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Abstract. In this article we consider the α–Euler equations in the exterior

of a small fixed disk of radius ε. We assume that the initial potential vorticity
is compactly supported and independent of ε, and that the circulation of the

unfiltered velocity on the boundary of the disk does not depend on ε. We

prove that the solution of this problem converges, as ε → 0, to the solution
of a modified α–Euler equation in the full plane where an additional Dirac

located at the center of the disk is imposed in the potential vorticity.

1. Introduction

In this work we study the initial-boundary-value problem for the two-dimensional
incompressible α–Euler equations, α > 0 fixed, in the exterior of the small disk
D(0; ε) = {x ∈ R2 | |x| ≤ ε}.

Let Πε ≡ {|x| > ε}. The system we are interested in is given by:

∂tvε + uε · ∇vε +
∑2
j=1(vε)j∇(uε)j = −∇pε, in (0,∞)×Πε,

div uε = 0, in [0,∞)×Πε,
vε = uε − α∆uε, in [0,∞)×Πε,
uε = 0, on [0,∞)× {|x| = ε},

lim
|x|→∞

uε(t, x) = 0, for all t ≥ 0,

uε(0, ·) = uε,0, at {t = 0} ×Πε.

(1)

Above uε is called the filtered velocity while vε is the unfiltered velocity.
The α–Euler equations arise in several ways: as the inviscid case of the second-

grade fluid model, see [5], averaging the transporting velocity in the Euler equations
at scale

√
α, as the equation for geodesics in the group of volume-preserving dif-

feomorphisms with a natural metric, see [10], or as a variant of the vortex blob
method, see [11].

The α-Euler equations are a natural desingularization of the inviscid flow equa-
tions, obtained by averaging momentum transport at small scales, away from solid
boundaries. In domains with boundary a boundary condition must be imposed;
a natural choice is to impose the no-slip condition u = 0 on the filtered velocity,
something which makes the α-Euler equations into a rough analog of the standard
initial-boundary value problem for the Navier-Stokes equations. Recent progress
has been obtained in understanding the flow-boundary interaction for this α-model,
focusing mainly on the vanishing α limit, see [9, 3, 4].

The present work is part of this program, seeking to identify the limiting behavior
of the flow in the exterior of a small obstacle for fixed α. This is inspired by work
of Iftimie et al. in two space dimensions, where this limit was identified both for
the Euler and Navier-Stokes equations, see [7, 8]. The limit is sharply different
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in the inviscid and viscous cases. For inviscid flow, the small obstacle leads to
a modified Euler system, whereas for viscous flow, it is the initial condition that
must be adjusted. Given that the α-Euler model is a regularized inviscid system
using the standard viscous boundary condition, it is natural to wonder whether
the present limit follows the inviscid pattern, the viscous one, or something else
altogether. Our main result is that the limit follows the inviscid pattern.

The proof also follows the structure of the corresponding result for the Euler
equations, with additional complications coming from potential theory. Dealing
with these complications makes up the bulk of the present work.

Let us note that, taking the two-dimensional curl of (1), which corresponds to
applying the differential operator ∇⊥· to the system, gives rise to the potential
vorticity equation:

∂tqε + uε · ∇qε = 0, in (0,∞)×Πε,
div uε = 0, in [0,∞)×Πε,
curl(1− α∆)uε = curl vε = qε, in [0,∞)×Πε

uε = 0, on [0,∞)× {|x| = ε},
lim
|x|→∞

uε(t, x) = 0, for all t ≥ 0,

qε(0, ·) = qε,0, at {0} ×Πε.

(2)

The scalar quantity qε is the potential vorticity.
We will work with the vorticity equation rather than the velocity equation. This

requires a modified Biot-Savart law expressing the velocity uε in terms of the vor-
ticity qε. Since the domain we are considering is not simply-connected, we require
additional information to determine velocity from vorticity. We will impose a given
circulation of the unfiltered velocity vε on the boundary; we denote this circulation
by γ. This is a conserved quantity for the evolution, as noted in [3, Lemma 2.3].
We will see, in Section 2, that the velocity uε is uniquely determined in terms of qε
and of γ. We will show that the modified Biot-Savart uε = Tε(qε) law, which gives
the velocity uε in terms of the potential vorticity qε and of the circulation γ, is:

uε = Tε(qε) ≡ (1 + αAε)−1[Kε(qε) + (γ +m)H] (3)

where Aε is the Stokes operator, m =
∫

Πε
qε (another conserved quantity), H is the

following harmonic vector field

H =
x⊥

2π|x|2

and Kε(qε) is the classical Biot-Savart law in Πε:

Kε(qε)(x) =

∫
Πε

∇⊥xGε(x, y)qε(y) dy. (4)

Above Gε denotes the Green’s function for the Laplacian on Πε with zero boundary
conditions.

The purpose of this article is to prove the following result.

Theorem 1. Assume that the initial potential vorticity qε,0 = q0 ∈ L1 ∩ L∞ is
compactly supported outside the origin and independent of ε. Assume, in addition,
that the circulation of the unfiltered velocity vε on the boundary of Πε is a constant γ
independent of ε, so that the velocity uε can be expressed from the potential vorticity
with the Biot-Savart law (3): uε = Tε(qε). Then
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a) There exists a unique global solution qε of (2) with uε = Tε(qε), such that
qε ∈ L∞(R+;L1(Πε) ∩ L∞(Πε)).

b) Let q̃ε be the extension of qε to R2 which coincides with qε in Πε and vanishes
in |x| ≤ ε. Then we have that q̃ε ⇀ q weak-∗ in L∞(R+;L1(R2)∩L∞(R2)),
as ε → 0, and q is a global solution of the following system of PDE in the
full plane: 

∂tq + u · ∇q = 0, in (0,∞)× R2,
div u = 0, in [0,∞)× R2,
curl(1− α∆)u = q + γδ, in [0,∞)× R2,
q(0, ·) = q0, at {0} ×Πε,

(5)

and u ∈ L∞loc(R+;Lp(R2)) for all p > 2.
c) The limit system (5) has at most one global solution q ∈ L∞(R+;L1(R2) ∩

L∞(R2)).

We note that the limit system (5) above is not the α–Euler equations in R2. In-
deed, one could consider the α–Euler equations in R2 with initial potential vorticity
q0 = q0 + γδ. Such an initial data is a bounded measure so it produces a unique
global solution q = q+ γδz(t) with z(0) = 0, see [11]. It is easy to see that the PDE
for the regular part q is the same as (5) except that one has to write δz(t) instead of
δ. In contrast with (5), for the α–Euler equations the position z(t) of the discrete
part is no longer constant and must evolve along the trajectories of the velocity
associated to the regular part q. So, although these two equations are very similar,
they are not the same.

The plan of this paper is the following. In Section 2 we introduce notation,
we deduce the modified Biot-Savart law (3) and we establish some ε-dependent
estimates. Global existence and uniqueness for system (2), for fixed ε, is shown in
Section 3. Next, we prove estimates uniform in ε in Section 4. The convergence
result is the subject of Section 5. Finally, the uniqueness of solutions of (5) is shown
in Section 6.

2. Notation, modified Biot-Savart law and preliminary estimates

We begin by introducing basic notation. Given a Banach space X of vector fields
on Πε we denote by Xσ the subspace of X consisting of divergence-free vector fields
in X which are tangent to the boundary.

Recall that Πε is the exterior of the disk of radius ε. We use the subscript ε to
denote the dependence of solutions of the α–Euler equations on the domain, as in
uε, vε, qε. We will assume that ε is small.

