖f‖W 1,p 6 C(α)‖q‖Lp .

Let s ∈ (0, 1
p) (the value of s will be chosen later). We deduce from Proposition

2.2 that f ∈ D(A
s
2 ) and moreover

‖A
s
2 f‖Lp 6 C‖f‖W s,p 6 C‖f‖W 1,p 6 C‖q‖Lp .

Recall that T(q) = (1 + αA)−1f so

T(q) + αAT(q) = f. (3.10)

Clearly T(q) ∈ D(A
s
2 ) and since f also belongs to D(A

s
2 ) we infer that AT(q) ∈

D(A
s
2 ). We can therefore apply the operator A

s
2 to relation (3.10) to obtain that

A
s
2T(q) + αAA

s
2T(q) = A

s
2 f. (3.11)
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We used above that the operators A and A
s
2 commute. This relation can also be

written under the form

(
1

α
+ A)A

s
2T(q) =

1

α
A
s
2 f

or, equivalently

A
s
2T(q) =

1

α
(

1

α
+ A)−1A

s
2 f

We use now the analyticity of the Stokes semi-group stated in Theorem 2.1 with
λ = 1/α to deduce that

‖A
s
2T(q)‖Lp 6 C‖A

s
2 f‖Lp

Going back to (3.11), we can also bound

‖αAA
s
2T(q)‖Lp 6 ‖A

s
2 f‖Lp + ‖A

s
2T(q)‖Lp 6 C‖A

s
2 f‖Lp .

Putting together the above estimates we get that

‖A
s
2T(q)‖Lp + α‖A1+ s

2T(q)‖Lp 6 C‖A
s
2 f‖Lp 6 C‖q‖Lp . (3.12)

According to Proposition 2.2 we have the embedding D(A
s
2 ) ↪→ W s,p so we can

further deduce that

‖T(q)‖W s,p 6 C‖A
s
2T(q)‖Lp 6 C‖q‖Lp .

This proves relation (3.5).
Next, let us observe that we have the following estimate:

‖T(q)‖W 2+s,p 6 C‖A1+ s
2T(q)‖Lp .

Indeed, if T(q) ∈ D(A1+ s
2 ) then AT(q) ∈ D(A

s
2 ) so Proposition 2.2 implies again

that AT(q) ∈ W s,p. The classical regularity results for the Stokes operator (see [6])
imply then that T(q) ∈ W 2+s,p with the required inequalities. Therefore relation
(3.12) also yields

‖T(q)‖W 2+s,p 6
C

α
‖q‖Lp .

Next, we infer by interpolation that

‖T(q)‖W s′,p 6 C‖T(q)‖1−
s′−s
2

W s,p ‖T(q)‖
s′−s
2

W 2+s,p 6 Cα
s−s′
2 ‖q‖Lp (3.13)

for all s′ ∈ [s, 2 + s].
We first choose s′ = 1 and s = 1

p − 2ε in (3.13) and we get (3.6).
We prove now the bound (3.8). If p 6 2 this relation follows from (3.5) and from

the Sobolev embedding W
1
p
−ε,p

↪→ H
1− 1

p
−ε

(for ε sufficiently small). If p > 2 we
have that q ∈ Lp ↪→ L2 and (3.8) follows from the relation (3.5) written for p = 2.

Finally, let us prove (3.7). Assume first p 6 2. Choose s′ = 2/p in (3.13) (which is

possible because s < 1/p). Recalling the Sobolev embedding W
2
p
,p
↪→ H1 we deduce

that
‖T(q)‖H1 6 C‖T(q)‖

W
2
p ,p

6 Cα
s
2
− 1
p ‖q‖Lp .

Choosing s = 1
p − 2ε implies (3.7). The case p > 2 follows from the case p = 2 since

if q belongs to Lp then it also belongs to L2 so one can use (3.6) for p = 2. This
completes the proof.
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We continue with the estimate of the part of u due to the circulations γ1, . . . , γN .

Proposition 3.2. Let u ∈ W 3,p be divergence free and tangent to the boundary.
There exists a constant C that depends only on Ω and p such that

N∑
i=1

|γi| 6 C(‖u‖H1
α

+ ‖q‖Lp).

Proof. Let us denote

g = u− ũ =
N∑
i=1

γiY
α
i

and

X =

N∑
i=1

γiYi

so that
g + αAg = X. (3.14)

Now we estimate the H1
α norm of g. This requires to estimate the H1

α norm of ũ.
To do that, let us multiply (3.3) by ũ and integrate. We obtain

‖ũ‖2L2 + α

∫
Ω
Aũ · ũ =

∫
Ω
P̃v · ũ. (3.15)

We have that ∫
Ω
Aũ · ũ =

∫
Ω
A

1
2 ũ · A

1
2 ũ = ‖A

1
2 ũ‖2L2 = ‖∇ũ‖2L2

by the usual properties of the Stokes operator. We infer from (3.15) that

‖ũ‖2H1
α

=

∫
Ω
P̃v · ũ 6 ‖P̃v‖L2‖ũ‖L2 6 ‖P̃v‖L2‖ũ‖H1

α

so that
‖ũ‖H1

α
6 ‖P̃v‖L2 .

The Sobolev embedding W 1,p(Ω) ↪→ L2(Ω) together with the bound given in (3.9)

(recall that f = P̃v) imply

‖ũ‖H1
α
6 ‖P̃v‖L2 6 C‖P̃v‖W 1,p 6 C‖q‖Lp .

In the end we get

‖g‖H1
α

= ‖u− ũ‖H1
α
6 ‖u‖H1

α
+ ‖ũ‖H1

α
6 ‖u‖H1

α
+ C‖q‖Lp .

