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Abstract
In this work we consider the periodic 3D Navier-Stokes equations and we take the initial data of the
form uo = vo + wo, where vo does not depend on the third variable. We prove that, in order to obtain
llvo 12
%)S Cv, where X is a
space with a regularity H? in the first two directions and H'/27% in the third direction or, if § = 0, a

global existence and uniqueness, it suffices to assume that |lwol|x exp(

space which is L? in the first two directions and B;’/f in the third direction. We also consider the same
equations on the torus with the thickness in the third direction equal to € and we study the dependence
on ¢ of the constant C above. We show that if vy is the projection of the initial data on the space of

functions independent of the third variable, then the constant C can be chosen independent of €.

Résumé

Dans ce travail on considere les équations de Navier-Stokes périodiques 3D et on prend la donnée
initiale de la forme ugp = vo + wo, ou vg ne dépend pas de la troisieme variable. Ol’; démontre que,
afin d’obtenir l’existence et 1'unicité globale, il suffit de supposer que ||wol|x exp(%)g Cv, ou
X est un espace avec une régularité H % dans les deux premitres directions et H 1/2=% Jans la troisieme
direction ou, si § = 0, un espace qui est L? dans les deux premieres directions et B; ’/12 dans la troisieme
direction. On consideére aussi le méme systeme sur le tore avec une épaisseur € dans la troisieme direction
et on étudie la dépendance de ¢ de la constante C' ci-dessus. On trouve que, si vo est la projection de
la donnée initiale sur ’espace des fonctions indépendantes de la troisieme variable, alors la constante C

peut étre choisie indépendante de ¢.

INTRODUCTION

The periodic 3D Navier-Stokes equations are the following

ou+u-Vu—vAu = —Vp
(N-S) divu(t,”) = 0 forall t>0
u‘t:[) = Upg.

Here, u(t,z) is a periodic time-dependent 3-dimensional vector-field. For the
sake of simplicity, we assume that the force is vanishing. This is not a serious
restriction, it is clear that the difficulty in solving these equations comes from
the non linear term. Similar results may be proved in the same way with a force
square-integrable in time with values in the right space. The choice of periodic
boundary conditions comes from the need to use the Fourier transform; for this
reason our methods do not trivially extend to other classical boundary conditions.

It is well-known that in 2d, there exists a global unique solution for square-

integrable initial velocity. In larger dimensions, unless some symmetry is assumed,
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global existence and uniqueness of solutions is known to hold only for small and
more regular initial velocities. The goal of this paper is to prove global existence
and uniqueness results by considering the 3D Navier-Stokes system as a pertur-
bation of the 2D system. To do that, we write the initial data as the sum of a
2-dimensional initial part and a remainder. The main theorem says that, in order
to obtain global existence, it suffices to assume the remainder small, and small
compared to the 2-dimensional part. Some stability results are already proved by
G. Ponce, R. Racke, T.C. Sideris and E.S. Titi in [9] but the norm of the remainder
is not estimated and the 2-dimensional part of the initial data is assumed to be
in H*N L' and not in L?, the optimal assumption. This loss of regularity appears
when they take the product of a 2-dimensional function with a 3-dimensional func-
tion. This difficulty is overwhelmed here by introducing anisotropic spaces, where
the variables are “separated”. The loss of regularity is then optimal. Another
advantage of these spaces is that they are larger than the usual Sobolev spaces,
hence we obtain in the same time more general theorems.

It is natural to ask if the 3D Navier-Stokes equations on thin domains are close
to the 2D Navier-Stokes equations from the point of view of global existence and
uniqueness of solutions. A second aim of this work is to do the asymptotic study
of the Navier-Stokes equations on T, = [0, 27a] x [0, 27b] x [0, 2we] when € — 0,
as was first considered by G. Raugel and G.R. Sell [I], [[0] and, afterwards, by
J.D. Avrin [0}, R. Temam and M. Ziane [17], [T3] and I. Moise, R. Temam and M.
Ziane [8]. By asymptotic study, we mean proving global existence and uniqueness
of solutions for initial data in optimal sets, whose diameters should go to infinity
when the slenderness of the domain goes to 0. To do that, it is natural to work in
spaces where the third variable is distinguished. It appears that the anisotropic
spaces are again well adapted to this study.

In an earlier paper [[7], we proved global existence and uniqueness of solutions
for (N-S) in R? with small initial data in

7_(61,52,537 61 +52 _|_(53 = 1/27 —1/2 < 51 < 1/2,

a space which is H% in the i-th direction. Here we apply in the periodic case
the work we have done there. The precise result is that there exists a positive
constant C, independent of v, such that if 0 < 6 < 1 and the initial data is vg+wy
with vy independent of the third variable, then, in order to obtain global existence
and uniqueness of solutions, it suffices to assume that
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where X is a space which is H? in the first two variables and H'/279 in the third
variable, or, if § = 0, a space which is L? in the first two variables and B;,/IQ in the



third variable, where B;  is the usual Besov space given by
B, = {u € & such that [|2* HAiU”Lpng

where A;u is defined in ([[.1]). We shall also prove local existence and uniqueness
of solutions for arbitrary initial data in the spaces above.

In the third paragraph we work in T. and we study the dependence on ¢ of
the constant of inequality (0.1]). We shall prove that if v, is the projection of the
initial data on the space of functions independent of 3 and 0 < 6 < 1/2, then the
constant C' can be chosen independent of . This will imply that global existence
and uniqueness is achieved as long as
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U
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( s) Cl/2

< oo},

The inequality above can be read in various ways. For instance, it is implied by

2
U
[ (%) < cvet
v

or, for all @ > 0, by
lvol| L2(r2) < CV(l + \/—aloge> and ||wo| g1,y < Cpe=1/2ta

Finally, if one needs to have a larger vy, one can take vy arbitrarily large, the price
to pay is that wy has to be assumed exponentially small with respect to that vy.
Let us compare this theorem with the previous results.
The precise results of G. Raugel and G.R. Sell [I1], [I0] are rather complicated
so we give only an approximation: they consider various boundary conditions and
obtain global existence and uniqueness of solutions as long as

—5/24 —5/48

[voll s (z2) < Ce and |lwol|g1(1,) < Ce

or

||U0”H1(11‘2) S 08_17/32,

‘Ug|’L2(T2) < Ce'? and |[Jwo|pr1r.) < Ce™V%,

where v3 is the third component of v.
In the paper of J.D. Avrin [0] it is shown that the condition ||ug||g: < CAy
suffices in the case of homogeneous Dirichlet boundary conditions; we denoted

by A; the first eigenvalue of the Laplacian with homogeneous Dirichlet boundary

conditions. In the case of a thin domain, the equivalent of Avrin’s result would
be:

1/4

”UQHHl S 06_1/2.
Let us note that in the case of homogeneous Dirichlet boundary conditions the
2-dimensional part can not be defined, so one of the major difficulties of the
problem, mixture of 2d functions with 3d functions, does not appear.



I. Moise, R. Temam and M. Ziane [R] prove that it is sufficient to assume that
ool ar1(r2y < Ce™** and [lwollmi(r.) < Ce™V/0F,

where ¢ is a positive number.
Finally we mention that spherical domains are considered by R. Temam and
M. Ziane [L3].

1. NOTATIONS AND PRELIMINARY RESULTS

Many of the notations and the results from [7] remain valid here with minor
modifications; for those results, we shall only sketch the proofs. The main dif-
ferences are that we use the Littlewood-Paley theory in two variables instead of
three and we have to adjust to the periodic case the definition of the A, operators.
We work in T? = [0, 27| x [0, 27] x [0, 27] and we denote by (21,29, 23) = (2/, z3)
the variable in T2. All the functions are assumed to have vanishing integral on

T3. Let
< oo} ,
LP,

and [P? be the similar space for sequences. Obviously, when p = ¢, the spaces [P
and LPP are nothing else but the usual [P and LP spaces. The order of integrations
is important, as shown by the following remark (see [{]):

LP9 = {u such that ||U||Lp,q déf

(@)l s,

Remark 1.1. Let (Xq, 1), (Xo, o) be two measure spaces , 1 < p < q and
f: X xY —R. Then

I[FCy 2ol 2oy | La(ae) < (@1, ) 2o (a0 | 2o (X1 p00) -

The Holder and Young inequalities for the LP? spaces take the form:

1 1 1 1 1 1
fg ,S f p1.a1 || p,fI7Where_:_+_a_:_ 5
1f9ll e < N Fllpovar (191 oo 0 o T @