We choose a smooth radial function η ∈ C∞(R2; [0, 1]) such that η(x) = 0 for all
|x| ≤ 1 and η(x) = 1 for all |x| ≥ 2. We define

H =
x⊥

2π|x|2
(6)

and

H∞ ≡ η(x)H.

The radial symmetry of η implies that H∞ is divergence free.
We denote by Pε the Leray projector in Πε, i.e. the orthogonal projection from

L2(Πε) to L2
σ(Πε). It is well known that the Leray projector can be extended by

density to a continuous projection from Lp(Πε) to Lpσ(Πε), for all 1 < p < ∞.
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The Stokes operator on Πε with homogeneous Dirichlet boundary conditions is
denoted by Aε = −Pε∆. When we apply these operators, or their inverses, to
functions defined on the whole R2 we mean to apply them to the restrictions of
these functions to Πε.

We will use the following result about the inverse of the operator 1 + αAε.

Proposition 2. The operator (1 +αAε)−1 is bounded from Lpσ(Πε) to W 2,p(Πε)∩
W 1,p

0 (Πε)∩Lpσ(Πε) for any 1 < p <∞ and from L∞σ (Πε) to W 1,∞(Πε). In addition,
there exists a universal constant C0 such that

‖(1 + αAε)−1f‖L∞(Πε) ≤ C0‖f‖L∞(Πε) for all f ∈ L∞σ (Πε). (7)

Proof. The statement regarding Lpσ can be found in [6, Corollary 5] and the bound-
edness from L∞σ to W 1,∞ is proved in [1].

To prove the bound (7) we observe first that it was already proved in [1] that
(7) holds true with a constant C0 = C0(ε) which may depend on ε but not on α.
An immediate scaling argument shows that it is also independent of ε. Indeed,
changing variables x = εx′ the operator 1 + αAε becomes 1 + α

ε2A1. So we can

apply the result of [1] to the operator (1 + α
ε2A1)−1 on L∞σ (Π1) and find a universal

constant C0 as an upper bound for its norm as a bounded operator on L∞σ (Π1). By
the rescaling performed, this universal constant C0 is also an upper bound for the
norm of (1 + αAε)−1 in L∞σ (Πε). �

The integral of the potential vorticity is a constant of motion. Indeed,

d

dt

∫
Πε

qε(t, x) dx =

∫
Πε

∂tqε dx = −
∫

Πε

div(uεqε) dx = 0,

since uε vanishes at |x| = ε. We denote

m ≡
∫

Πε

qε =

∫
Πε

q0.

We will later need some detailed information on the operator (1−α∆)−1 in the
full plane. This is a convolution operator against a kernel, denoted Gα, which is a
re-scaled Bessel potential. The classical Bessel potential from Harmonic Analysis,
J2, is the kernel for (1−∆)−1, and we have

Gα(x) =
1

α
J2

(
x√
α

)
.

We will make use of the following properties of Gα, deduced from those satisfied
by J2; the first three can be found in Chapter V.3.1 of [12], and, for the fourth
property, see [13], page 80, relation (14).

(P1) Gα is radially symmetric; i.e. Gα(x) = gα(|x|) for some gα = gα(r);
(P2) gα is positive and ∫

R2

Gα = 2π

∫ ∞
0

sgα(s) ds = 1; (8)

(P3) Gα decays exponentially at infinity, i.e. for any M > 0, there exist positive
constants c1 and c2 such that

gα(|x|) ≤ c1e−c2|x|, whenever |x| > M ;
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(P4) Gα has a logarithmic singularity at 0, i.e., there exists c3 ∈ R, such that

gα(|x|) = c3 log |x|+O(1), as |x| → 0. (9)

Additionally, gα is bounded for |x| ≥ 1/2.

Let us introduce now the following kernel

Kα = Gα ∗H. (10)

We will need, later, the following estimates for Kα.

Lemma 3. There exists a constant C > 0, which depends only on α, such that:

a) If |x| < 1/2 we have:

|Kα(x)| ≤ C|x|
∣∣log |x|

∣∣ and |∇Kα(x)| ≤ C
∣∣log |x|

∣∣.
b) For all x ∈ R2, we have that |Kα(x)| ≤ C/(1 + |x|).
c) We have that

|∂2K
α
1 (x) + ∂1K

α
2 (x)| ≤ C and |∂1K

α
1 (x)− ∂2K

α
2 (x)| ≤ C (11)

for all x ∈ R2.

Proof. There is a simple way to express Kα(x) in terms of gα, see for instance [2,
page 5476], namely:

Kα(x) =
x⊥

|x|2

∫ |x|
0

sgα(s) ds. (12)

Let x be such that |x| < 1/2. It follows from property (P4), (9), that

|Kα(x)| ≤ C

|x|

∫ |x|
0

s| log s| ds ≤ C|x|
∣∣log |x|

∣∣,
for some constant C > c3.

Differentiating (12) and estimating the result as above gives the gradient estimate
and proves part a).

The bound C/(1 + |x|) in part b) follows from the estimates given in [2, page
5476].

To prove part c) we compute ∂2K
α
1 + ∂1K

α
2 using (12). We find, after some

calculations, that:

∂2K
α
1 (x) + ∂1K

α
2 (x) =

x2
1 − x2

2

|x|2

[
gα(|x|)− 2

|x|2

∫ |x|
0

sgα(s) ds

]
.

We use again (P4), (9), to obtain that

gα(|x|)− 2

|x|2

∫ |x|
0

sgα(s) ds

= c3 log(|x|)− c3
2

|x|2

∫ |x|
0

s log(s) ds+O(1)

= O(1) as |x| → 0.

It follows that ∂2K
α
1 + ∂1K

α
2 is bounded for small x. The global bound is a conse-

quence of property (P3) and the boundedness of gα for |x| ≥ 1/2. The corresponding
estimate for ∂1K

α
1 − ∂2K

α
2 follows in the same manner. �
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We will now deduce the modified Biot-Savart law, which expresses the velocity uε
in terms of the potential vorticity qε and the circulation of vε around the boundary
of Πε. Our point of departure is the following elliptic system, which relates potential
vorticity to the unfiltered velocity:{

div vε = 0, in [0,∞)×Πε,
curl vε = qε, in [0,∞)×Πε.

We recall that, above, vε = (1−α∆)uε, and uε satisfies the boundary condition

uε = 0, on [0,∞)× {|x| = ε}.

Then, since Pεvε and vε differ by a gradient, it follows easily that div(Pεvε) = 0, in [0,∞)×Πε,
curl(Pεvε) = qε, in [0,∞)×Πε,
Pεvε · n̂ = 0 on [0,∞)× {|x| = ε}.

The system above was studied in detail in [7]. It was shown, see [7, page 358],
that there exists βε = βε(t) ∈ R for which

Pεvε = Kε(qε) + βε(t)H,

where the operator Kε(qε) is the classical Biot-Savart law defined in (4), and H is
the generator of the harmonic vector fields in Πε with unit circulation defined in
(6).

We now argue that βε = γ + m, where γ is the circulation of the unfiltered
velocity vε on the boundary of Πε and m is the mass of vorticity: m =

∫
Πε
qε.

Following the proof of [7, Lemma 3.1] we have that

βε =

∫
{|x|=ε}

Pεvε · ds+

∫
Πε

qε dx.

First observe that vε = Pεvε +∇Q, for some smooth function Q, and that∫
{|x|=ε}

∇Q · ds = 0,

since {|x| = ε} is a closed curve. Therefore∫
{|x|=ε}

Pεvε · ds =

∫
{|x|=ε}

vε · ds ≡ γ,

which is a conserved quantity, see [3, Lemma 2.3].
In summary, we have shown that

Pεvε = Kε(qε) + (γ +m)H.