This implies
‖g‖L2 6 ‖u‖H1

α
+ C‖q‖Lp (3.16)

and
‖A

1
2 g‖L2 = ‖∇g‖L2 6 α−

1
2 ‖g‖H1

α
6 α−

1
2 (‖u‖H1

α
+ C‖q‖Lp). (3.17)
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We apply now A−
1
2 to (3.14) and we take the L2 norm to obtain

‖A−
1
2X‖L2 = ‖A−

1
2 g + αA

1
2 g‖L2 6 ‖A−

1
2 g‖L2 + α‖A

1
2 g‖L2 . (3.18)

Since g = (1 + αA)−1X and X ∈ Lpσ we have that g ∈ D(A). So A−
1
2 g ∈ D(A

1
2 )

and from Proposition 2.2 we deduce that A−
1
2 g vanishes on the boundary. Therefore

we can apply the Poincaré inequality to deduce that

‖A−
1
2 g‖L2 6 C‖∇A−

1
2 g‖L2 = C‖A

1
2A−

1
2 g‖L2 = C‖g‖L2 . (3.19)

Using relations (3.16), (3.17) and (3.19) in (3.18) yields

‖A−
1
2X‖L2 6 C(‖u‖H1

α
+‖q‖Lp)+α

1
2 (‖u‖H1

α
+C‖q‖Lp) 6 C(‖u‖H1

α
+‖q‖Lp). (3.20)

Because the vector fields Y1, . . . , YN are linearly independent, one can easily check
that the application

RN 3 (a1, . . . , aN ) 7→ ‖A−
1
2 (

N∑
i=1

aiYi)‖L2

is a norm on RN . Because all norms on RN are equivalent, there exists some constant
C such that

N∑
i=1

|γi| 6 C‖A−
1
2 (

N∑
i=1

γiYi)‖L2 = C‖A−
1
2X‖L2 6 C(‖u‖H1

α
+ ‖q‖Lp)

where we used (3.20). This completes the proof.

Putting together Propositions 3.1 and 3.2 allows to estimate the full velocity.

Proposition 3.3. Let u ∈ W 3,p be divergence free and vanishing on the boundary
and let ε > 0. There exists a constant C that depends only on Ω, p and ε but not on
α such that

‖u‖
W

1
p−ε,p

6 C(‖q‖Lp + ‖u‖H1
α
), (3.21)

‖u‖W 1,p 6 Cα
− 1

2
+ 1

2p
−ε

(‖q‖Lp + ‖u‖H1
α
), (3.22)

‖u‖H1 6 Cα
min(− 1

2p
,− 1

4
)−ε

(‖q‖Lp + ‖u‖H1
α
) (3.23)

and
‖u‖

H
min(1− 1

p ,
1
2 )−ε 6 C(‖q‖Lp + ‖u‖H1

α
). (3.24)

Remark 3.4. The important thing to observe is that the power of α in (3.23) can be
made strictly larger than −1

2 (even if it is only slightly larger than −1
2 when p is close

to 1). The significance of this will be obvious later in Section 5. Indeed, we will need
to show that the terms of the form α∇u∇u converge to 0 as α→ 0 when ‖u‖H1

α
and

‖q‖Lp are bounded. The trivial bound ‖u‖H1 6 α−
1
2 ‖u‖H1

α
only shows that α∇u∇u is

bounded while (3.23) with a power of α strictly larger than −1
2 implies that α∇u∇u

goes to 0.
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Proof. We already know from Proposition 3.1 that relations (3.21)–(3.24) hold true
with u replaced by ũ on the left-hand side. It remains to show these relations with
u replaced by

∑N
i=1 γiY

α
i on the left-hand side. Thanks to Proposition 3.2 it suffices

to show that

‖Y α
i ‖

W
1
p−ε,p

6 C, ‖Y α
i ‖W 1,p 6 Cα

− 1
2

+ 1
2p
−ε
, ‖Y α

i ‖H1 6 Cα
min(− 1

2p
,− 1

4
)−ε

and

‖Y α
i ‖

H
min(1− 1

p ,
1
2 )−ε 6 C.

Since the vector fields Yi are smooth, tangent to the boundary and independent of α,
these bounds can be proved exactly as in the proof of Proposition 3.1 by reasoning
on Yi instead of f . The only issue is that, unlike the f of that proof, the vector fields
Yi do not have vanishing circulation on each Γ1, . . . ,ΓN . Nevertheless, the only place
where the vanishing of the circulations of f is used is to deduce relation (3.9). But
the vector fields Yi are smooth and do not depend on α, so we can replace relation
(3.9) by

‖Yi‖W 1,p 6 C.

From this point the proof of Proposition 3.1 goes through by replacing everywhere
‖q‖Lp by 1, T(q) by Y α

i = (1 + αA)−1Yi and f by Yi.

We end this section with a result showing that for any divergence free and tangent
to the boundary vector field u0 ∈W 1,p(Ω), one can construct a family of initial data
uα0 verifying the hypothesis of Theorem 1.2. Let us denote by A2 the Stokes operator
defined as an unbounded operator on L2

σ.

Proposition 3.5. Let u0 ∈W 1,p(Ω) be divergence free and tangent to the boundary.
Let us define uα0 = (1 + αA2)−1u0. Then uα0 verifies the hypothesis of Theorem 1.2:

• uα0 ∈W 3,p(Ω), div uα0 = 0 and uα0
∣∣
∂Ω

= 0;

• α
1
2 ‖∇uα0 ‖L2(Ω) and ‖ curl(uα0 − α∆uα0 )‖Lp(Ω) are bounded independently of α;

• uα0 → u0 in L2(Ω) as α→ 0.