1 1 1 1 1 1
1f % gllpes <[ fllLaren 1[Gl ass » Where 1+ e a + o L+ = b + %

We denote by h* the operator of convolution with h.
If u is periodic, then it has a Fourier series

u(z) = Z un exp(in - ), u, € C,

nezs



For ¢ > 0 and ¢’ > 0, we define

Shu = Z un exp(in - ) X(|Zq|)
nez3
Syu = Z uy, exp(in - x)x(|n3|)
n 29
neZ3
Ny =55~ S wmesplin- D) ve> 1
nez3
Ay =5y= Z U(0,0,n5) €XP(iN323)
(1.1) nact il
ng
Ay =S —S] Zunexpm x)o( 2q) Vg > 1,
nez3
Ay =S = Z Um0y €xp(in’a’)
n'€Z2
Sq.q = S¢Sy
Agy = ALA]
Sy = Sqq

Ay =5, —54-1,8¢ = So,
where y : R — [0, 1] is a smooth function such that supp x C] — 1,1[, x = 1 on
[0,1/2], x is decreasing on [0,00[, x(3/4) = 1/2 and ¢(x) = x(z) — x(2x). Note
that supp ¢ C]1/4, 1] and ¢(z) > 1/2 for all = € [3/8,3/4]. With these notations,
the next inequality stems from Lemma [T below:

(12) |’<pq,q’||LP1,P2 S 6'22‘1(1_1/171)-5-‘1/(1_1/192)7

where ¢, o is given by A,y = @4 ¢*. The same holds for S, ,. Note that this
inequality is an extension of the classical equality

H‘PqHLp(Rd) = ¢2440=1/p)

where @, is given by A, = ¢ *, A, being the usual localization operator in R?
(see [2], [4]). Tt is important to use smooth cut-off functions; if we would use
characteristic functions of dyadic intervals, then inequality ([[.2) would not hold
in the L' case. For further details on the subject we refer to [G], Chapter 7.

Lemma 1.1. Let ¢ be a compactly supported smooth function, X > 1/(27) and

= Z o(n/X) exp(inx).

ne”L
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Then, for all1 < p < oo and k € N there exist a constant C' = C(¢, k) such that
79], < ox-e
where %) is the k-th derivative of f.

Proof. First we remark that we can restrict ourselves to the case k = 0. Indeed,
we have f®) = Mg, where

gr(x) = Z Ur(n/A) exp(inx)

and

Yi(z) = (i) 6 ().
Interpolating L? between L' and L shows that it suffices to consider the cases
p=1and p = oco. We have

f@ < Y le(n/N)]

nEAsupp ¢

S C H¢||L°Q )\7

thus the case p = oo is proven.
Before going any further let us note that if A < 1/(27) then || f||;~ is bounded
independently of A, hence so is || f]| ;.. To estimate || ||, for A > 1/(27) we write

s = [ 7 f()] do
- [T@las [T

/A
To estimate the first integral we use the bound on the sup norm of f:

1/A
/O @) dz < YA e < C 1]l -

In order to bound the second integral we use Abel’s summation formula to
deduce that

f2) = Z exp(i(n + 1)x) — exp(inx)d)(n/)\)

exp(iz) — 1

n

B exp(in) . —b(n
= 3 SRR (o((n— /) - 600/ )

n

-5 SPUNT) (0~ 2)/3) — 26((n — 1)/A) + B/ A)).

exp(iz) — 1)2

Taylor’s formula gives

[6((n = 2)/A) = 26((n = 1)/X) + ¢(n/N)| < CA7,



for some constant C' = C(¢). Thus

2T 27
/ |f(x)| do < / Y NP
/X 1

/X |nj<C

2m
< C/)\/ % dx

1/A
<C.
This completes the proof. O
As a corollary we find a Littlewood-Paley lemma in two variables:

Lemma 1.2. If u is a periodic function on T? such that

{€ € R® such that |€'] < Ay, |&| < AQ}

suppu C B(0, A1, \o) dﬁf

1<a; <b <00, 1 <ay<by <o anda=(a,a,a3) €N is a multi-inder,
then

L o e (1

Proof. Recall that

u = (2n) Z U_p O

nezs

Let

ns(0) = s 32 explin- (NG,

where x is defined immediately after relation (@) The localization of QZM, x, and
u implies that ¢y, A, U = U, SO

U = ¢>\17/\2 *U.

Since
¢>\17>\2 (l‘) = ¢>\1 (x/)¢A2 (ZL’3)
with
n o 1 . / ’n/|
o (') = anezw exp(in’ - x )X(2—>\1)
and

Do) = 5 > GXP(Z'”3$3)X(2—)\2)»
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applying Young’s inequality and Lemma [[1] yields

(0% (6%
Ha u”Lbl’b2 < ”a ¢)\17)\2H a1by agby ”uHLalvaz
[ a1byi+ai;—by agbytag—by

S O/\<1)¢1+a2+2(1/a1—1/b1))\gg—i—(l/az—l/bg) ||U

(e

The proof is completed. 0

Definition 1.1. We denote by M the operator given by

1 2
Mu(xl,xQ):%/ x) drs = Z U@ 0y explin’ - z').
0

It is easy to check that M, defined as a Fourier series, is the orthogonal projection
on the space of functions not depending on the third variable in every Sobolev
space H?.

When we will say that a possibly non-integrable function v has vanishing mean
we understand that w0y = 0. Similarly, vanishing mean in the third direction
refers to w0 = 0 Vn' € Z2. Let us now introduce the first class of spaces we
shall use:

Definition 1.2. We denote by H>* the space
H = {u € D/(T%) such that |ulsy < oo},
where

2’

|u|8,8’ = H(l + |n/|2)5/2<1 +n§)5’/2un

in which u, are the Fourier coefficients of the function u. The homogeneous
variant of this space is

o5 = {u c H* and Mu = O}.

The following two lemmas are similar to Lemmas 1.2 and 1.3 from [7] and give
a characterization of H** in terms of dyadic decomposition.

Lemma 1.3. Ifu € H** then

gastd's HAq,q’uHm

[u|s.s > .
b £2

Proof. Definition ([[.1]) implies

1Aggull2s = 2m)* Y Jua*GP(10'1/29)0% (|nal/27) Va.q > 1.

n



Using the localization of ¢ we obtain

(1.3) Ci > Jun (1 [0 2)* (1 + |ng|)* < 220820 | A g7,
32¢73<|n’|<32472
324’ =3<|ng|<324 2

<Gy Y P+ sl
20-2<|n’|<29
292 <|ng| <29’

for some constants C; and Cy. Similarly,
1) G > fuwe PO+ ) <22 | Agoul
324-3<|n/|<324-2

<Gy Y luwol (4P Vg =1,

202 <|n/| <24
and

(1.5) & > [0y P(L 4 [3]*)* < 227 [| A g

324 =3<|ng|<324'~2

<C Y P+ [ns)T Ve > 1

29'—2< |ng| <27

Using that Agou = ugo and summing relations ([.3), ([.4) and ([.5) gives the
desired conclusion. O

Lemma 1.4. If u,, is a sequence of square integrable functions such that
SUpp Ty, C {1/727’ <€ <27, 1/727 < & < 72”’} forp,p =1
supp Upo C {1/72° < |¢'| <12, |&] <7} forp =1
supp Goy < {1€] <7,1/72 < 16| <92} forp' =1
supp oo C {[] <7, 18] <7},

for some constant v > 1 and

2 |ty |1

< 00,
32

then
_ s,s’
u= E Upy € H
p.p’
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and

[uls < C |24 |

If s > 0 it suffices to assume that
SUPP Uy C {If’l <27, 1/727 <& < 72”'}-
If s > 0 it suffices to assume that
supp Ty © {1/72° < [€] <927, 165 <92}
If s >0 and s’ > 0 it suffices to assume that
supp Gy © {1 <27, 6] <927}

Proof. We prove the relevant case s > 0. Similar proofs work for the other situa-
tions. We use that the operators A, , are bounded in L? independently of ¢ and
¢’, and the localization of A, and u,, to deduce the existence of an integer N
such that

|up,p’||L2 P

24 Ag gl 5 < 275D At
p.p’

S D ) (¥

p>2g—N
Ip'—¢'|<N

/>|<b

= Qq,q a4

where

and gy = gustd s Huq,q’HL2 :

20405 it g < N,|¢| < N
0 otherwise

Young’s inequality yields
|2 A gl

Since s > 0 one has [|agq||,, < co. Applying Lemma [[.3 completes the proof. [

P < llagq llp 1bgqlle -

The next theorem as well as its proof is a variant of the product theorem 1.1
from [[7] which states that the product of a function from H* 2% with a function
from H 28 lies in Hs1H1—1/2s2t2—1/284-1/2 provided that s; < 1/2, ¢ < 1/2,
si+t;>0,1€{1,2,3}.