We regard the expression on the right-hand-side above as an operator acting on qε,
which we denote by Sε:

qε 7→ Sε(qε) ≡ Kε(qε) + (γ +m)H.

Then

Sε(qε) = Pεvε = Pε(uε − α∆uε) = uε + αAεuε.
Inverting the operator 1 + αAε allows to deduce the following modified Biot-

Savart law

uε = Tε(qε) = (1 + αAε)−1 Sε(qε) = (1 + αAε)−1[Kε(qε) + (γ +m)H]. (13)
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In the following Proposition we collect some estimates related to this modified
Biot-Savart law.

Proposition 4. For all q ∈ L1(Πε) ∩ L∞(Πε) such that
∫

Πε
q = m we have that

Tε(q) ∈W 1,∞(Πε) and

‖Tε(q)‖W 1,∞(Πε) ≤ C1(‖q‖L1(Πε)∩L∞(Πε) + |γ|), (14)

where the constant C1 > 0 depends only on α and ε. If we assume, in addition,
that supp q ⊂ {|x| ≤ R} for some finite R, then we also have Tε(q)− (γ +m)H ∈
W 2,p(Πε) for all 1 < p <∞ and

‖Tε(q)− (γ +m)H‖W 2,p(Πε) ≤ C2(‖q‖L1(Πε)∩L∞(Πε) + |γ|),

where the constant C2 > 0 depends only on α, ε,R and p.

Proof. It follows from [7, Theorem 4.1] that the quantity Kε(q) +mH is bounded
in Πε, and the L∞-norm may be estimated by C‖q‖L1(Πε)∩L∞(Πε), where C is a
universal constant. Clearly

‖Sε(q)‖L∞ ≤ ‖Kε(q) +mH‖L∞ + ‖γH‖L∞ ≤ C‖q‖L1(Πε)∩L∞(Πε) +
|γ|
2πε

.

Since Tε(q) = (1 + αAε)−1 Sε(q), relation (14) follows from Proposition 2.

Assume now that supp q ⊂ {|x| ≤ R}. Then we know, from [7, relation (2.8)],
that Kε(q) is bounded by C(ε,R)/|x|2, so it belongs to Lp(Πε) for all p > 1.
Therefore Sε(q) − (γ + m)H = Kε(q) ∈ Lp(Πε) for all p > 1. Then Proposition 2
implies that

Tε(q)− (γ +m)(1 + αAε)−1H = (1 + αAε)−1(Sε(q)− (γ +m)H) ∈W 2,p(Πε)

for all 1 < p <∞. Finally, we observe that (1 +αAε)−1(H∞ −α∆H∞) = H∞ and
we write

Tε(q)− (γ +m)H = Tε(q)− (γ +m)(1 + αAε)−1H + (γ +m)[(1 + αAε)−1H −H]

= Tε(q)− (γ +m)(1 + αAε)−1H

+ (γ +m)[H∞ −H + (1 + αAε)−1(H −H∞ + α∆H∞)]

∈W 2,p(Πε)

for all 1 < p < ∞. We used above that H∞ − H ∈ W 2,p(Πε), that H − H∞ +
α∆H∞ ∈ Lpσ(Πε) and Proposition 2. This completes the proof. �

3. Existence of the solution for fixed ε

In this section we prove part a) of Theorem 1. A similar result, requiring more
regularity and with a different proof can be found in [14].

We want to solve the following problem{
∂tq + Tε(q) · ∇q = 0, t > 0, |x| > ε

q
∣∣
t=0

= q0, |x| > ε
(15)

where q0 ∈ L1(Πε) ∩ L∞(Πε).
We construct a recursive sequence of approximate solutions in the following

manner. We set q0(t, x) = q0(x) and u0(t, x) = Tε(q
0)(x). We define q1 = q1(t, x),
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q1 ∈ L∞((0,+∞);L1 ∩ L∞(Πε)), to be the unique weak solution of the following
transport equation {

∂tq
1 + u0 · ∇q1 = 0, t > 0, |x| > ε

q1
∣∣
t=0

= q0, |x| > ε.

The global existence of q1 follows from Picard’s theorem since, by Proposition 4,
we have that u0 is a Lipschitz vector field so its flow map is globally well-defined.
Uniqueness can be established by energy estimates.

Next, given qn ∈ L∞((0,+∞);L1∩L∞(Πε)), we define qn+1 ∈ L∞((0,+∞);L1∩
L∞(Πε)) recursively as the unique global weak solution of the transport equation{

∂tq
n+1 + un · ∇qn+1 = 0, t > 0, |x| > ε

qn+1
∣∣
t=0

= q0, |x| > ε,
(16)

where un = Tε(q
n). We will pass to the limit in the above problem and find a

solution of (15).
We first observe that, since qn satisfies a transport equation by a divergence-free

vector field, the integral of qn is conserved:∫
Πε

qn(t, x) dx =

∫
Πε

qn(0, x) dx =

∫
Πε

q0(x) dx = m.

We have that the circulation of Kε(q
n) on the boundary is equal to the quantity(

−
∫

Πε
qn(t, x) dx

)
(see the proof of [7, Lemma 3.1]) and we recall that H has unit

circulation on the boundary. With this we infer that the circulation of Sε(q
n) on

the boundary is γ.
Using, again, that qn satisfies a transport equation, we have that qn is bounded

in L∞(R+;L1 ∩ L∞) uniformly in n. Proposition 4 implies that un is bounded in
L∞(R+;W 1,∞(Πε)) uniformly in n. Indeed:

‖un(t, ·)‖W 1,∞(Πε) ≤ C1(α, ε)(‖qn‖L1(Πε)∩L∞(Πε) + |γ|)
= C1(α, ε)(‖q0‖L1(Πε)∩L∞(Πε) + |γ|)
≡ C3.

(17)

Since qn+1 is transported by the flow of un, we deduce that supp qn+1(t, ·) ⊂ {|x| ≤
R0 + C3t} where supp q0 ⊂ {|x| ≤ R0}. We use the second part of Proposition
4 to obtain that, for all 1 < p < ∞, the quantity un − (γ + m)H is bounded in
L∞loc([0,∞);W 2,p(Πε)), uniformly in n. We will prove that it actually converges in
H2.

Let us introduce the notation vn+1 = (1− α∆)un+1 and

vn = Pεvn = Sε(q
n) = (1 + αAε)un.

We also define ξn = ∆−1
Πε
qn = Gε(q

n), where Gε is the operator with kernel Gε,
the Green function on Πε. Let us observe that

vn+1 − vn = Sε(q
n+1)− Sε(q

n) = Kε(q
n+1 − qn) = ∇⊥(ξn+1 − ξn).

In addition, since qn and qn+1 are compactly supported and ∇⊥Gε, the kernel of
Kε, decays like 1/|x|2 at infinity (see [7, relation (2.8)]) we have that vn+1 − vn
also decays like 1/|x|2 at infinity. In particular, it belongs to L2(Πε).
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We subtract the equation for qn from the equation for qn+1 (see relation (16)),
we multiply it by ξn+1 − ξn and integrate in space (which is possible because qn

and qn+1 are compactly supported). We then obtain∫
Πε

∂t(q
n+1 − qn)(ξn+1 − ξn) +

∫
Πε

(un · ∇qn+1 − un−1 · ∇qn)(ξn+1 − ξn) = 0.

The integrals above should be interpreted as duality pairings between W−1,p and
W 1,p′ , where p′ = p/(p− 1) and p ∈ (1,∞).