Proof. The classical regularity results for the (elliptic) Stokes operator (see [6]) imply
that uα0 ∈ W 3,p. Moreover, uα0 is divergence free and vanishes on the boundary
because it belongs to the domain of A2.

Next, we write uα0 = (1 + αA2)−1u0 under the form

uα0 + αA2u
α
0 = u0 (3.25)

which in turn implies that

uα0 − α∆uα0 = u0 +∇π0

for some π0. Taking the curl above implies that curl(uα0 − α∆uα0 ) = curlu0, so
‖ curl(uα0 − α∆uα0 )‖Lp(Ω) is bounded independently of α.
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Multiplying (3.25) by uα0 , integrating on Ω and using the self-adjointness of A2

yields

‖uα0 ‖2L2(Ω)+α‖A
1
2
2 u

α
0 ‖2L2(Ω) =

∫
Ω
u0 ·uα0 6 ‖u0‖L2(Ω)‖uα0 ‖L2(Ω) 6 ‖u0‖2L2(Ω)+‖u

α
0 ‖2L2(Ω)

so

α‖A
1
2
2 u

α
0 ‖2L2(Ω) 6 ‖u0‖2L2(Ω).

Recalling that ‖A
1
2
2 u

α
0 ‖L2(Ω) = ‖∇uα0 ‖L2(Ω) we infer that α

1
2 ‖∇uα0 ‖L2(Ω) is bounded

independently of α.
Finally, let us prove that uα0 → u0 in L2. It is well-known that there exists an

orthonormal basis {Xk}k∈N of L2
σ such that each Xk is an eigenvector of A2. Let λk

be the corresponding eigenvalue. We have that

u0 =
∑
k∈N

akXk

for some sequence (ak)k∈N ∈ `2(N). Then

uα0 = (1 + αA2)−1u0 =
∑
k∈N

ak(1 + αA2)−1Xk =
∑
k∈N

ak
1 + αλk

Xk.

We conclude that

‖uα0 − u0‖2L2(Ω) =
∑
k∈N

∣∣∣ak − ak
1 + αλk

∣∣∣2 =
∑
k∈N
|ak|2

∣∣∣ αλk
1 + αλk

∣∣∣2 → 0 as α→ 0

by the dominated convergence theorem. This completes the proof.

4 Construction of the solution for fixed α

In this section the parameter α is fixed and the constants are allowed to depend
on α.

Our aim in this part is to prove the existence part of Theorem 1.2. More precisely,
we will show the following result.

Theorem 4.1. Suppose that u0 ∈ W 3,p is divergence free and vanishing on the
boundary. There exists a unique global W 3,p solution u ∈ C0,w

b (R+;W 3,p) of (1.1)–
(1.2) with initial data u0.

Above C0,w
b stands for weakly continuous bounded functions.

We now proceed with the proof of Theorem 4.1.

The uniqueness part of this theorem is quite easy once we observe that, by the
Sobolev embedding W 3,p ↪→ W 1,∞, the solution is Lipschitz. One can subtract the
PDEs for two solutions and multiply by the difference of the solutions to observe
that one can estimate the H1

α norm of the difference and conclude by the Gronwall
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inequality that the two solutions are equal. The argument is quite standard so we
leave the details to the reader.

To prove the existence of the solution, we will first find an equivalent formulation
of the equations. Let γi be the circulation of v0 = u0 − α∆u0 on Γi. We know from
Lemma 2.3 that γi is conserved in time.

Taking the curl of (1.1) implies that the vorticity q = curl(u− α∆u) verifies the
following transport equation:

∂tq + u · ∇q = 0. (4.1)

Conversely, if (4.1) holds true and the circulations γi are conserved then (1.1)
holds true. Indeed, let F denote the left-hand side of (1.1). The fact that (4.1)
holds true means that curlF = 0. Going back to the proof of Lemma 2.3 we observe
that the circulations γi being conserved means that the circulations of F on each
Γ1, . . . ,ΓN vanish. From the properties of the Leray projector we know that PF and
F differ by a gradient: PF − F = ∇π. Taking the curl implies that PF is curl free.
But PF is also divergence free and tangent to the boundary so it must be a harmonic
vector field. Since the circulations of F on Γi vanish and recalling that a gradient
has vanishing circulation on Γi we deduce that PF has vanishing circulation on each
Γ1, . . . ,ΓN . Since it is a harmonic vector field it must therefore vanish. We conclude
that F = −∇π and (1.1) holds true.

Recalling (3.4) we infer that (1.1)–(1.2) is equivalent to the following PDE in the
unknown q:

∂tq + u · ∇q = 0 with u = T(q) +
N∑
i=1

γiY
α
i . (4.2)

Above, the quantity q will belong to some Lp, 1 < p <∞. From the construction of
T(q) and of Y α

i given in Section 3, we observe that u is (1 + αA)−1 applied to some
Lpσ vector field. So u must vanish at the boundary, hence (1.2).

To complete the proof of Theorem 4.1 it suffices to construct a solution q ∈
L∞(R+;Lp) of (4.2). Indeed, by the regularity results for the Stokes operator and
recalling that Yi is smooth we deduce that Y α

i is smooth too. From Proposition 3.1
we deduce that ‖T(q)‖W 3,p 6 C‖q‖Lp . Therefore u ∈ L∞(R+;W 3,p). From the PDE
verified by q one can immediately see that ∂tq is bounded in the sense of distributions,
so q must be continuous in time with values in D ′. Since q ∈ L∞(R+;Lp) we infer
by density of C∞0 in Lp that q ∈ C0,w

b (R+;Lp). Then u is also weakly continuous in

time: u ∈ C0,w
b (R+;W 3,p).