Theorem 1.1. Letu € H>*, v € H" such thats < 1,t <1, s+t >0, s <1/2,
t' < 1/2 and s’ +t' > 0. Then uv € H¥T=15'+'=12 qnd there exists a constant C
such that

[V |spt-1,50 10172 < Clulss|v]ip.
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Sketch of the proof. We use the following anisotropic equivalent of Bony’s decom-
position:

(1.6) w=(T"+R +T)(T"+R"+T"),

where 7" and T" correspond to the 2-dimensional paraproducts, R’ corresponds
to the 2-dimensional remainder and the double prime refers to the third variable.
For instance, the definition of the term 7'R" is

T'R"(u,v) Z Z EPYANT7ANWANGENY

1=—1 p,p’

The theorem holds for each of these operators under weaker assumptions. If a
term contains 7" then we have to assume that s < 1, if it contains R then s+¢ >0
and if it contains 7" then ¢ < 1. A similar rule holds for 7", R” and T”. Let us
prove that if s < 1 and s’ +# > 0 then T'R"(u,v) € H*=15+"=1/2_ We follow
the proof of Theorem 1.1 from [[d]. Let
7 " rAN
wy, .y = p DYAWTTVANANN

Using several times the anisotropic form of Holder’s inequality, the definition of
the operator S; as well as the anisotropic Littlewood-Paley lemma [[.2 one can
show that

(1.7)
18l 2 < 272 [ Agapyllpes <277 3 27 (|87 AG ]| o [[ALAT 0]l 2
r<p—2
(see [@]). Defining agy = 2919 | Ay gyl 12y byy = 2977 |Aygv]|,» and using
that s < 1 yields
HAq,q’ , S C27 [2gp(i=s=ig=# (") llap.p ||g;o bppr i
whence

9a(s+t—1)+q'(s'+t'=1/2) HAq q/wi , < (2(a=p)(s+t=1)+(q'—p')(s'+1) |

‘ap,p’ Hzg bp.pr—i-

The localization of w;,’p, shows that an integer N exists so that |[p —¢| < N and
g <p + N, so

1
2‘1(8+t—1)+q'(s'+t’_1/2) ||Aq,q/T'R"(u, U)HL? S C Z Z 2(q’_p/)(s’+t’) ||ap7p,||£2 bp,p’—i-
i=1 [p—q|<N ’
p'>q¢'—N
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Taking the Eg norm gives

2q(s+t—l)+q’(s’+t’—1/2) ||Aq q/T/R” (U, U)

Iua| .

1
<C Z Z 2=+ ”ap,p’Heg, pr,p’—z’”é?: '

i=—1p'>q¢'—N

Taking the £2, norm, applying Young’s inequality and using that s’ +# > 0 yields

| 50y

i=—1
Finally, Holder’s inequality implies

galsti- e (e -1/2) ||Aqq T'R"(u, U>HL2

lapprll ez 110, sz

2q(s+t—1)+q’(s’+t’—1/2) ||Aq q/T/RH(U, ’U)

||L2 2 <C ||ap,p’||42 ||bp,p’||z2 )

that is
|T/R”(Ua U)’s+t—1,s’+t’—1/2 < C|u’s,s/‘v‘t,t’-

This completes the proof for 7"R”. The other terms can be bounded in the same
way. [

We now add an interpolation property for these spaces:

Proposition 1.1. Let s,t,s',t' be four real numbers, a € [0,1] and v € H>* N
Ht’t/. Then u € Has—i—(l—oz)t,as/—i-(l—a)t’ and

|u|as+(l a)t,as'+(1—a)t! < ’u‘ss |u‘tt’ :

Proof. We have from Holder’s inequality that

s (1t 4+ (1 = H(1+\n’| Jast(1=a))/2(] | p2)(as’+(1-a)t)/2y, )
< (wsieera )],
(@ mrErEaenye) |
2/(1-a
= [ulgglvly "
This completes the proof. O

We will need to estimate |Vu/|, ¢ in terms of norms of u. The coming proposition
gives an useful equivalence.
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Proposition 1.2. Let u be a periodic function on the three dimensional torus
with vanishing mean. The following norms are equivalent:

|vu|5,s’7 |U|s+1,8’ + |U|S,S’+1a sup |u|s+a,s’+1—a-
a€l0,1]

Proof. Using the interpolation property, one sees that the norm

sup ’u‘s—i-a,s’—‘rl—oz
a€l0,1]

is equivalent to the norm
|u|s+1,s’ + |u|s,s’+1‘
On the other hand, we have by definition that
|vu|§,s’ = ’alu’is’ + ‘aQuE,s’ + |a3u‘§,s’
= D WP (L4 md)” (0] + 13 4 )

nezs
and that
0210+ fulin = D0 (41003 + (L ) (04 03 )
nez3
— Z (142 [2)*(1 +n2)* (2 + n? + n2 + nd)|u,|?
nez3
Since u(0,0,0) = 0, the conclusion follows. O

If v € L*(T?) then one can write v € L?(T?) by defining v(x1, 22, x3) = v(21, 22).
It is obvious that
Agov = Ag
Ayggv=0 ifqg >1.

It follows that, in the proof of Theorem [[.] there is no loss on ¢’. This enables us
to modify that theorem as follows:

Theorem 1.2. Letv € H*(T?), w € H* such thats < 1,t <1, s+t >0. Then

vw € HeHLY

and

’Uw‘ertfl,t/ < C‘v|s’w’t,t“
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Proof. We treat x5 as a parameter and we use the decomposition of the product
vw as the sum of two-dimensional paraproducts and remainder:

(1.8) vw = Tyw + R(v,w) + Tyw,
where

T,w = Z S, A w
P

(1.9) R(v,w) = zl: Z AUAL W

i=—1 p
T,w=T,v.

We prove that the theorem holds under weaker assumptions for each of these
operators. More precisely, we have the following

Lemma 1.5. There exists a constant C' such that if T', R and T are the operators
defined above, then for allv € H*(T?) and w € HY we have

|Tyw|stt—10 < Clo|s|w|ee if s <1,

|va|s+t71,t’ < C|'U|s‘w‘t,t’ th < 17
|R(v, w)|s4t—10 < Clv|s|wlee if s+t > 0.

Proof. Let us prove the assertion on 7. We have

1AL Towlle < Y0 | Agy (S vApw) |,

lp—q|<1
= > AL(S, A W),
Ip—q|<1
<C Z HSszfZUAP:q’me
[p—q|<1
<C Z HSZ/7—2/UHL00 [Apqwllgs -
[p—q|<1

Since v is two-dimensional and s < 1, we infer
/ 1—
15 -atl < C20-p,
Therefore

(1.10) 1A g g Towlls < C200 ol 3 (Ao -

[p—q|<1
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It remains to multiply by 2¢¢+=D+¢* and to take the £2 norm to obtain the result
onT.

We consider now the 7' term. The following sequence of inequalities holds:

HAq,q’ﬁwHLQ < Z HAWI’(A;U S;’*Qw)HL2

lp—q|<1
= > [al(ae S, A0w) |,
(1'11) lp—q|<1 , / )
< Z HAPU Sp%Aq/wHL?
Ip—q|<1
<C Z HA;JUHL? HSzlv—2A:1/’w”Loo,2 :
lp—q|<1

One can estimate

180 o 0w], s < > AW s

r<p—2
<CY VAl
r<p—2
< 027(125 Z 27’(1715) 27‘t+qt HAT,q’w||L2 Zg

r<p—2

S CQ—Q/t/_p(t—l) 27‘t+q/t/ ||Ar,q,w||L2

2

Thus

galett-D 4 2 A, gl

Aq,q’va‘

LSO 2 A

2’
Ip—q|<1 "

The conclusion for 7' now follows by taking the /2 norm.
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Finally, we prove the assertion on R. One has

1
1Ag 0 R, w)ll 2 < Y0 Y [[Agy (Apvd,_w) ]|,

1=—1p>q—2

1
- Z Z HAZI(A;JUAP—i’Q'w)HLz

1=—1p>q—2

1
<0 Y 2 Ayl

i=—1p>q—2

1
<0 > Al 1Ap-igwllys

1=—1p>q—2

It follows that

1
(112) 206 DMYA R, w)] e S C Y D 20002 AL,

i=—1p=>q—2
x 2B AL w1
Applying Young’s inequality completes the proof of Lemma [[.5. O
The decomposition ([[.§) and Lemma [[.5 implies Theorem [[.2. O

In section 2 we shall need to apply Theorem [[.Z in the case s > 1. The coming
inequality is a variant of an inequality proved by J.-Y. Chemin and N. Lerner in
[6]. It shows how to avoid this difficulty in some cases.