Clearly∫
Πε

∂t(q
n+1 − qn)(ξn+1 − ξn) =

∫
Πε

∆[∂t(ξ
n+1 − ξn)](ξn+1 − ξn)

= −
∫

Πε

[∂t∇(ξn+1 − ξn)]∇(ξn+1 − ξn)

= −1

2

d

dt
‖∇(ξn+1 − ξn)‖2L2(Πε)

= −1

2

d

dt
‖vn+1 − vn‖2L2(Πε).

Therefore

1

2

d

dt
‖vn+1 − vn‖2L2(Πε) =

∫
Πε

(un · ∇qn+1 − un−1 · ∇qn)(ξn+1 − ξn)

=

∫
Πε

un · ∇(qn+1 − qn)(ξn+1 − ξn) +

∫
Πε

(un − un−1) · ∇qn(ξn+1 − ξn)

=

∫
Πε

un · (vn+1 − vn)⊥(qn+1 − qn) +

∫
Πε

(un − un−1) · (vn+1 − vn)⊥qn

≡ I1 + I2,

where we integrated by parts and used that ∇(ξn+1 − ξn) = −(vn+1 − vn)⊥. We
will now estimate these two terms.

Observe first that for a divergence free vector field h we have the identity

h⊥ curlh =

(
∂2

∂1

)
(h1h2) +

(
−∂1

∂2

)
h2

2 − h2
1

2
.

Recalling that qn+1 − qn = curl(vn+1 − vn) and integrating by parts we find:

|I1| =
∣∣∣∣∫

Πε

un · (vn+1 − vn)⊥(qn+1 − qn)

∣∣∣∣
=

∣∣∣∣∫
Πε

(∂2u
n
1 + ∂1u

n
2 )(vn+1

1 − vn1 )(vn+1
2 − vn2 )

+
1

2

∫
Πε

(−∂1u
n
1 + ∂2u

n
2 )
[
(vn+1

2 − vn2 )2 − (vn+1
1 − vn1 )2

]∣∣∣∣
≤ C‖∇un‖L∞‖vn+1 − vn‖2L2

≤ C‖vn+1 − vn‖2L2 ,
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where we used (17). We estimate now I2:

|I2| ≤ ‖un − un−1‖L2‖vn+1 − vn‖L2‖qn‖L∞

≤ C‖(1 + αAε)−1(vn − vn−1)‖L2‖vn+1 − vn‖L2

≤ C‖vn − vn−1‖L2‖vn+1 − vn‖L2

≤ C‖vn − vn−1‖2L2 + C‖vn+1 − vn‖2L2 .

We conclude that

d

dt
‖vn+1 − vn‖2L2(Πε) ≤ C4‖vn − vn−1‖2L2 + C4‖vn+1 − vn‖2L2 ,

for some constant C4 independent of n and t. Given that vn+1− vn vanishes at the
initial time, the Gronwall lemma implies the following bound:

sup
[0,T ]

‖vn+1 − vn‖L2(Πε) ≤ sup
[0,T ]

‖vn − vn−1‖L2(Πε)

√
eC4T − 1.

We choose the time T0 such that
√
eC4T0 − 1 = 1

2 . Then, using the estimate
above recursively we find, by induction, that

sup
[0,T0]

‖vn+1 − vn‖L2(Πε) ≤ 2−n sup
[0,T0]

‖v1 − v0‖L2(Πε).

It then follows, from Proposition 2, that

sup
[0,T0]

‖un+1 − un‖H2(Πε) ≤ C2−n.

This means that the sequence un − (γ + m)H is a Cauchy sequence in the space
C0([0, T0];H2(Πε)) and, therefore, that it is convergent. Hence there exists some u
such that u− (γ +m)H ∈ C0([0, T0];H2(Πε)) and

un − u→ 0 strongly in C0([0, T0];H2(Πε)). (18)

Denoting q = curl(u− α∆u) we further obtain that

qn − q → 0 strongly in C0([0, T0];H−1(Πε)).

In particular q(0, x) = q0(x).
The sequence qn being bounded in L∞(R+;L1(Πε) ∩ L∞(Πε)) implies that q ∈

L∞(R+;L1(Πε) ∩ L∞(Πε)). Moreover, there exists a subsequence qnk such that

qnk ⇀ q weak ∗ in L∞(R+;L1 ∩ L∞). (19)

To complete the proof of the existence part of Theorem 1, it remains to prove that
u = Tε(q). We know that u− (γ +m)H ∈ L∞([0, T0];H2(Πε)). From Proposition
4 we also know that Tε(q) − (γ + m)H ∈ L∞([0, T0];H2(Πε)) so we must have
that u −Tε(q) ∈ L∞([0, T0];H2(Πε)). Moreover, u −Tε(q) is divergence free and
vanishes at the boundary.

Let ϕ ∈ C∞c,σ([0, T0]×Πε). There exists ψ ∈ C∞c ([0, T0]×Πε) such that ϕ = ∇⊥ψ.
Then ∇ψ = 0 in a neighborhood of the boundary of Πε, so ψ must be constant in
the same neighborhood. We denote by ψ(t) this constant, so that ψ(t, x) ≡ ψ(t) in
a neighborhood of the boundary of Πε.
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By self-adjointness of the Stokes operator we have that∫ T0

0

∫
Πε

unk · (1+αAε)ϕ =

∫ T0

0

∫
Πε

(1 + αAε)unk · ϕ

=

∫ T0

0

∫
Πε

Sε(q
nk) · ϕ

=

∫ T0

0

∫
Πε

Sε(q
nk) · ∇⊥ψ

= −
∫ T0

0

∫
Πε

curlSε(q
nk) ψ −

∫ T0

0

∫
∂Πε

x⊥

|x|
· Sε(qnk) ψ

= −
∫ T0

0

∫
Πε

qnkψ − γ
∫ T0

0

ψ(t) dt,

(20)

where we used that the circulation of Sε(q
nk) on the boundary is γ.

Since ∆ϕ is divergence free and tangent to the boundary (actually compactly
supported), we have that Pε∆ϕ = ∆ϕ. So (1 + αAε)ϕ = ϕ− α∆ϕ ∈ C∞c,σ([0, T0]×
Πε). The convergence properties expressed in relations (18) and (19) allow to pass
to the limit k →∞ in (20) to obtain that∫ T0

0

∫
Πε

u · (1 + αAε)ϕ = −
∫ T0

0

∫
Πε

qψ − γ
∫ T0

0

ψ(t) dt.

But the same calculations as in (20) show that∫ T0

0

∫
Πε

Tε(q) · (1 + αAε)ϕ = −
∫ T0

0

∫
Πε

qψ − γ
∫ T0

0

ψ(t) dt.

We deduce that∫ T0

0

∫
Πε

u · (1 + αAε)ϕ =

∫ T0

0

∫
Πε

Tε(q) · (1 + αAε)ϕ

which means that∫ T0

0

∫
Πε

(1 + αAε)u · ϕ =

∫ T0

0

∫
Πε

(1 + αAε)Tε(q) · ϕ.

This implies that (1 + αAε)(u−Tε(q)) = 0, so necessarily u = Tε(q).
We proved that there exists a solution of (2) on the time interval [0, T0]. Re-

peating the argument starting from T0 we can extend this solution up to time 2T0.
Continuing like this we construct a global solution. Its uniqueness is classical. It
can be proved by estimating the H2 norm of the difference of two solutions, with
exactly the same argument as in the estimate of d

dt‖v
n+1 − vn‖2L2(Πε) so we omit

it. Part a) of Theorem 1 is now proved.