To solve (4.2) we will regularize it by introducing an artificial viscosity. More
precisely, for ε > 0 let us consider the following PDE

∂tq
ε + uε · ∇qε − ε∆qε = 0 with uε = T(qε) +

N∑
i=1

γiY
α
i (4.3)

with Dirichlet boundary conditions

qε
∣∣
∂Ω

= 0 (4.4)
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and some smooth initial data
qε(0) ∈ C∞0 (4.5)

such that qε(0) → q0 in Lp as ε → 0. The global existence of smooth solutions of
(4.3)–(4.5) can be proved with classical methods, see for instance [25, Chapter 15].
Moreover, the Lp norms of the solutions decrease in time:

‖qε(t)‖Lp 6 ‖qε(0)‖Lp ∀t > 0.

Using also Proposition 3.1 we infer that qε is bounded in L∞(R+;Lp) indepen-
dently of ε and uε is bounded in L∞(R+;W 3,p) independently of ε. Then we can
extract a subsequence of qε that we denote again by qε and some q̌ ∈ L∞(R+;Lp)
and ǔ ∈ L∞(R+;W 3,p) such that

qε ⇀ q̌ weak∗ in L∞(R+;Lp)

and
uε ⇀ ǔ weak∗ in L∞(R+;W 3,p). (4.6)

We now pass to the limit in (4.3) in the sense of distributions when ε→ 0. Obvi-
ously ∂tq

ε → ∂tq and ε∆qε → 0 in the sense of distributions when ε→ 0. It remains
to show that uεqε → ǔ q̌ in the sense of distributions. To do that, we observe first from
(4.3) that ∂tq

ε is bounded in L∞(R+;W−2,p). Since the embedding W−2,p ↪→W−3,p

is compact we deduce from the Arzelà-Ascoli theorem that there exists a subsequence
of qε, again denoted by qε, such that qε → q̌ strongly in L∞loc([0,∞);W−3,p). This
strong convergence combined with (4.6) implies that uεqε → ǔ q̌ in the sense of dis-
tributions. Indeed, the product (u, q) 7→ uq is continuous from W 3,p×W−3,p into D ′

as can be seen from the following estimate:

∀ϕ ∈ C∞0
∣∣∣∫

Ω
uqϕ

∣∣∣ 6 ‖q‖W−3,p‖uϕ‖W 3,p 6 C‖q‖W−3,p‖u‖W 3,p‖ϕ‖W 3,∞ .

We conclude that we can pass to the limit ε→ 0 in (4.3) to deduce that

∂tq̌ + ǔ · ∇q̌ = 0.

From the uniform in time convergence: qε → q̌ strongly in L∞loc([0,∞);W−3,p) we
infer that

q̌(0) = lim
ε→0

qε(0) = q0.

To complete the proof of Theorem 4.1 it remains to prove that ǔ = T(q̌) +∑N
i=1 γiY

α
i . We know that qε = curl(uε − α∆uε) so, after passing to the limit ε→ 0

in the sense of distributions, we get that q̌ = curl(ǔ − α∆ǔ). On the other hand,
from (4.6) we have that vε = uε−α∆uε → v̌ = ǔ−α∆ǔ weak∗ in L∞(R+;W 1,p). In
particular we have convergence of the trace of vε on the boundary to the trace of v̌ on
the boundary. So the circulations of vε on each Γi converge towards the circulations
of v̌ on each Γi. But the circulation of vε on Γi is γi. Indeed, if we denote by γεi the
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circulation of vε on Γi then the construction performed at the beginning of Section
3 implies that

uε = T(qε) +
N∑
i=1

γεi Y
α
i (4.7)

(see relation (3.4)). Comparing to the second part of (4.3) and observing that the
vector fields Y α

i are linearly independent (because Yi = (1 + αA)Y α
i are linearly

independent) we get that γεi = γi. We infer that the circulation of v̌ on Γi is γi.
This information combined with the relation q̌ = curl(ǔ − α∆ǔ) implies that ǔ =
T(q̌) +

∑N
i=1 γiY

α
i . This completes the proof of Theorem 4.1.

5 Passing to the limit α→ 0

In this section we show the convergence part of Theorem 1.2. Let uα the solution
constructed in Theorem 4.1 and let us also denote vα = uα−α∆uα and qα = curl vα.

Multiplying (1.1) by uα and integrating in space and time implies that the H1
α

norm of the velocity is conserved:

‖uα(t)‖H1
α

= ‖uα0 ‖H1
α
∀t > 0.

By hypothesis, we know that ‖uα0 ‖H1
α

is bounded uniformly in α hence

uα bounded in L∞(R+;H1
α) (5.1)

uniformly in α.
Moreover, from the transport equation verified by qα we know that the Lp norm

of qα is also conserved:
‖qα(t)‖Lp = ‖qα0 ‖Lp ∀t > 0

so
qα bounded in L∞(R+;Lp) (5.2)

uniformly in α.
Relation (5.1) implies that uα is bounded in L∞(R+;L2). Using also relation

(5.2) we deduce that there exists a subsequence uαk of uα, some vector field u and
some scalar function ω such that

uαk ⇀ u weak∗ in L∞(R+;L2) (5.3)

and
qαk ⇀ ω weak∗ in L∞(R+;Lp). (5.4)

Because uαk is divergence free and tangent to the boundary, the weak convergence
stated in relation (5.3) implies that u is also divergence free and tangent to the
boundary. Since αk curl ∆uαk → 0 in the sense of distributions we have that qαk =
curluαk−αk curl ∆uαk → curlu in the sense of distributions. By uniqueness of limits
in the sense of distributions we infer that ω = curlu.
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We need to prove that u verifies the Euler equation (1.3). In order to do that, we
shall pass to the limit α → 0 in (1.1). A simple calculation shows that the α–Euler
equations can be written under the following form

∂t(u
α − α∆uα) + div(uα ⊗ uα)− α

∑
j,i

∂j∂i(u
α
j ∂iu

α) + α
∑
j,i

∂j(∂iu
α
j ∂iu

α)

− α
∑
j,i

∂i(∂iu
α
j∇uαj ) = −∇πα (5.5)

for some πα (see [19]).
Because uαk → u in the sense of distributions we have that ∂tu

αk → ∂tu in
the sense of distributions and also ∂t∆u

αk → ∂t∆u in the sense of distributions so
αk∂t∆u

αk → 0 in the sense of distributions. Recall also that the limit of a gradient
is gradient.