Proposition 1.3. There ezists a constant C' such that for all v € H*(T?) and w
such that divo =0, Vw € H" | s < 2,t <1 and s+t > 0 there exists a sequence
(aq.q) such that

| < Ay (V- V)| Aggw >| < Cay g2 H D=0 y| | Vw|yp|| Aggw]| L2,
and Haq,q’Hg2 =1
Proof. We write
|< Ay (v- Vw)‘Aq,q’w > =< Aq,q/<Tvvw>|Aq,q/w > |
+ | < Agy (R(v, Vw))[Ag gw > | + | < Ay g (Towv)|Aggw >,

where T" and R are the two-dimensional paraproduct and remainder defined in
the last theorem. The hypothesis on s, t and Lemma [[.5 imply that the terms

(1.13) | < Ayy(R(v, Vw))|Aygw > |
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and

(1.14) | < Agq (Twwv)[Aggw > |
are well estimated. One has to bound

(1.15) | < Ay (T, VW) | Ay gw > .

Some simple computations and the localization of the terms of T, Vw show that

< Ny (T, V)| Ay gw >= Z < [Aggs Spoot?]0; A pw| Ay gw >
J)lp—q|<4
+ 1/2 Z < (Sp/_g — Sp_g)vjajszA;,MAqvq/A;w >

Ip'—q|<4

(see [B], [5]). Therefore, it suffices to estimate the model terms
L =] < [Agq, S0"]0; 8 g w|Aggw > |
and
L= | < A 0;Ag g ALyw|Ag g ALw > |.
The last term is bounded as follows
(1.16) |87 |, < C27|A07]|,, < C290) o],

(1.17) | 08 gw | 2 S Cbyq g at=at va‘t,t’ )

where ||bgq |l = 1. As for I; we remark that

e, 7o) = [ o) (7o — 9) — F)bla — ) doy
thus
(1.18) [, f1bll 2 < CIV | oo 0]l 2 [Jh]] 1
Applying this inequality with f = S,v?, b = 9;A, yw and hx = A, it comes
[[Agqrs S0 Agqw0]| . < Cagg2™ D=0 |y| |Vl y,
where ||agq |, = 1. This completes the proof. O
We now introduce the second class of spaces we will use:

Definition 1.3. We denote by HB>* the space defined by
HB> — {u € D'(T?) such that |u|ype.s < oo},

where
def

’u‘HBS’S/ e 2qs+q/5/ HA

02,1 !

q,q’U”L2
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and q,q' > 0. The homogeneous version is

HB — {u € HB* and Mu — 0}.

Remark 1.2. Since BY/*(T) < C(T), it follows that HB*Y/2 is embedded in the
space of functions contmuous in x3 with values in H*(T?).

The last defined class of spaces is similar to the class H B**2*3 introduced in
the case of the entire space in [{], the purpose being the same, that is, avoiding
the critical case 6 = 0. The study of these spaces is similar to those ones and with
the study of the H*%. More precisely, all the assertions valid for the H** spaces
are valid for the HB** spaces if we replace the ¢? norms with the ¢>! norms.
The following proposition as well as its proof is similar to Theorem 1.2 from [7]
which states that the product of a function from H B*"%2*3 with a function from
HB"1 lies in H Bs1 1 —1/2s2Ht2—1/25+6-1/2 provided that s; < 1/2, t; < 1/2,
si+1t;,>0,1€ {1,2} and s3 < 1/2, tg < 1/2, s3+t3 > 0.

Proposition 1.4. Let u € HB**, v € HB" such that s <1,t <1, s+t >0,
s <1/2, ¢ <1/2, 8+t >0. Then wv € HBsH=1s'+'=1/2 q4pq

|UU|HBSH*1’5'+”*1/2 < C|U|HBS’S’ U|HBM"

Sketch of the proof. The proof is almost identical to the one of Theorem [[1], the
modification which enables us to take the case s’ = 1/2 or t = 1/2 into account
is that the classical paraproduct 7' : B3, (R) x Bj;(R) — B;jtil/Q(]R) is well-
defined and continuous if s < 1/2. We shall prove that each of the operators
from ([[.G) is continuous under weaker assumptions. The only problem in the
proof is that at the end we have to commute some norms which give raise to the
wrong inequality. To show that the other terms can be handled in the same way,
we prove the assertion for some other term, say R'T”. By definition

R'T" (u,v) Z Z 2y with 20, = ATAVu NS v

i=—1 p,p’

We will prove that R'T"(u,v) € HB*H=15+'=1/2 provided that s + ¢ > 0 and
t' < 1/2. As in inequality ([[.7) one obtains

8w zpulle 27 >0 27 A7

r’'<p’'—2

/ 7
187 2
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Recall that a,, = 2977 | A, yull,» and b,y = 29477 ||A, 40| . There exists

an integer N such that [p' — ¢’| < N and p > ¢ — N. We have

(1.19)
9a(s+t—1)+q'(s'+t'~1/2) HA < ¢2+0a-p) Z Q(T/_pl)(l/z_t/)ap,p/bp_i,r/.

r'<p’'—2

a4’ Ihp ||L2

We now sum on 4, p, p’ and ¢’ to obtain

ZZq(s+t71)+q’(s’+t’*1/2) ‘Aq ¢ RT"(u U)H
) ? L2

< CZ Z 9(s+1)(g—p) Z Z o(r'=p")(1/2=t) , o bp—ig?

l——1p>q N p ' <p'—2
<C’Z Z 9(s+1)(g—p) ||app||£1 |6, ZT||£1
i=—1p>q—N

Using that ¢ < p+ N and s+t > 0 and applying Young’s inequality yields

Finally, we apply Holder’s inequality to obtain
‘ ’Aqvq/R’T”(u, v)
L

which implies

e 5, BT
) ’ L

1
2| p21 <C Zl HHap,p’”e;, ||bp—i,p’||5117/
i

9q(s+t—1)+¢'(s'+t'~1/2) <C Hap,p’He?,l ||bp’p,\|€271 ,

2| p2,1

‘R’f"(u, V)| gpsi-rrv-12 < Clulgpey

vl g
This completes the proof for R’ T O

We also need to know what happens when we multiply a 2-dimensional function
with a 3-dimensional one. The result is

Proposition 1.5. Let v € H*(T?), w € HB" such that s <1,t <1, s+t > 0.
Then
vw € HBs—l-t—l,t'

and
[vw|gpsse1e < Clols|w| g

In equation ([.9) we defined two-dimensional paraproduct and remainder for
three-dimensional functions. We prove that the proposition holds under weaker
hypothesis for each of these operators. More precisely, we have the following
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Lemma 1.6. There exists a constant C' such that if T', R and T are the operators
introduced in equation (1.9), then for all v € H*(T?) and w € HB we have

[ Tow|gpssere < Clofs|wlgpee if s <1,

|va|HBS+t*17t' S C|'U|s|w|HBt,t’ th < 1,
|R(U7w)|HBS+f*1vi/ < C|U|s|w|HBt,t’ if s+t >0.

Proof. For T we start again from inequality ([1.10), we multiply by 2¢(s+t-D+a¥’
and we take the £>! norm to obtain

‘ 211(s+t—1)+q't’ ||Aq,q’va||L2

We now consider the T’ term. Starting again from inequality (), multiplying
by 206+=D+4" and summing on ¢ gives

Z2q(8+t*1)+q/t' Ay Tow 2 S C29( 1) Z HA/UHBZQ(N/
q/

lp—aql<1 7
Furthermore, one can bound

PR DALV PRI DD Dt LT P
q/

o S |

/4!
20T A, gw]| 2 .

p 2 q’wHLoo,2 :

r<p—2 ¢’

<C > 27‘22‘”’ 1A gw]

r<p—2
_ ’

<C Z 27“1 t) 2rt+qt HAT,qlwuL? .
r<p—2
ot 141

< 02 o A, |

Thus

E :Qq (s+t—1)+¢'t'

The conclusion for 7' now follows by taking the Eg norm.
Finally, we prove the assertion on R. Starting from inequality ([.12) and sum-
ming on ¢’ yields

2 A ]l

Aqq’TwH <C Z 2ps||A/UHL2

lp—q|<1

02,1

S A R ) <C ST 3T 2000 Al

q’ i=—1p>q—2
X Z Q(P—i)t—i—q't’ ||Ap—i,q’w||L2 )
q/
Applying Young’s inequality completes the proof. O
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We now prove an interpolation property for the H B spaces:

Proposition 1.6. Let s,t,s',t' be four real numbers, a € [0,1] and uw € HB>* N
HB"Y. Then u € HBosT(-otos (1=t gpq

11—«
HBt.t""

|u|HBas+(1—o¢)t,o¢5'+(lfa)t’ S |u|(;}Bs,s’ ul

Proof. From the definition of the HB spaces and using Holder’s inequality, we
infer that

|u|HBas+(l—a)t,as’+(1fa)t/

_ 2q(as+(1—a)t)+q’ (as’+(1—a)t’

: [Aqqull2 P

_ gs+q’s’ *(oat+q't’
= [|(2 ||Aq,q’u||L2 2 ||Aq,q’uHL2

02,1

< | (2e5Hd's" | A : at+a't" || A e
= | q,q’UHL2 | q7Q’U||L2

02/ 1/

¢2/(1—a),1/(1-a)

= [l g, |2 Nl
21 021
= |ulfgosr |V }-I_Bat’t/'
This completes the proof. O

As for the anisotropic Sobolev spaces, we now give an estimate for the HB
norm of a gradient.