4. H1 estimates for uε

The aim of this section is to derive estimates for uε which are independent of ε.
We start by noting that, since qε satisfies a transport equation by a divergence-

free vector field, we have

‖qε‖L∞(R+;L1(Πε)∩L∞(Πε)) ≤ ‖qε,0‖L∞(R+;L1(Πε)∩L∞(Πε))

= ‖q0‖L∞(R+;L1(Πε)∩L∞(Πε)),
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which is bounded independently of ε.
Let us now make the following observation. If f is a scalar radial function,

decaying sufficiently fast at infinity, then (1 + αAε)−1(x⊥f) is of the form x⊥g,
where g is a scalar radial function. Indeed, let h = (1− α∆Πε

)−1(x⊥f). Then, for
any special orthogonal matrix M (rotation matrix), the vector field P (x) = x⊥f is
invariant under the transformation P (x) → M tP (Mx). The rotational invariance
of the Laplacian allows to write the following sequence of computations:

(1− α∆)[M th(Mx)] = M t(1− α∆)[h(Mx)]

= M t[(1− α∆)h](Mx)

= M tP (Mx)

= P (x)

= (1− α∆)h(x).

We infer that M th(Mx) = h(x), so h(Mx) = Mh(x) for every special orthogonal
matrix M . This means that h must be of the form h = x⊥g1 +xg2 with g1, g2 scalar
radial functions. But one can check that (1−α∆)(xg2) is proportional to x and (1−
α∆)(x⊥g1) is proportional to x⊥. Since the sum must be x⊥f we infer that xg2 = 0,
so h = x⊥g1. Recalling that g1 is radial, we observe that div h = div(x⊥g1) = 0. We
conclude that h−α∆h = x⊥f , that h vanishes at |x| = ε and at infinity and that h
is divergence free. Therefore h = (1 +αAε)−1(x⊥f). We proved, in this paragraph,
that if f is a scalar radial function then (1 + αAε)−1(x⊥f) = (1 − α∆Πε

)−1(x⊥f)
is of the form x⊥ times a scalar radial function.

We will now proceed to obtain the required a priori estimates for uε. We start
with the following lemma.

Lemma 5. We have that Kε(qε) +mH is bounded in L∞(R+×Πε) and Kε(qε) +
m(H −H∞) is bounded in L∞loc([0,∞);L2(Πε)), independently of ε.

Proof. We recall the result in [7, Theorem 4.1], which reads, in our notation:

‖Kε(qε) +mH‖L∞(Πε) ≤ C‖qε‖
1/2
L∞‖qε‖

1/2
L1 ≤ C‖q0‖1/2L∞‖q0‖1/2L1 ,

where C > 0 is independent of ε. This shows the first bound.
Next, we need to obtain bounds on the support of qε which are independent of

ε. We write, thanks to the modified Biot-Savart law (13),

uε = (1 + αAε)−1[Kε(qε) +mH] + γ(1 + αAε)−1H ≡ u1
ε + u2

ε.

We bound u1
ε by using relation (7):

‖u1
ε‖L∞(Πε) = ‖(1 + αAε)−1[Kε(qε) +mH]‖L∞(Πε)

≤ C0‖Kε(qε) +mH‖L∞(Πε)

≤ C0C‖q0‖1/2L∞‖q0‖1/2L1

≡M.

We observe now that since H is of the form x⊥ times a radial function, then
u2
ε = (1+αAε)−1H is of the same form. So the trajectories of u2

ε are circles centered
in the origin. Recall that qε is transported by the velocity field uε = u1

ε + u2
ε. If we

want to estimate how far from the origin the support of qε can go, we can ignore
the term u2

ε. Since we bounded u1
ε by M , we infer that

supp qε(t, ·) ⊂ {|x| ≤ R0 +Mt} (21)
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where R0 is such that supp q0 ⊂ {|x| ≤ R0}.
Next we remark that Kε(qε) + m(H − H∞) = (Kε(qε) + mH) − mH∞ is a

sum of uniformly bounded vector fields, hence bounded in L2
loc(Πε) independently

of ε. Furthermore, using the expressions for the kernel Kε(x, y) ≡ ∇⊥xGε(x, y) of
the Biot-Savart law Kε given in [7, (2.5)] with the conformal mapping given by
T (x) = x/ε implies the following formula

Kε(x, y) =
(x− y)⊥

2π|x− y|2
− (x− ε2y/|y|2)⊥

2π|x− ε2y/|y|2|2
·

Using the relation
∣∣ a
|a|2 −

b
|b|2
∣∣ = |a−b|

|a||b| and observing that |ε2y/|y|2| ≤ |y| we get

for |x| > 2|y| the following upper bound for the kernel Kε:

|Kε(x, y)| = |y − ε2y/|y|2|
2π|x− y||x− ε2y/|y|2|

≤ |y|+ |ε2y/|y|2|
2π(|x| − |y|)(|x| − |ε2y/|y|2|)

≤ 4|y|
π|x|2

.

Recalling the bound on the support of qε given in (21), we can now estimate for
any |x| > 2(R0 +Mt):

|Kε(qε)(x)| ≤
∫

Πε

|Kε(x, y)| |qε(y)| dy

≤
∫

Πε

4|y|
π|x|2

|qε(y)| dy

≤
4(R0 +Mt)‖qε‖L1(Πε)

π|x|2
.

Observing that H−H∞ vanishes for |x| > 2 establishes the second bound in L2(Πε)
as desired. �

Recalling the modified Biot-Savart law (13) we can rewrite uε in the following
way:

uε = (1+αAε)−1[Kε(qε)+m(H−H∞)]+γ(1+αAε)−1H+m(1+αAε)−1H∞. (22)

We will now proceed to derive H1 estimates for each of these terms.
We start with the first one.

Lemma 6. We have that (1 + αAε)−1(Kε(qε) + m(H − H∞)) is bounded in the
space L∞loc([0,∞);H1(Πε)) independently of ε.

Proof. Let us denote bε = Kε(qε) + m(H − H∞) and aε = (1 + αAε)−1bε. Then
(1 + αAε)aε = bε. We do a classical energy estimate in which we multiply this
relation by aε. We get∫

Πε

aε · bε =

∫
Πε

aε · (1 + αAε)aε =

∫
Πε

(|aε|2 − αaε ·∆aε) =

∫
Πε

(|aε|2 + α|∇aε|2).

But ∫
Πε

aε · bε ≤ ‖aε‖
1
2

L2(Πε)‖bε‖
1
2

L2(Πε) ≤
(∫

Πε

(|aε|2 + α|∇aε|2)
) 1

2 ‖bε‖
1
2

L2(Πε)

so ∫
Πε

(|aε|2 + α|∇aε|2) ≤
∫

Πε

|bε|2.

From the previous lemma we know that bε is bounded in L2 independently of ε, so
the conclusion follows. �
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Next we will discuss the third term in (22). To this end we perform an energy
estimate for the term (1 + αAε)−1H∞.

Lemma 7. There exists a constant C = C(α) which depends only on α such that

‖(1 + αAε)−1H∞ −H∞‖H1(Πε) ≤ C(α).

Proof. Since H∞ is of the form x⊥ times a radial function, we have that w1 ≡
(1 + αAε)−1H∞ = (1− α∆Πε

)−1H∞ solves the following boundary value problem:{
w1 − α∆w1 =H∞ for |x| > ε

w1

∣∣
|x|=ε=0.

Then w2 ≡ w1 −H∞ satisfies{
w2 − α∆w2 =α∆H∞ for |x| > ε

w2

∣∣
|x|=ε=0.

The same L2 estimate as in the proof of Lemma 6 shows that

‖w2‖2L2(Πε) + α‖∇w2‖2L2(Πε) ≤ α
2‖∆H∞‖2L2(Πε).