Let us now show that the last three terms on the left-hand side of (5.5) go to 0
in the sense of distributions. Let us consider for example the term αk∂j(∂iu

αk
j ∂iu

αk).

Thanks to Proposition 3.3 we know that there exists some η < 1
2 such that ‖uα‖H1 6

Cα−η(‖uα‖H1
α

+ ‖qα‖Lp). We bound

‖αk∂iuαkj ∂iu
αk‖L1 6 Cαk‖uαk‖2H1

6 Cαk
1−2η(‖uαk‖H1

α
+ ‖qαk‖Lp)2

6 Cαk
1−2η

−→ 0

when αk → 0. We infer that αk∂iu
αk
j ∂iu

αk → 0 in the sense of distributions so
αk
∑

j,i ∂j(∂iu
αk
j ∂iu

αk) → 0 in the sense of the distributions. One can show in a
similar manner that the remaining two terms from (5.5) with coefficient α also go to
0 in the sense of distributions.

It remains to pass to the limit in the term uαk ⊗ uαk . To do that we require
compactness of the sequence uαk . This will be obtained via time-derivative estimates.
To get these time-derivative estimates it is more practical to work in L2 based function
spaces.

We denoted by A2 be the Stokes operator seen as an unbounded operator in L2
σ.

For s > 0 we define Xs to be domain of A
s
2
2 with norm ‖f‖Xs = ‖A

s
2
2 f‖L2 . We also

define X−s to be the dual space of Xs.
Estimates on the time derivative of uα − α∆uα are easy to obtain directly from

the PDE (1.1) but we need estimates on ∂tu
α and we must be careful about the

dependence on α.
Let us consider a test vector field ϕ ∈ X4 and let us define ϕα = (1 + αA2)−1ϕ.

One can use the classical results about the domain of As2 (see for example [10, Chapter
4]) to observe that ϕα ∈ D(A3

2). Expressing both ϕ and ϕα in terms of an orthonormal
base of eigenfunctions of A2 as in [10, Chapter 4] and using the regularity results in
that reference, one can easily see that we have

‖ϕα‖H4 6 C‖A2
2ϕ

α‖L2 6 C‖A2
2ϕ‖L2 = C‖ϕ‖X4 . (5.6)
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Recall that since ϕα is divergence free and tangent to the boundary (even van-
ishing on the boundary) we have that Pϕα = ϕα. We multiply (5.5) by ϕα = Pϕα to
obtain

〈∂t(uα − α∆uα),Pϕα〉 =

∫
Ω
uα · ∇ϕα · uα + α

∑
j,i

∫
Ω
uαj ∂iu

α · ∂j∂iϕα

+ α
∑
j,i

∫
Ω
∂iu

α
j ∂iu

α · ∂jϕα − α
∑
j,i

∫
Ω
∂iu

α
j∇uαj · ∂iϕα.

We now bound each of these terms. First, by the Hölder inequality and by Sobolev
embeddings we have that∣∣∫

Ω
uα · ∇ϕα · uα

∣∣ 6 C‖uα‖2L2‖∇ϕα‖L∞ 6 C‖uα‖2L2‖ϕα‖H3 6 C‖ϕ‖X4

where we also used (5.1) and (5.6).
Similarly, ∣∣α∑

j,i

∫
Ω
uαj ∂iu

α · ∂j∂iϕα
∣∣ 6 Cα‖uα‖L2‖uα‖H1‖ϕα‖W 2,∞

6 Cα
1
2 ‖uα‖2H1

α
‖ϕα‖H4

6 C‖ϕ‖X4

and ∣∣α∑
j,i

∫
Ω
∂iu

α
j ∂iu

α · ∂jϕα − α
∑
j,i

∫
Ω
∂iu

α
j∇uαj · ∂iϕα

∣∣ 6 Cα‖uα‖2H1‖∇ϕα‖L∞

6 C‖uα‖2H1
α
‖ϕα‖H3

6 C‖ϕ‖X4 .

On the other hand, we have that

〈∂t(uα − α∆uα),Pϕα〉 = 〈P∂t(uα − α∆uα), ϕα〉
= 〈∂t(uα + αA2u

α), ϕα〉
= 〈∂tuα, (1 + αA2)ϕα〉
= 〈∂tuα, ϕ〉.

We deduce from the above estimates the following bound:

|〈∂tuα, ϕ〉| 6 C‖ϕ‖X4 .