Proposition 1.7. Let u be a periodic function on the three dimensional torus
with vanishing mean. Then the following norms are equivalent:

(Vulggsss |ulgpsiie +|Ulggsss,  sup [ulgpsiasti-a
a€l0,1]
Proof. Using the previous proposition proves that the norm

Sup ‘U|HBs+a,s/+17a
a€l0,1]

is equivalent to the norm
|ul gpsrrsr + Ul gpossr
To show the other equivalence, we first prove the following inequality:

(1.20) IVAGull 2 2 C24 4 27) | Ay grull 2
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The localization of A, u clearly implies this relation for ¢ > 1 and ¢’ > 1. Since
u has vanishing mean, one has that Agou = 0, so the case ¢ = ¢’ = 0 is trivial.
Assume now that ¢ = 0 and ¢’ > 0. Since A, depends only on x5 we have

IV Ao gtl > = |00 ]| 1o > C27 || Aggtt]| 1 > C/2(1 +27) | Ag ge] 12 -

The case ¢ = 0 and ¢’ > 0 is similar so relation ([.20) is proved.
The localization of A, ,u implies that

IVAgull < C'(27 +27) | Aggull 12 -
Using this relation together with ([.20) we infer that

! ! ! ol /
IVul|ygss = ‘ 9us+q's [PAVPAYA [ . ~ ’ 205TAS (20 4 29 |Ag gl 2 .
_ H(Q(Q+1)s+q/s/ Lo DY A, o = Tl + g,
The proof is completed. 0

Finally, we show how the statement and the proof of Proposition [.3 can be
modified in the case of the HB spaces.

Proposition 1.8. There exists a constant C' such that for all v € H*(T?) and
w such that dive = 0, Vw € HB" | s < 2, t < 1 and s+t > 0 there exists a
sequence (aq ) such that

| < Agg(v- Vw)|[Aggw >| < Caq,q’z_q(SH_l)_q/t/|U’s|vw|HBt»t’ [Agqw]|r2,
and Haq,q”‘g%l =1
Proof. As in the proof of Proposition [[L3 we write
| < Agg(v-Vw)|[Aggw >| = | < Ay g (T, Vw)|[Aggw > |
+ [< Ay (R(v, Vu))[Aggw > | + [< Ay g (Towv)[Aggw >,

where T" and R are the two-dimensional paraproduct and remainder defined in
relation ([[.9). The hypothesis on s, ¢t and Lemma [[.g imply that

| < Agg(R(v, Vw))[Aggw >|  and | < Agg(Tywv)|Aggw >
are well estimated. It remains to estimate
| < Ay g (T, V)| Ay gw >
As in Proposition [[.3, we see that it suffices to bound
I =] < [Agy, Sgv?]0; A0 gw|Ag gw > |

and
]2 = | < Aqvjaqu7q/A;,w|Aq,q/A;w > |,
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under the assumptions [p — ¢q| < 4, and |p’ — ¢| < 4. To estimate the last term we
write

1807 ] < C2 A7 ] o < G200,
(1.21) 10;Aqqwll 2 < qu,q’Q_qt_q,t/ Vwlyper,
where ||bgq || 2. = 1. For I; we remark again that
1%, F1bll 2 < CUV Il oo 1Bl 2 [Pl 1
Applying this inequality with f = S0, b = 9;A, yw and hx = A, it comes
H [Aq,q” quj]aqu7q/wHL2 < Caq,q’2_q(s+t_1)_q,t, [v]s| Vw| g g,
where ||agq || ,2. = 1. The conclusion follows. O

We now write the 3D Navier-Stokes equations as a perturbation of the 2D
Navier-Stokes equations. Let us define v = Mu and w = (I — M)u. Applying the
projections M and I — M to (N-S) it is not difficult to see that the Navier-Stokes

equations

du+u-Vu—vAu = —Vp
(N-S) divu(t,-) = 0 foral t>0
U|t:0 = U

are equivalent to the following coupled systems

o+ oV —vAv = —M((wVw)—Vp
(1.22) dive = 0
’U|t:0 = U (Z MUO>

for some p; independent of x3 and

Ow +vVw +wVo + (I = M)(wVw) —vAw = —Vpy
(1.23 divw = 0
w|t:0 = Wy (: (] — M)U())

As far as v is concerned, only classical L? energy estimates are needed; indeed,
in dimension two the regularity obtained via L? energy estimates suffices to ensure
global existence and uniqueness. The problem is to derive estimates on w. Since
M and I — M are projections, their norms are equal to 1, so the estimates below
shall not involve these operators.

We shall also consider the case when uy = vy + wy where vy is not necessarily
the projection of ug, hence it is not possible to write the same equations for v and
w. We will replace them with some simpler ones:

ov+v-Vo—vAv = —=Vp
(1.24) divo(t,) = 0 forall t>0
U’t:O = Yo
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for some p’ independent of x3 and

ow+w-Vw+w-Vo+v-Vw—vAw = —-Vp’
(1.25) divw(t,-) = 0 forall t>0
U)’t:() = Wy.

2. THE CASE OF THE H** SPACES
Let 0 < § < 1. We shall prove the following theorems:

Theorem 2.1 (global existence and uniqueness). There ezists a positive constant
C = C(0) such that if the initial data uy has vanishing mean over the three-
dimensional torus, divug = 0, vg = Mug € L*(T?), wg = (I — M)ug € H*/?79

and
2
v
|wols,1/2-5 €XP (Hgﬂf) < Cv,

then the (N-S) equations have a unique global solution such that
(2.1) w= (I — M)u € L*]0, oo[; HI+)/2(=9/2y  [2(]0, oo[; H*1/?79)

and
v = Mu € L*(]0,00[; H') N L>=(]0, 0o[; L?).

Theorem 2.2 (global existence and uniqueness). There ezists a positive constant
C = C(0) such that if the initial data verifies ug = vo + woy, where vy and

wo have vanishing mean over the three-dimensional torus, divvy = divwy = 0,
vy € L2(T?), wy € HY/?>7° and

2
v
[wols,1/2—5 €XP (HCOJJ;Q) < Cv,

then the (N-S) equations have a unique global solution such that, if v is the unique
solution of the 2d (with 3 components) Navier-Stokes equations ([I.24) with

v € L*(]0, 00[; HY) N L>(]0, oo[; L?),

then
w=u—v e L]0, o[ HUH/2I=2) 0 L2(]0, oof; H*Y/277)
and is a solution of system ([I.23).

Theorem 2.3 (local existence and uniqueness). If the initial data verifies uy =
Vo + wo, where vy and wy have vanishing mean over the three-dimensional torus,
diveg = divwy = 0, vg € L*(T?) and wy € H>Y/?>7° then there exist T >0 and a
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unique solution of (N-S) on [0, T] such that if v is the unique solution of the 2d
(with 8 components) Navier-Stokes equations ) with

v € L*()0,00[; H") N L™(]0, oo[; L?),

then
w= v e L0 T 207902 0 L0, 7(; HO120)

and is a solution of system ([[.23).

The smallness assumption of Theorem P.1] is a particular case of the one of
Theorem 2. We give two different theorems because v and w are not defined in
the same way in the two theorems (see relations ([.22), (L.23), (L.24) and (L[.29)).
Moreover, we will need to make the asymptotic study, that is we will consider
the Navier-Stokes equations in T, and we will study the dependence on ¢ of the
constant C'. In order to obtain optimal results, we will need to assume that w is
“homogeneous” in the third variable, which corresponds to the case of Theorem
£2.1. In short, Theorem P.1] is a particular case of Theorem P2 when ¢ is fixed,
but this changes when ¢ — 0. That is why we prefer to prove Theorem E.1],
even though systems ([.27) and ([[.23) are more complicated than systems ([[.24)
and ([.25). The proof of Theorem P.2 is similar to that of Theorem B.T|; it suffices
to replace the system for (I — M)u with system ([.25), the estimates are simpler.