Since H∞ = ηH and H is harmonic we have that

∆H∞ = ∆η H + 2∇η · ∇H
is a C∞ function compactly supported in the annulus {1 ≤ |x| ≤ 2} which does not
depend on ε. The conclusion follows. �

To complete the estimate of uε, it remains only to bound the term (1+αAε)−1H.
The strategy in deriving this estimate is to compare (1 + αAε)−1, in Πε, to (1 −
α∆R2)−1 in all of R2. We recall that the vector field Kα was defined in relation
(10).

Proposition 8. There exists a constant C > 0, which depends only on α, such
that

‖(1 + αAε)−1H −Kα‖H1(Πε) ≤ Cε| log ε|.

Proof. Since H is of the form x⊥ times a radial function, we have that w3 ≡
(1 + αAε)−1H = (1 − α∆Πε)−1H is of the same form and solves the following
boundary value problem: (1− α∆)w3 = H, in Πε

divw3 = 0, in Πε

w3 = 0, on ∂Πε.

Since H is divergence free in the whole of R2, we have that Kα = Gα ∗ H is also
divergence free everywhere. Then w4 ≡ w3 −Kα satisfies the following boundary-
value problem:  (1− α∆)w4 = 0, in Πε

divw4 = 0, in Πε

w4 = −Kα, on ∂Πε.
(23)

Set
F ≡ curlw4. (24)

Taking the curl of the first equation in (23) we obtain

F − α∆F = 0 in Πε. (25)
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Note that, because divw4 = 0, we have

∇⊥F = ∆w4. (26)

Evaluating the first equation in (23) on ∂Πε, using (26) and taking the inner
product of the result with the unit vector x⊥/ε, which is tangent to ∂Πε, yields

w4 ·
x⊥

ε
− α∇⊥F · x

⊥

ε
= 0 on |x| = ε.

Set n̂ ≡ x/ε, the interior unit normal to ∂Πε. Then, since∇⊥F ·x⊥/ε = ∇F ·n̂ =
∂F/∂n̂, we have derived a Neumann boundary condition for F :

∂F

∂n̂
= − 1

α
(Kα) · n̂⊥ at |x| = ε. (27)

Next we use the circular symmetry of H together with the radial symmetry of
Gα to deduce that Kα is a vector of the form x⊥ times a radial function, see (12).
Hence the right-hand-side of (27) is a real number which depends only on α, which
is fixed, and on ε. We denote it by Aε:

Aε ≡ −
1

α
Kα
∣∣
|x|=ε ·

x⊥

ε
.

With this notation we note, in particular, that

w4

∣∣
∂Πε

=
α

ε
Aεx

⊥. (28)

We also observe at this point that, thanks to Lemma 3, we have that

Aε = O(ε| log ε|) as ε→ 0. (29)

We have, thus far, deduced a Neumann boundary-value problem for F :{
(1− α∆)F = 0, in Πε
∂F
∂n̂ = Aε, on ∂Πε.

We already observed that w3 and Kα are of the form x⊥ times a radial function,
so w4 = w3 −Kα is also of this form. Therefore F = curlw4 is radially symmetric
in Πε. Hence the restriction of F to the boundary ∂Πε depends only on α, fixed,
and on ε. We denote this constant by Bε:

Bε ≡ F
∣∣
∂Πε

. (30)

Our next step is to extend F to all of R2, find an equation satisfied by this
extension and solve it. To this end consider the continuous extension of F given by

F ≡
{
F, if |x| > ε
Bε, if |x| ≤ ε. (31)
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Let us compute ∆F in the sense of distributions on R2. Fix ϕ ∈ C∞c (R2). Then

〈∆F ,ϕ〉 = 〈F ,∆ϕ〉

=

∫
{|x|>ε}

F∆ϕ+

∫
{|x|≤ε}

Bε∆ϕ

= −
∫
{|x|>ε}

∇F∇ϕ+

∫
{|x|=ε}

F∇ϕ · (−n̂) +Bε

∫
{|x|=ε}

∇ϕ · n̂

=

∫
{|x|>ε}

ϕ∆F −
∫
{|x|=ε}

ϕ∇F · (−n̂)

=

∫
{|x|>ε}

ϕ∆F +Aε

∫
{|x|=ε}

ϕ.

Recalling (25) and (31) we infer that

(1− α∆)F = Bεχ{|x|≤ε} − αAεδ{|x|=ε} in D ′(R2).

We can now invert the operator 1− α∆R2 to find a formula for F :

F = Gα ∗
(
Bεχ{|x|≤ε} − αAεδ{|x|=ε}

)
.

Evaluating the above expression at 0 we have, by definition of F ,

Bε = F (0) = Bε

∫
{|x|≤ε}

Gα − αAε
∫
{|x|=ε}

Gα ds.

It follows, see property (P2) for Gα, that

Bε = −αAε

∫
{|x|=ε} Gα ds∫
{|x|>ε} Gα

.

Using the properties of the kernel Gα and the estimate of the size of Aε given in
(29) we can estimate the size of Bε. More precisely, relation (8) implies that∫

{|x|>ε}
Gα →

∫
R2

Gα = 1 as ε→ 0,

and, thanks to (9), we have that∫
{|x|=ε}

Gα ds = O(ε| log ε|).

Combining these two bounds with (29) implies that

Bε = O(ε2| log ε|2) as ε→ 0. (32)

Knowing Bε, we can compute the H1 norm of w4. We multiply the first equation
of (23) by w4 and integrate on Πε. We obtain

0 =

∫
Πε

(w4 − α∆w4) · w4 =

∫
Πε

|w4|2 + α

∫
Πε

|∇w4|2 + α

∫
∂Πε

∂w4

∂n̂
· w4.

Given that w4 is of the form x⊥ times by a radial function, we can show, through
an easy calculation, the following identity:

x · ∇w4 = x⊥ curlw4 − w4.
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Recalling (28), (30) and (24) we observe that∫
∂Πε

∂w4

∂n̂
· w4 =

1

ε

∫
∂Πε

x · ∇w4 · w4

=
1

ε

∫
∂Πε

(x⊥ curlw4 − w4) · w4

=
1

ε

∫
∂Πε

(Bε −
α

ε
Aε)x

⊥ · x⊥α
ε
Aε

= 2παεAε(Bε −
α

ε
Aε).

Finally, we conclude that∫
Πε

|w4|2 + α

∫
Πε

|∇w4|2 = −α
∫
∂Πε

∂w4

∂n̂
· w4 = 2πα2εAε(

α

ε
Aε −Bε).

Recalling that w4 = (1 +αAε)−1H −Kα and using (29) and (32) completes the
proof. �

We summarize the results of this section in the result below.

Theorem 9. We have that uε − γKα −mH∞ is bounded in L∞loc([0,∞);H1(Πε))
independently of ε.

Proof. We use the decomposition (22) to write

uε − γKα −mH∞ = (1 + αAε)−1(Kε(qε) +m(H −H∞))

+ γ
[
(1 + αAε)−1H −Kα

]
+m

[
(1 + αAε)−1H∞ −H∞

]
.

The first term on the rhs is bounded in H1(Πε) as a consequence of Lemma 6, the
second term is bounded in H1(Πε) thanks to Proposition 8 and the H1 bound for
the third term follows from Lemma 7. �

5. Temporal estimates and passing to the limit

We will now prove the convergence result, which is part b) of Theorem 1.
We define

wε = Kε(qε) +mH. (33)

Let ũε be the extension of uε to the whole of R2 with zero values for |x| ≤ ε. We
define in a similar manner q̃ε and w̃ε. Since uε and wε are tangent to the boundary,
we infer that ũε and w̃ε are divergence free in the whole of R2.