This implies that ∂tu
α is bounded in L∞(R+;X−4). In particular, the uα are

equicontinuous in time with values in X−4. The uα are also bounded in X−4 because
by (5.1) they are bounded in L2 and L2

σ = X0 ↪→ X−4. Moreover, by compact
Sobolev embeddings we know that the embedding X−4 ↪→ X−5 is compact. Finally,
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the Arzelà-Ascoli theorem implies that there exists a subsequence of uαk , again de-
noted by uαk , such that uαk(t)→ u(t) in X−5 uniformly in time:

uαk → u strongly in L∞loc([0,∞);X−5). (5.7)

Thanks to Proposition 3.3 we know that there exists some s0 ∈ (0, 1
2) such that

uαk is bounded in L∞(R+;Hs0). Therefore in L∞(R+;Xs0) too. Consequently u ∈
L∞(R+;Xs0). By interpolation and using (5.7) we deduce that

uαk → u strongly in L∞loc([0,∞);L2). (5.8)

We infer that uαk ⊗ uαk → u ⊗ u in the sense of distributions and therefore
div(uαk ⊗ uαk)→ div(u⊗ u) in the sense of distributions too.

We proved that u verifies the incompressible Euler equation. Moreover, we recall
(5.4) which says in particular that ω = curlu ∈ L∞(R+;Lp). To complete the proof
of Theorem 1.2 it suffices to show that uαk → u in L∞loc([0,∞);W s,p) for all s < 1

p .
We consider two cases, depending on p being larger or smaller than 2.

If p 6 2 we have that L2 ⊂ Lp so from (5.8) we deduce that uαk → u in
L∞loc([0,∞);Lp). But we know from Proposition 3.3 and from the boundedness of
‖uα‖H1

α
and of ‖qα‖Lp that uαk is bounded in L∞loc([0,∞);W s,p) for all s < 1

p . By

interpolation we conclude that uαk → u in L∞loc([0,∞);W s,p) for all s < 1
p .

If p > 2 then p′ ≡ p
p−1 6 2. So we have the Sobolev embedding W 1,p′

0 ↪→ L2.

Passing to the dual we obtain that L2 ↪→ W−1,p. Then we deduce from (5.8) that
uαk → u in L∞loc([0,∞);W−1,p). We conclude as above by interpolation that uαk → u
in L∞loc([0,∞);W s,p) for all s < 1

p . This completes the proof of Theorem 1.2.

Remark 5.1. If p =∞ we have that L∞ ⊂ Lr for any r so if qα0 is bounded in L∞ it
is also bounded in any Lr with r finite. Therefore one can still pass to the limit α→ 0
using the case p <∞. The limit solution u is a Yudovich solution, i.e. a solution of
the incompressible Euler equation with bounded vorticity (see [27]). Indeed, on one
hand we know from (5.4) that qα converges to ω and on the other hand qα is bounded
in L∞(R+ ×Ω). So necessarily ω ∈ L∞(R+ ×Ω) which implies that u is a Yudovich
solution. We conclude that Theorem 1.2 remains true in the case p = ∞ with the
following modifications in the conclusion:

• the solution uα belongs to the space L∞(R+;W 3,r) for all r < ∞ instead of
L∞(R+;W 3,∞);

• the convergence holds true in L∞loc([0,∞);W s,r) for all s < 1
r and r <∞.

6 The case of second grade fluids

The equation of motion of second grade fluids read as follows:

∂t(u−α∆u)−ν∆u+u·∇(u−α∆u)+
∑
j

(u−α∆u)j∇uj = −∇π, div u = 0. (6.1)
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We endow this equation with the Dirichlet boundary conditions too:

u
∣∣
∂Ω

= 0. (6.2)

We observe that the α–Euler equations are a particular case of second grade fluids,
more precisely they are the vanishing viscosity case ν = 0. We refer to the recent
book [8] for an extensive discussion of various aspects of the second grade fluids.

As for the α–Euler equations, we use the notation v = u− α∆u and q = curl v.
Let us mention at this point that convergence towards a solution of the Euler

equation when α, ν → 0 was proved in the case of the Navier boundary conditions
without any condition on the relative sizes of ν and α in dimension two, see [4], and
with the condition ν

α bounded in dimension three, see [5].
In the case of the Dirichlet boundary conditions, convergence towards a solution

of the Navier-Stokes equations when α→ 0 and ν > 0 is fixed was proved in [3], see
also [19].

We would now like to know if the solutions of (6.1)–(6.2) converge to a solution
of the incompressible Euler equation (1.3)–(1.4) when both α and ν converge to 0.
The only result in that direction is given in [22] where convergence towards a H3

solution of the Euler equation is proved under the assumption that ν
α is bounded.

Theorem 6.1 ([22]). Let u0 ∈ H3 be divergence free and tangent to the boundary.
Assume that uα,ν0 verifies

• uα,ν0 ∈ H3, div uα,ν0 = 0 and uα,ν0

∣∣
∂Ω

= 0;

• α
1
2 ‖∇uα,ν0 ‖L2 → 0 and α

3
2 ‖uα,ν0 ‖H3 is bounded as α, ν → 0;

• uα,ν0 → u0 in L2 as α, ν → 0.

Assume moreover that ν
α is bounded. Then the unique global H3 solution of (6.1)–

(6.2) with initial data uα,ν0 converges in L∞loc([0,∞);L2) when α → 0 towards the
unique global H3 solution u of (1.3)–(1.4) with initial data u0.

We would now like to extend our result for the α–Euler equations to the second
grade fluids, proving convergence of (6.1)–(6.2) towards solutions of (1.3)–(1.4) with
Lp vorticity on multiply-connected domains. Our convergence result is based on
Lp estimates uniform in α for the vorticity q. Let us remark right away that such
estimates cannot hold true when α and ν are of the same size. More precisely, we
have the following observation.

Proposition 6.2. Under the hypotheses of Theorem 6.1 assume in addition that both
ν
α and

∫
Ω q

α,ν
0 have non-zero limits when α → 0. Then for any r > 1 the vorticity

qα,ν is unbounded in Lrloc((0,∞)× Ω).