Sketch of the proof of local existence. We proved in section 2 of [7] a local exis-
tence and uniqueness theorem (Theorem 2.2) for solutions of the Navier-Stokes
equations with initial data in a space H?'°2%_ The proofs given there can be ad-
justed to the case of the initial data in the space H*'/2=%. Let us show that those
arguments can be modified to allow the presence of a two-dimensional term, the
v term. The proof will consist of some a priori estimates. As usual, the existence
can be rigorously justified by an approximation procedure.

Applying the operator A, to the equation ([.25) of w, taking the scalar prod-
uct with A, yw and using inequality ([.20) as well as the product theorems [[.1],
[2 and Lemma [[.3 yields:

00| Ayl + ol + 47) Ay w3
< C(-H0) 4 o5+ h49)

Qq,q' w‘%1+5)/2,(175)/2 HAq,q’me

+ C(Qq(1—6/2)+q/(6—1)/2 + 2_q6/2+q'(1+6)/2)aq,q/|U|1/2|w|(1+5)/g7(1,5)/2 ||Aq,q’w||L2 :

where 37 a2 ,(t) =1 Vt. Gronwall’s lemma gives

1Agw®)ll 2 < [|Agqwoll 2 exp(—Cr (47 +47)1)

+ C(U0HIC3) 9 a G g w45y 0,1y * eXD(—Cr(47 +47)t)
+O U2 gm BT a0l ol wl 1) /2,0 -5) 2 xexp(—Cv (47447 )1).
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Taking the L*(0,T) norm and using Young’s inequality yields:

1A gwl|so,r:22) < Cv™ (49447 )V Ay ol 1 (1—exp(—Cr(49+47)T)) /!
+ CV—3/4(2(1(1—5)+q'(5—%) + 2—q5+q/(%+6))(4q + 4q,)_3/4||aq,q’|w|%1+5)/27(1_5)/2||L2(0,T)
+CV73/4(2q(176/2)+q/(571)/2+27q6/2+q/(1+5)/2)(4q+4q/)73/4Haq7q/‘0‘1/2‘w‘(1+5)/27(1_5)/2”LQ(QT)'

It is easy to check that multiplying by 2¢040)/2+4'(1=0)/2 taking the ¢2 norm and
using Holder’s inequality as well as Remark [L1] implies

(2.2)
||w||L4(0,T;H(1+5)/2>(1*5)/2) < A(T) + CV_3/4||U||L4(O,T;H1/2)Hw||L4(O,T;H(1+5>/2»(1*5>/2)
+ CV_3/4||w||2L4(0,T;H<1+6>/2,<1—6)/2)a
where

A(T) _ CV_1/4 2q6+q’(1/2—6) ”Aq,q’wﬂHLQ (1 _ exp(—C’V(4q + 4q/)T))1/4

02
The Lebesgue dominated convergence theorem shows that limr_o A(7) = 0. On
the other hand, we know that v € L>(0,00; L*) N L*(0,00; H'). Since [v[};, <
C ||v]| 2 [v]1, it follows that v € L*(0,00; H/?). Let T* be such that A(T*) <
v*/4/(16C) and vl Lago. 71172y < v*/*/(2C). Then, one has from (@)

[wll pausrororza-s/zy < V¥4 (8C) + 200~ H|wlFag ppasomosm YO <t < T

But the quantity |[wl| 4 spa+6)/2.0-6/2) is continuous in time and vanishes for
t = 0. We infer that ||w]|pa(g s pirs/ei-szy < v¥*/(4C) for all 0 <t < T*. One
can deduce from relation (B.7) that

at|w|§,1/275 < C/V|Umw’?5,1/275 + C/V|w|z(11+6)/2,(175)/2-

Gronwall’s lemma implies that w € L*>(0,T*; H 8,58 ). This completes the proof.
Ul

Proof of global existence. We apply A, , to the equation verified by w and we
multiply by A, yw to obtain:

(2.3) atHAq,q’wH%? + VHAq,q’VU)H%? < CO[<Ayg(I = M)(w- Vw)[Aggw >
+ O < Apg(v-Vw)|Aygw >| +C|< Agg(w - Vu)|Aygw >|.
Since w is divergence free an integration by parts shows that

| < Bgg (I = M)(w - Vw)|Aggw >| =< Agy (I = M)(w @ w)|Ag g Vw > |
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and we can use the product theorem [[.1] to deduce that
(24) | < Ay (I = M)(w - Vw)|Aggw >| < Cby 279079 1/29)
X |w|%1+5)/2,(175)/2 [Ag g Vwl| 2,

where Z biq, = 1. Next we use Proposition to obtain that
q,9

(2.5)
| < A(Lq/ (’U . Vw)|Aq7q/w > | S C’aq,q/Q_q‘s_q/(l/Q_‘s)|v|1|Vw|5,1/2,5 ||Aq7q/w||L2 s

2 _
where E Qg og = 1.

7,9’
Applying Theorem [.2 and Lemma [[.3 gives
(2.6)
| < Ayg(w- Vo)A yw>| < chyq/Zq(l_‘s)_q/(l/Q_‘;)|U|1|w|571/2_5 | Aggw]l ;2

2 _
where g Coq = 1.
q,9

Using’ relations (2.4), (B.5) and (B.€) in (B-3) yields

0y HAq,q’w||2L2 +2v HAq,q’vaiz
< Caq,q’Q_qd_q,(l/Q_a)|U|1|vw|6,1/2—6 ||Aq7q’w||L2

+ Cby g2 (1/2_5)\w|%1+5)/2,(1—5)/2 [Agq Vwl| 2

+ ch,q/2q(1—5)_q'(1/2—5)|v|1|w|5,1/2_5 HAq,q’wHLz ]
Multiplying both sides by 499+¢'(1/2-9) ysing Schwarz’s inequality, summing and
using Proposition [[.2 implies
(2.7) at‘w‘g,l/Zfé + 2V]Vw\§71/275 < O|'U‘1lvw‘é,lﬂ—é‘w‘é,l/?—z?

+ Clwltiis) 2,052 VWls1/2-5-

Interpolating H(+9/2.0-0)/2 hetween H*'/2-% and H“/? and using again Propo-
sition 2 we find

(2.8) !w!?H(s)/g,(l_(;)/z < |wlsijo—slwlia/e < Jwlsi/2—s| Vwlsi/a—s.
Therefore
at|w|§,1/2—6 + 2’/|vw|§,1/2—5 < C|U|1|Vw|571/2,5|w|571/2,5 + C|w|5,1/2,5|Vw|§71/2_5
< C/”'”’%‘w‘g,lﬂ—é + C’w’&l/?—éva‘ggm—a + ’//Q‘wag,l/z—(s'
One deduces

(2.9) at|w‘§,1/275 + 37//2|Vw|¢23,1/276 < C/V|Uﬁ|w|§,1/275 + C‘w‘5,1/2—5|vw’§,1/275~
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Let us assume that C; > C and

(2.10) [ws1/2-5 < v/ (2C)).

It follows that

(2.11) at|w’§,1/275 + V’vw‘g,lﬂfé < C/V‘U|f|w|§,1/276-

Gronwall’s inequality then implies
t
(212) 0125 < lwoly o sexp( | Clo(rl ar).
0

We have to estimate [, C/v|v(7)[? dr in terms of ||vo||,2. To do that we take the
product of equation ([.22) with v and we integrate by parts to obtain that
aullvlizz +2v|ol} < | < M(wVw)lo > |

<| < Mw@w)|Vu > |

< Clohi|M(w @ w)|r2(r2)

< Cloh|M(w ® w)| as(r2)

= Clofi[M(w @ w)ls1/2-5

< Clofijw @ wlsy/o-s.

Using the product theorem [T and inequalities (R.§), (R.10) yields

(2.13)

2
I lvllz: + 2V’U|% < C‘U|1|w|?1+5)/2,(175)/2
< C’\v|1|w|571/2,5|Vw|5’1/2,5

2.14
(2.14) < Cv/Cy oy Veolsaos
< V|U|% + CQV/C12|VU’|§,1/2—5'
Hence
(2.15) O vll7e + vIvf} < Cr/CHVWI3, oy

Integrating this inequality gives

t t
1
216) [ polidr < 0/CE [ 1wy sdr+ ol

We go back to inequality (B.I1]) and we integrate to obtain

t 1 C t
| 9 sir < Sl s+ 35 [ o Rt e

1 t
< Jluol oo+ C/C2 [ ot
0
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The inequality above along with relation (B.1G) yields for large enough C

t
| o ar <2 full + vty s
0
Now, we use this inequality in (2.12) and we find
c )
0 (t) 3125 < lwol3 1 jos ex0 (5 (w3105 + ol 72) ).