First we note that Kα ∈ H1
loc(R2). Indeed, this follows from parts (a) and

(b) of Lemma 3 together with properties (P3) and (P4) of Gα. Therefore, using
Theorem 9 together with the vanishing of uε on the boundary of Πε, we obtain that
ũε − γKα −mH∞ is bounded in L∞loc([0,∞);H1(R2)). We infer that there exists
some divergence free limit vector field u such that

u− γKα −mH∞ ∈ L∞loc([0,∞);H1(R2)), (34)

and, passing to subsequences as needed,

ũε − u ⇀ 0 in L∞loc([0,∞);H1(R2)) weak∗ as ε→ 0. (35)

In view of the discussion above we have, in particular, that ũε is bounded in
L∞loc([0,∞);H1

loc(R2)) and u belongs to L∞loc([0,∞);H1
loc(R2)).
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We also find, thanks to Lemma 5, that w̃ε is bounded in L∞(R+×R2) indepen-
dently of ε, so we can further assume that

w̃ε ⇀ w in L∞(R+ × R2) weak∗ as ε→ 0 (36)

and

q̃ε ⇀ q in L∞(R+;L1(R2) ∩ L∞(R2)) weak∗ as ε→ 0. (37)

Recall the equation for the potential vorticity

∂tqε + uε · ∇qε = 0 in (0,∞)×Πε.

Since uε is tangent to the boundary of Πε (it even vanishes), the extensions ũε and
q̃ε satisfy the same PDE in all of R2:

∂tq̃ε + ũε · ∇q̃ε = 0 in (0,∞)× R2. (38)

We observed above that Theorem 9 implies that ũε − γKα −mH∞ is bounded
in L∞loc([0,∞);H1(R2)) ↪→ L∞loc([0,∞);L4(R2)). From Lemma 3 and the definition
of H∞ we observe that γKα + mH∞ ∈ L4(R2) and, therefore, ũε is bounded
in L∞loc([0,∞);L4(R2)). Since q̃ε is bounded in L∞(R+;L4(R2)) we infer that
ũεq̃ε is bounded in the space L∞loc([0,∞);L2(R2)), so that ũε · ∇q̃ε = div(ũεq̃ε)
is bounded in L∞loc([0,∞);H−1(R2)). Then ∂tq̃ε = −ũε · ∇q̃ε is also bounded in
L∞loc([0,∞);H−1(R2)). We infer that the q̃ε are equicontinuous in time with values

in H−1(R2). Using the compactness of the embedding H−1(R2) ↪→ H−2
loc (R2) and

the Ascoli theorem, we infer that, passing to subsequences if necessary, q̃ε → q in
C0([0,∞);H−2

loc (R2). Recalling that q̃ε is bounded in L∞(R+;L2(R2)) we finally
deduce that

q̃ε → q in C0([0,∞);H−1
loc (R2)) strongly as ε→ 0. (39)

The weak convergence of ũε in H1 obtained in (35) then implies that ũεq̃ε → uq in
the sense of distributions. Thus we also have that div(ũεq̃ε)→ div(uq) in the sense
of the distributions in R2. Hence, we can pass to the limit ε→ 0 in (38) to obtain
that

∂tq + u · ∇q = 0 in (0,∞)× R2.

In addition, the strong convergence found in (39) implies that we also have conver-
gence for the initial data: q̃ε(0, ·)→ q(0, ·) as ε→ 0 in H−1

loc (R2). We conclude that
we have an initial condition for the equation of q:

q(0, x) = q0(x).

Next we will obtain the relationship between u and q expressed in the system
of PDE satisfied by q. We already know that u is divergence-free, as limit of uε,
which are divergence-free. We will proceed to show that curl(1 − α∆)u = q + γδ.
This will be done in two steps: first we determine the equation for the limit of w̃ε
and then we determine the equation for the limit of ũε. The following lemma deals
with the first step.

Lemma 10. We have that w ∈ L∞(R+ ×R2), that divw = 0 and that curlw = q.

Proof. We already know that w ∈ L∞(R+×R2) and that divw = 0. Let us compute
curlw. Let ϕ ∈ C∞c ((0,∞) × R2) be a test function and choose some µ > 0. Let
ηµ(x) ≡ η(x/µ) and ϕµ = ηµϕ, where η was introduced on page 3. We assume that



INCOMPRESSIBLE α–EULER OUTSIDE VANISHING DISK 19

ε < µ. We multiply q̃ε by ϕµ and we integrate by parts, using that ϕµ is compactly
supported in Πε and that qε = curlwε:∫ ∞

0

∫
R2

q̃εϕµ =

∫ ∞
0

∫
Πε

qεϕµ

=

∫ ∞
0

∫
Πε

curlwεϕµ

= −
∫ ∞

0

∫
Πε

wε · ∇⊥ϕµ

= −
∫ ∞

0

∫
R2

w̃ε · ∇⊥ϕµ.

We send ε→ 0 and use the weak convergences found in (36) and in (37) to obtain
that ∫ ∞

0

∫
R2

qϕµ = −
∫ ∞

0

∫
R2

w · ∇⊥ϕµ.

One can easily check that ϕµ → ϕ weakly in H1 as µ → 0. Recalling that w is
bounded in space and time and, hence, it belongs to L2

loc, and observing that ϕµ is
supported in a compact set independent of µ, we can pass to the limit µ→ 0 above
to obtain that ∫ ∞

0

∫
R2

qϕ = −
∫ ∞

0

∫
R2

w · ∇⊥ϕ.

This means that curlw = q in the sense of the distributions. This concludes the
proof of the lemma. �

The second step consists in computing u− α∆u in terms of w.

Lemma 11. We have that u− α∆u = w + γH.

Proof. Let Ψ ∈ C∞c,σ((0,∞) × R2;R2) be a divergence-free test vector field and
choose some µ > 0. We assume ε < µ.

Since Ψ is divergence-free, there exists Φ ∈ C∞((0,∞) × R2;R), compactly
supported in time, such that Ψ = ∇⊥Φ. We can assume, without loss of generality,
that Φ(t, 0) = 0 for all t.

As before, let ηµ(x) = η(x/µ) and Ψµ = ∇⊥(ηµΦ). Then Ψµ is divergence
free and compactly supported in Πε so (1 + αAε)Ψµ = (1 − α∆)Ψµ. Recall that
(1 + αAε)uε = wε + γH, see (13) and the definition of wε given in relation (33).
We write∫ ∞

0

∫
R2

ũε · (Ψµ − α∆Ψµ) =

∫ ∞
0

∫
Πε

uε · (1 + αAε)Ψµ

=

∫ ∞
0

∫
Πε

(1 + αAε)uε ·Ψµ

=

∫ ∞
0

∫
Πε

wε ·Ψµ + γ

∫ ∞
0

∫
Πε

H ·Ψµ

=

∫ ∞
0

∫
R2

w̃ε ·Ψµ + γ

∫ ∞
0

∫
R2

H ·Ψµ.

We now let ε→ 0 and use (35) and (36) to pass to the limit. We obtain∫ ∞
0

∫
R2

u · (Ψµ − α∆Ψµ) =

∫ ∞
0

∫
R2

w ·Ψµ + γ

∫ ∞
0

∫
R2

H ·Ψµ.
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We rewrite the last term above in the following form:∫ ∞
0

∫
R2

H ·Ψµ =

∫ ∞
0

∫
R2

H · ∇⊥(ηµΦ)

=

∫ ∞
0

∫
R2

H · ∇⊥((ηµ − 1)Φ) +

∫ ∞
0

∫
R2

H · ∇⊥Φ

=

∫ ∞
0

∫
R2

H · ∇⊥((ηµ − 1)Φ) +

∫ ∞
0

∫
R2

H ·Ψ.