Proof. Let us apply the curl operator to (6.1). We find that qα,ν = curl(uα,ν −
α∆uα,ν) verifies the following PDE:

∂tq
α,ν − ν curl ∆uα,ν + uα,ν · ∇qα,ν = 0. (6.3)

Integrating in space yields

d

dt

∫
Ω
qα,ν − ν

∫
Ω

curl ∆uα,ν +

∫
Ω

div(uα,νqα,ν) = 0.
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Because uα,ν vanishes on the boundary, the Stokes formula implies that the last term
on the left-hand side vanishes. For the same reason we have that

∫
Ω curluα,ν = 0.

We infer that ∫
Ω

curl ∆uα,ν = − 1

α

∫
Ω
qα,ν .

We deduce that
d

dt

∫
Ω
qα,ν +

ν

α

∫
Ω
qα,ν = 0

so ∫
Ω
qα,ν(t) = e−

ν
α
t

∫
Ω
qα,ν0 . (6.4)

By hypothesis, there exist `1, `2 6= 0 such that

ν

α
→ `1 and

∫
Ω
qα,ν0 → `2.

Relation (6.4) implies that ∫
Ω
qα,ν(t)→ e−t`1`2. (6.5)

Now let us assume by absurd that qα,ν is bounded in Lrloc((0,∞) × Ω) for some
r > 1. Then there is a subsequence of qα,ν , also denoted by qα,ν , which converges to
some q weakly in Lrloc((0,∞) × Ω). Then

∫
Ω q

α,ν →
∫

Ω q weakly in Lrloc((0,∞)). In
view of (6.5) we infer that ∫

Ω
q(t, x) dx = e−t`1`2 (6.6)

almost everywhere in time.
But uα,ν → u so α curl ∆uα,ν → 0 in the sense of distributions. Consequently

qα,ν = curluα,ν − α curl ∆uα,ν → curlu in the sense of distributions. By uniqueness
of limits in the sense of distributions, we infer that q = curlu. This is a contradiction
because for a solution of the Euler equation the integral of vorticity is conserved in
time while (6.6) implies that the integral of q is not constant in time. This completes
the proof.

Proposition 6.2 shows that we cannot hope to adapt our approach to second grade
fluids if ν and α are of the same size. But if ν is slightly smaller in size than α then
we can prove convergence to the Euler equations.

Theorem 6.3. Let Ω be a smooth bounded domain of R2 and 1 < p < ∞. Assume
that ν 6 α1+ε for some ε > 0 independent of α. Let u0 ∈ W 1,p be divergence free
and tangent to the boundary. Let uα,ν0 be such that

• uα,ν0 ∈W 3,p, div uα,ν0 = 0 and uα,ν0

∣∣
∂Ω

= 0;

• ‖uα,ν0 ‖L2, α
1
2 ‖∇uα,ν0 ‖L2 and ‖qα,ν0 ‖Lp are bounded independently of α and ν;

• uα,ν0 → u0 in L2 as α→ 0.
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Then there exists a global solution uα,ν ∈ L∞(R+;W 3,p) of (6.1)–(6.2). Moreover,
there exists a subsequence of solutions uαk,νk and a global solution u of the Euler
equations (1.3)–(1.4) with initial data u0 such that uαk,νk → u in L∞loc([0,∞);L2). In
addition, if ε > 1

2 then the limit solution has Lp vorticity: curlu ∈ L∞loc([0,∞);Lp).
If ε < 1

2 then the limit solution has Lr vorticity, curlu ∈ L∞loc([0,∞);Lr), for any r
verifying 1 < r 6 p and r < 1

1−2ε .

Remark 6.4. The conclusion of Theorem 6.3 is slightly better than stated in the
sense that we actually obtain convergence in L∞loc([0,∞);W s,r) for all s < 1

r and, by

Sobolev embeddings, in L∞loc([0,∞);Hs′) for all s′ < min(1 − 1
r ,

1
2). Here r is either

p if ε > 1
2 , or any real number verifying 1 < r 6 p and r < 1

1−2ε if ε < 1
2 . A second

remark is that Theorem 6.3 is somewhat weaker than Theorem 1.2 in the sense that
the limit solution does not always have vorticity in Lp as we would expect from the
initial vorticity belonging to Lp.

The remainder of this section is devoted to the proof of Theorem 6.3. We will
not give all the details as the proof is very similar to the proof of Theorem 1.2. We
will only underline the differences. For clarity reasons we drop the superscript α,ν on
the various quantities.

If we analyze the proof we gave for the α–Euler equations, we realize that there
are three main ingredients that need to be checked in the case of second grade fluids:

• H1
α estimates for the velocity u;

• Estimates for the circulations of v on each Γi;

• Lp estimates for q.

The H1
α estimates for u go through easily. Indeed, if we multiply (6.1) by u,

integrate in the x variable and do some integrations by parts using that u vanishes
on the boundary we obtain that

d

dt
‖u‖2H1

α
+ 2ν‖∇u‖2L2 = 0.

So the H1
α norm of u decreases.

The circulations of v on each Γi are not conserved anymore but can nevertheless
be computed and shown to be decreasing. More precisely, let

γi(t) =

∫
Γi

v(t) · n⊥.

We have the following result.

Lemma 6.5. Let u be a sufficiently smooth solution of (6.1). Then for every i ∈
{1, . . . , n} the circulation of v on Γi is given by

γi(t) = γi(0)e−
ν
α
t.