Recall that this holds only as long as
[ws1/2-5 < v/ (2C)).

Hence the condition to assume initially is

C 2
|w0|§,1/2—5 exXp _2(|w0‘§,1/2—5 + [lvol72) ) < Vz/(4012)-
v

This is implied by a condition of the type

2
’w0|(5,1/2—6 eXp <||U0||L2> S C/V.

C'v?
Indeed, if the latter holds, we have
\wos,1/2-6 < C'v,
which gives

lvoll 7
)

1 2
’w0|§,1/275 eXP(WUWO@,l/%J + H'UO||L2)) < eXP(Cl)‘w(J’?S,l/Qf& exp(m

< exp(C")C'v.

We proved that Vw € L3(]0, co[; H%'/27%). From inequalities (2.12) and (2.§) we
deduce that

w € L*=(]0, 00; H5’1/2_5) N L*(]0, ool; H(1+5)/2’(1_5)/2).
Finally, integrating relation (R.17) shows that
v e L®0,T; L*) N L*0,T; H').
This completes the proof of global existence. O

Proof of uniqueness. Let u; and us be two solutions with the same initial data
such that

w; = (I — M)u; € L*0,T; HOT/20-0/2) Ay 122(0, Ty H*/*70) i =1,2

and
v; = Mu; € L=(0,T; LN L*(0,T; H"), i=1,2.
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We deduce by interpolation that v; € L*(0, T; H'/?). The difference v, — v, verifies
the equation

O(v1 — v9) — VA(vy — v9) + 01V (V1 — v2) + (v1 — v2)Vvy
+ div M (w; ® wy — we ® we) = Vpy,
for some p;. The usual L? energy estimates give
Oy [[or = vall2 + 2vfvr — vl < Cllvy — vl 12 o1 = wali|valy
+ 2 || M(wy @ wy — wy @ wa)|| 2 [v1 — vals.

We infer that
(2.17)

O |lvr — vl 72 + vivr — vl < C flor = va|7a [valf + C | M (w1 @ wy — wy @ wy)|72 -
But
| M (w ® wy — wy @ wa)||;»
< M (w1 ® wy — wa @ wa)]51_5
< (w1 —w2) ® w1|57%_5 + |we ® (wy — w2)|(5,%—6
< C’|w1 - w2‘(1+6)/2,(1—6)/2(‘w1|(1+6)/2,(1—6)/2 + |w2‘(1+5)/2,(1—5)/2)-

Applying Gronwall’s lemma in (.I7) now yields
t
I =)@+ [ o= valtar
0

t t
< Coxp(C / fual? dr) / (w1 — 02) Prray 2 g2
0 0

X (|w1|?1+6)/2,(1—5)/2 + |w2|%1+6)/2,(1—5)/2) dr
t
< OQXP(C/ [va] d7)[|wr — w2\|%4(0,T;H(1+6)/2,<1—6>/2)
0

X (||w1||%4(0,75;H<1+6>/2,<1—6>/2) + ||w2||%4(o,t;H<1+a>/2,<1—6>/2))-

Since |v1 — va|1/2 < ||v1 — 112||1L/22 lvg — UQH/Q we infer that

T
(218) ||U1 — U2||L4(O’T;Hl/2) S C’exp(C’/ |U2|% dT)HU)l — UJQ||L4(07T;H(1+5)/2,(1—5)/2)
0

(||w1 HL4(0,T;H(1+5)/2’(1—5)/2) + ||U)2||L4(07T;H(1+6)/2,(1—6)/2)).
We turn to the estimate of w; — wy. Its equation is
O(wy — wy) — vA(wy — wy) + (I — M)uV(wy —ws) + (I — M)(w; — ws)Vws
+ U1V(w1 — U)Q) -+ (’01 — UQ)V’UJQ + U)1V(U1 — UQ) + (w1 — U)Q)VUQ = Vpg,
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for some py. As in the proof of local existence, one can deduce that
le — w2HL4(07T;H(1+6)/2,(176)/2)
§C’||w1 — Wy “L4(O,T;H(1+5)/2»(1—5)/2)(le ||L4(0,T;H(1+5)/2’(1—5)/2)

+ lwal| pao . mavorrza-0/2y + V1l pao ez + V2l aormrey)

+ Cllvr — U2HL4(O,T;H1/2)<Hw1HL4(O,T;H(1+5)/2’(1*5>/2) + HwQ"L4(O7T;H(1+5>/2v(1*5>/2))'
In view of (R.1§) we obtain
(219) ||w1 - w2||L4(0,T;H(1+5)/2’(1—5)/2) S ||w1 - wg||L4(07T;H(1+5)/2,(1—6)/2)B(T),

where

T
B(T) = Cllwallpaoosorso—ormyHlual sogssasoa-srm) exp(C [ Joaftdr)
0

+ Cl|vill pao,smrrzy + o2l Lo, rsmr2y)-
Since B is continuous and B(0) = 0 we obtain from (B.19) and (2.1§) local unique-
ness, that is global uniqueness. O
3. THE CASE OF THE HB** SPACES

We shall prove the following theorems:

Theorem 3.1 (global existence and uniqueness). There exists C > 0 such that if

the initial data ug has vanishing mean over the three-dimensional torus, divug =
0, vg = Mug € L*(T?), wy = (I — M)ug € HB%Y/? and

2
(Y 2
‘wo’HBo,l/z exp <HC'%> < CI/,
then the (N-S) equations have a unique global solution such that
(31)  w= (I~ Mue L0, 00[ HBY*'/2) N L*(]0, cof; HB'/?)

and
v = Mu € L*(]0,00[; H') N L™(]0, oo[; L?).

Theorem 3.2 (global existence and uniqueness). There ezists C > 0 such that
if the initial data verifies ug = vo+wo, where vy and wy have vanishing mean over
the three-dimensional torus, div vy = divwy = 0, vo € L*(T?), wy € HB"Y/? and

2
U,
Wo 0,1/2 €XP < v,
‘ ’HB <H 0”L2> C

Cv?
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then the (N-S) equations have a unique global solution such that, if v is the unique
solution of the 2d (with 8 components) Navier-Stokes equations ([I.24) with

v € L*(J0,00[; H') N L*(]0, 00[; L),
then
w=u—ve L]0, 00 HBY*Y2) 0 L(]0, ool HB*'/?)
and is a solution of system ([I.23).

As far as local existence is concerned, the 2-dimensional part v is not important.
Indeed, a square integrable 2d function belongs to H B%z as a 3d function, so
up € HB%z. Tt is proved in [7] in a more difficult setting the local existence of a
solution u € L*(0, T; HBY?'/2). But v € L*(0,T; H'?) sov € L*(0,T; HBY/*'/2)
which implies that w = u — v € L*(0, T; HBY/*1/2).

As for the case of H** spaces, Theorem B.1l is a particular case of Theorem
B.2, the reason of its presence is that in the asymptotic study we have to work in
homogeneous spaces in order to obtain optimal results. Let us remark that the
space HB%'/? is invariant for the scaling 3 — Azs, as well as for the usual scaling
of the Navier-Stokes equations.