We now use that curlH = δ, we recall that ηµ−1 is C∞ and compactly supported,
and we write the following sequence of equalities in the sense of the distributions
D ′(R2):∫ ∞

0

∫
R2

H ·∇⊥((ηµ−1)Φ) =

∫ ∞
0

〈H,∇⊥((ηµ−1)Φ)〉 = −
∫ ∞

0

〈curlH, (ηµ−1)Φ〉

= −
∫ ∞

0

〈δ, (ηµ − 1)Φ〉 =

∫ ∞
0

Φ(t, 0) dt = 0,

where we also used that ηµ(0) = 0.
We infer that∫ ∞

0

∫
R2

(u ·Ψµ + α∇u · ∇Ψµ) =

∫ ∞
0

∫
R2

u · (Ψµ − α∆Ψµ)

=

∫ ∞
0

∫
R2

w ·Ψµ + γ

∫ ∞
0

∫
R2

H ·Ψ.

Since Φ(t, 0) = 0 one can easily check that Ψµ → Ψ in L∞(R+;H1(R2)) weak∗ and,
moreover, the support of Ψµ is included in a compact set uniformly with respect to
µ. Since u ∈ L∞loc([0,∞;H

1
loc(R2)) one can pass to the limit µ→ 0 above to obtain∫ ∞

0

∫
R2

(u ·Ψ + α∇u · ∇Ψ) =

∫ ∞
0

∫
R2

w ·Ψ + γ

∫ ∞
0

∫
R2

H ·Ψ.

This can be written in the following form in the sense of the distributions:

〈u− α∆u− w − γH,Ψ〉 = 0

for all divergence-free test vector fields Ψ ∈ C∞c,σ((0,∞)×R2;R2). Since the vector
field u− α∆u−w− γH is divergence free, we deduce from the relation above that
it must vanish. This completes the proof of the proposition. �

Recall that curlH = δ in R2. Then, by virtue of Lemmas 10 and 11, it follows
that

curl(u− α∆u) = curl(w + γH) = curlw + γδ = q + γδ. (40)

We have shown the convergence of a subsequence of qε towards a solution of (5).
In the next section we will show that the solutions of (5) are unique, which, in
turn, implies that the full sequence qε converges to q, without the need to pass to
a subsequence.

To conclude the proof of part b) of Theorem 1 it remains to show that u ∈
L∞loc(R+;Lp(R2)) for any p > 2. This follows immediately from (34) since it is
easy to see, using Lemma 3 part b) and the definition of H∞, that both Kα and
H∞ ∈ Lp(R2), for all p > 2, and since H1(R2) ⊂ Lp(R2) for all p ≥ 1.
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Remark 12. Recall that the kernel of the solution operator in the full plane for
curl(1−α∆), on divergence-free vector fields vanishing at infinity, is Kα = Gα ∗H.
This solution operator can be easily extended to solenoidal vector fields in Lp(R2).
Therefore, using (40) and that u ∈ L∞loc(R+;Lp(R2)), p > 2, we infer that u can be
expressed as:

u = Kα ∗ (q + γδ) = Kα ∗ q + γKα.

Moreover, if we denote by v̌ = H ∗ q the velocity field associated to q in R2 then
one can check that

curl(∂tv̌ + u · ∇v̌ +
∑
j

v̌j∇uj) = ∂t curl v̌ + u · ∇ curl v̌ = ∂tq + u · ∇q = 0.

So the velocity formulation of (5) can be written in the form

∂tv̌ + u · ∇v̌ +
∑
j

v̌j∇uj +∇p = 0

div u = 0

u− α∆u = v̌ + γH.

6. Uniqueness for the limit system

The global existence of solutions of (5) follows from the convergence result es-
tablished in the previous section. Here we will prove uniqueness of solutions of (5),
thereby completing the proof of Theorem 1.

Let us observe that the α–Euler equations in R2, with an initial vorticity given
by a bounded measure such as q0 + γδ, have a global unique solution, see [11].
But, as noted in the introduction, even though the limit system (5) is very similar
to the α–Euler system, it is not the same. In addition, [11] proves uniqueness of
Lagrangian solutions by working on the trajectories of the velocity field. Even if we
could adapt the proof of uniqueness for α–Euler to (5), we would still have to make
the connection between Lagrangian solutions and the Eulerian solutions considered
here. Instead, we will give below a more classical proof of uniqueness, based on
energy estimates.

Let q, q′ ∈ L∞(R+;L1(R2) ∩ L∞(R2)) be two solutions of the limit system (5)
with the same initial data q(0, x) = q′(0, x) = q0(x). Then u = Kα ∗ q + γKα and
u′ = Kα ∗ q′ + γKα, see Remark 12.

Let q = q − q′, u = u − u′ and v = H ∗ q = ∇⊥∆−1q. Clearly
∫
R2 q dx =∫

R2 q0 dx =
∫
R2 q

′ dx so
∫
R2 q dx = 0. In addition, q and q′ are obviously compactly

supported in space. We infer that v decays like O(1/|x|2) at infinity, so that it
belongs to L2.

We have the following PDE for q:

∂tq + u · ∇q − u′ · ∇q′ = 0.

We multiply by ∆−1q and integrate in [0, T ]×R2. We follow the same argument as
in Section 3, when we estimated d

dt‖v
n+1− vn‖2L2(Πε). Redoing the same estimates
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as those found on pages 9–10 we find

1

2
‖v(T )‖2L2 = −

∫ T

0

∫
R2

(∂2u1 + ∂1u2)v1v2 −
1

2

∫ T

0

∫
R2

(−∂1u1 + ∂2u2)(v2
2 − v2

1)

+

∫ T

0

∫
R2

u · v⊥ q′

≤ C
∫ T

0

(‖∂2u1 + ∂1u2‖L∞ + ‖∂1u1 − ∂2u2‖L∞)‖v‖2L2

+ C

∫ T

0

‖u‖L2‖v‖L2‖q′‖L∞

≤ C
∫ T

0

(1 + ‖∂2u1 + ∂1u2‖L∞ + ‖∂1u1 − ∂2u2‖L∞)‖v‖2L2 ,

where we used the relation u − α∆u = v to bound ‖u‖L2 ≤ ‖v‖L2 and, also, that
q′ is bounded in L∞.

We now use (11) to obtain

‖∂1u1 − ∂2u2‖L∞ ≤ ‖(∂1K
α
1 − ∂2K

α
2 ) ∗ q‖L∞ + |γ|‖∂1K

α
1 − ∂2K

α
2 ‖L∞

≤ ‖(∂1K
α
1 − ∂2K

α
2 )‖L∞(‖q‖L1 + |γ|)

≤ C,

where C is uniform in time. A similar estimate holds true for ‖∂2u1 + ∂1u2‖L∞ .
We deduce that

‖v(T )‖2L2 ≤ C
∫ T

0

‖v‖2L2 .

The Gronwall inequality then implies that v = 0, so that q = q′. This completes
the proof of Theorem 1.
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du 11 novembre, Villeurbanne Cedex F-69622, France.
Email: iftimie@math.univ-lyon1.fr
Web page: http://math.univ-lyon1.fr/~iftimie
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Cidade Universitária – Ilha do Fundão, Caixa Postal 68530, 21941-909 Rio de Janeiro, RJ –
Brasil.
Email: hlopes@im.ufrj.br
Web page: http://www2.im.ufrj.br/hlopes