Proof. We proceed like in the proof of Lemma 2.3 by multiplying (6.1) by n⊥ and
integrating on Γi. We get

d

dt

∫
Γi

v · n⊥ − ν
∫

Γi

∆u · n⊥ = 0.
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Since u vanishes on Γi we have that ∆u = − 1
α(u−α∆u) = − v

α on Γi. We infer that

d

dt

∫
Γi

v · n⊥ +
ν

α

∫
Γi

v · n⊥ = 0.

Consequently ∫
Γi

v(t) · n⊥ = e−
ν
α
t

∫
Γi

v(0) · n⊥.

It remains to see if we can get Lp estimates for q and this is where the trouble
lies. We can prove the following:

Lemma 6.6. For any δ > 0 and 1 < r 6 p there exists a constant C depending
solely on δ, r and Ω such that

‖q(t)‖Lr 6 (‖q0‖Lr + ‖u0‖H1
α
)eCtνα

− 3
2+ 1

2r−δ . (6.7)

Proof. We will make Lr estimates on equation (6.3). The rigorous way to proceed is
to multiply that PDE by q(q2 +κ)

r
2
−1, integrate in space, do the necessary estimates

and let κ → 0 at the end. This kind of argument is well-known so, for the sake of
the simplicity, we are taking the liberty of letting κ = 0 from the beginning and we
are making a slightly formal argument. More precisely, we multiply (6.3) by q|q|r−2

and integrate in space to obtain that∫
Ω
∂tq q|q|r−2 − ν

∫
Ω

curl ∆u q|q|r−2 +

∫
Ω
u · ∇q q|q|r−2 = 0.

We observe that ∂tq q|q|r−2 = 1
r∂t|q|

r and ∇q q|q|r−2 = 1
r∇|q|

r. Let ω = curlu.
Making an integration by parts and recalling that curl ∆u = ω−q

α we deduce that

1

r

d

dt
‖q‖rLr +

ν

α
‖q‖rLr =

ν

α

∫
Ω
ω q|q|r−2 6

ν

α
‖ω‖Lr‖q‖r−1

Lr

so, after simplifying ‖q‖r−1
Lr on both sides,

d

dt
‖q‖Lr +

ν

α
‖q‖Lr 6

ν

α
‖ω‖Lr . (6.8)

Using (3.22) and recalling that the H1
α norm of u is decreasing we bound

‖ω‖Lr 6 ‖u‖W 1,r 6 Cα−
1
2

+ 1
2r
−δ(‖q‖Lr + ‖u‖H1

α
) 6 Cα−

1
2

+ 1
2r
−δ(‖q‖Lr + ‖u0‖H1

α
).

Using this in (6.8) implies that

d

dt
‖q‖Lr 6 Cνα−

3
2

+ 1
2r
−δ(‖q‖Lr + ‖u0‖H1

α
).

The Gronwall inequality completes the proof of the lemma.
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Recalling that we assumed ν 6 α1+ε we deduce from (6.7) the following bound

‖q(t)‖Lr 6
(
‖q0‖Lr + ‖u0‖H1

α

)
eCtα

− 1
2+ 1

2r+ε−δ 6
(
‖q0‖Lr + ‖u0‖H1

α

)
eCt (6.9)

provided that

ε+
1

2r
>

1

2
+ δ. (6.10)

We consider two cases.
If ε > 1

2 then we choose r = p and δ = ε + 1
2p −

1
2 and we use (6.9) to deduce

that q is bounded in the space L∞loc([0,∞);Lp) independently of α and ν. Given
the boundedness of the Lp norm of q, the decay of the H1

α norm of uα,ν and the
explicit formula for the circulations γi(t) one can argue as in the case of the α–Euler
equations and pass to the limit in (6.1) towards a solution of the Euler equation.
Indeed, the additional term −ν∆uα,ν is linear and goes to 0 as ν goes to 0. The limit
solution have vorticity in L∞loc([0,∞);Lp) and the convergence uα,ν → u holds true
in the space L∞loc([0,∞);W s,p) for any s < 1

p (with the strong topology).

If ε < 1
2 then we choose an r such that 1 < r 6 p and r < 1

1−2ε . The condition

(6.10) is verified for δ = ε + 1
2r −

1
2 > 0. We obtain then from (6.9) that q is

bounded in the space L∞loc([0,∞);Lr) independently of α and ν. In this case we
obtain convergence in L∞loc([0,∞);W s,r) for any s < 1

r and the limit solution have
vorticity in L∞loc([0,∞);Lr).

The proof of Theorem 6.3 is completed.
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within the program ”Investissements d’Avenir” (ANR-11-IDEX-0007) operated by
the French National Research Agency (ANR).

References

[1] G. Auchmuty. Bounds and regularity of Solutions of Planar Div-curl Problems.
Quarterly of Applied Mathematics, 75(3):505–524, 2017.

[2] G. Auchmuty and J. C. Alexander. L2 Well-Posedness of Planar Div-Curl Sys-
tems. Archive for Rational Mechanics and Analysis, 160(2):91–134, 2001.

[3] A. V. Busuioc. From second grade fluids to the Navier-Stokes equations. 2016.
arXiv: 1607.06689.

[4] A. V. Busuioc, D. Iftimie, M. C. Lopes Filho and H. J. Nussenzveig Lopes.
Incompressible Euler as a limit of complex fluid models with Navier boundary
conditions. Journal of Differential Equations, 252(1):624–640, 2012.

[5] A. V. Busuioc, D. Iftimie, M. C. Lopes Filho and H. J. Nussenzveig Lopes.
Uniform time of existence for the alpha Euler equations. Journal of Functional
Analysis, 271(5):1341–1375, 2016.

24



[6] L. Cattabriga. Su un problema al contorno relativo al sistema di equazioni
di Stokes. Rendiconti del Seminario Matematico della Università di Padova,
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