Proof of global existence. As in Theorem E.1] we may find the inequality

2 2
(3.2) O ||Aq,q’wHL2 +v HAq,q’vaL2
< CFyy ||Aq7q’w||L2 +CGyy ||Aq7q’w||L2 + CHyy ||Aq,q’w||L2 )

where
Fy= | < Agg (v Vw)[Aggw > |
7 | Aggwl| L2
Gy = | < Agg(w - Vo)[Aggw > |
7 [Agqwllr2
H,y = | <Ay = M)(w-Vw)|Ayyw >|
’ [Agqwl|r2

if |Agqwl|z2 # 0 and 0 otherwise. The function ¢ — [|A,gw]|;. is a Lipschitz
function, hence its derivative exists almost everywhere. A variant of Gronwall’s
inequality and inequality (B.2) now implies that

O || Aggwll s + (47 + 47 |Aygw]| . < CFpy + CGyy + CH,
Multiplying by 29/? and summing on ¢’ yields
O Z 27/ [Agqwll: +v Z(4q + 4q/)2ql/2 [Agqwll 2

q q

<CY 2PF +CY 27PG+CY 29H, .
q q q
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Now we multiply by Z 29/2 | Ay ywl| ;> and we sum on ¢ to obtain
q/

2
Oy Z (Z od' /2 |’Aq7q/wHL2) + 21/2 <(Z(4q 449202 HAqu,me)
q q q q
X (Z 2012 || Ay g || 1 >>

q/

< cgq: <(Z 22F,0 ) (3 272 |1 8g )) + qu: ((zq: 212Gy )

q 7
(32 1wl )) T ((Z 21, ) (32272 Aol )) -
q q q a

From Schwarz’s inequality we get

2
D (42 | Aol 2 Y27 Ay ol > (Z 20/2(21 + 27) ||Aq,qfw||Lz> ,

q q q

Z((Z?‘” ) (22 18wl )

: )
2
< Z(ZQq/zF ) (qu’/z HAq,q'pr) ,

q q
Z ((Z 2q’/2Gq,q/> (Z 2¢/2||A,, g0l 2 )
q q 7
-3 (e, ) (S i, ) |
q q q

IA

2
Z (ZQ a/2+4 /2@, , J ZQq/Hq /2 HAqq,wHLQ) .

q q
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and the same inequality for the H-term

Z ((Z od'/2 quq,) (Z 2972 || Ay gwll - ))
q q q

2 2
< Z (Z 2_‘1/2”'/2]-]%(1/) Z <Z 2q/2+q' /2 ||Aq,q’w|lL2> '

q q q q

It follows that

2q'/2Fq,q,

at|w|§{30,1/2 + V/C|V'LU|§{BO’1/2 S C|UJ‘HBO,1/2 P

Q—q/2+Q’/2Hq y

)

+ C|U)|H31/2,1/2 (HQ—(]/Q-‘NJ’/QG(L(],

|

21 )

02,1

Using Propositions [[.4 and [[.3 yields

H2_Q/2+q//2Gq q

1 S Clohwlpne

and

H2—q/2+q//2Hq7q/ ) S O|w|HBl/2’1/2 |vw|HBo,1/2.

|

Furthermore, applying Proposition [L.7 and interpolating H B'/?1/2 between H B%'/2
and HBY/? yields

(3.3)
Or|wltygonss + v/ CIVW[G poise < ClwlF grjanss (|0l + [Vw|gpoare)

Tk
Proposition [[.§ gives

2012 F,

2 < C|U|1|VM|HBO,1/2.

+ Clwlgpoas2|[vh|Vw|gpoas
< Clw|gpoase|wlgpiaz([vli + [Vw|gpos)
+ Clwlgpors v Vwlgpo:
< Clwlgpors2|Vw|ggoas([vli + [Vwlgpoa2)
< v/(20)|Vwlygoas + C/vIvfilwlygos
+ CIVwly goss [wlrpone.

Therefore

(3.4)
Ml e+ V)OIV pose < CA0R W gossa + CIVWL gosalwl g,



35

This inequality is entirely similar to inequality (B.9), so we can repeat the argu-
ment valid in the Sobolev spaces case to obtain the existence of a solution such
that

w € L*([0,00); HB"'/?),
and

Vw € L*([0, oc]; HB%Y/?).
We use again Proposition [[.7 and the interpolation to deduce that

w € L*([0, oc]; HBY>1/?),
This completes the proof of the global existence. O

Proof of uniqueness. An uniqueness result is proved in [[4] but in a space smaller
than the one we consider here. Therefore, we have to give another proof.
Let T > 0. We prove that a solution with w in

LY[0,T); HBY*'2) n L>=([0,T); HB*'/?)
and with initial data wg is unique in this class. We saw in inequality (B.3) that
Ol gossa + )OIV gosss < Cluolygumssalol + [Veolpon2)
+ Clwlgpors|vh[Vwlgpoae.
Furthermore, we deduce
Oclwlfpoase +v/2C)Vw[g s < Cvlwlypense +v/Cloli + C/vlwlfpos vl

Integrating yields
Vw € L*([0,T]; HB*'/?).

Moreover, since |v|gp11/2 = |v]1, the standard energy estimates for the Navier-
Stokes equations imply that

u € L*([0,T); HBY'/?)
and
Vu € L*([0,T]; HB%Y?).

Let u; and us be two such solutions. Subtracting the equations verified by uy
and us yields

O(uy —ug) — vA(ug — ug) +ug - V(ug — ug) + (ug — ug) - Vug = V(p1 — p2).
Making similar computations as in the proof of the global existence we find the
inequality
(3.5)

at|ul - u2|§_130,1/2 + V/C|V(U1 - u2)|§130,1/2 < Clul - U2|§{B1/2,1/2|VU2|H30,1/2

+ C|U1|H31/2,1/2|U1 — Ug’HB1/2,1/2’V(U1 - u2>|HBo,1/2.
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Let
def 2
A = Cluy — vzl gijease| V| gy gors
and
def
B = C‘ulyHB1/2,1/2|U1 — UQ‘H31/2,1/2|V(’LL1 — UQ)‘HBOJ/Q.
Using the interpolation, Schwarz’s inequality and Proposition [.2 we obtain

B < |u1|HBl/271/2‘u1 - u2|géo,1/2|ul - u2|11q/]231,1/2‘v(u1 - u2)|HB071/2

1/2 3/2
< |u1|HBl/2’1/2|u1 - u2|h{30,1/2|v<u1 - u2)|h{30,1/2

< Ofvlurlly sl — sl gone + v/ (4C) |V (s — ua)[Z o,
and
A < |uy — ug|gprasz|uy — U2|HBOJ/2|VU2|HBO»1/2
< [V(w — wa)|gporsz|ur — ua|gponsz|Vus|gpoa
< v/(4C)IV (w1 — u2)lfrponse + C/vIus — ualfyponse| Viizly gouye-
The two inequalities above along with relation (B.5) imply

at‘ul - u2|§{30,1/2 < C/V|U1 - U2’§{Bo,1/2<‘7~51’}1{31/2,1/2 + ’vu2|§130,1/2)-

Uniqueness now follows from a simple application of Gronwall’s lemma. O

4. ASYMPTOTIC STUDY

In this section we work in T. =]0,27[x]0, 27[x]0,27e], ¢ < 1 and we study
the dependence on ¢ of the constant of Theorem E.1. All the norms of the 2-
dimensional functions are understood to be taken in T2?. We shall prove that the
constant from Theorem E.1] can be chosen independent of . This follows from the
simple remark that the classical product theorem for the Sobolev spaces is valid
for the homogeneous Sobolev spaces, so the constant involved should be scale-
invariant; it follows that in the periodic case the constant involved should not
depend on the period, hence all the constants appearing in the proof of Theorem
2.1 should not depend on €. However, the spaces should be “homogeneous” in the
third variable, and that is why we have to assume that Mw = 0. We now redefine
in a “natural” way some of the quantities we are working with. From now on, all
constants are assumed to be independent of €. Let u be periodic on T, and u,, be
such that

u(z) = e~ 1/2 Z Up, €xp (i(n1x1 + noxe + ng/exs)) .
nezs
Note that
He_l/g exp (i(n1x + noxs + ng/smg))||L2 = (2#)3/2.
We redefine
un(1+ [n'2)*2(ng/e)”

Hu|s78’ = )
£2
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1 27e
Mu(zy, x9) = 2_m/0 u(z) das,
A /U(JT) — 1/ Z Uy, €XP (i(nlxl + noxo + n3/5$3)) SO(M)ip(M)
" 20 77 g2d

nez3
We need to redefine the |-|s ¢ norm because in the asymptotic study the proofs will
be based on a dilatation in the third variable so we need a norm which is homoge-
neous. It is obvious that the two norms are equivalent if M« = 0. Furthermore,
the || - |s,» norm is equivalent to the norm defined by dyadic decomposition:

20445 || A

q,q/quﬂ )

62
and the constants in this equivalence are independent of e.
We are ready to prove the following theorem.

Theorem 4.1. Consider the Navier-Stokes equations on the thin three dimen-
sional torus T. and 0 < & < 1/2. There exists a positive constant C = C(0)

independent of € such that if the initial data ug has vanishing mean over T,
divug =0, vo = Mug € L*(T?), wo = (I — M)ug € H>'/*7° and

0072
||w0|571/2_5 exp (W() < OV,

then the (N-S) equations have a unique global solution such that
(4.1) w = (I — M)u e L]0, co[; HI+/20=0/2y A 12(]0, oo[; H*1/?79)

and
v = Mu € L*(]0, 00 H') N L(]0, 00[; L?)

Proof. 1t suffices to prove that the constants from Lemma [[.3, from Propositions

L1, [.3, [.2, from Theorems [[.1, [.2 and from relation (B.15) can be chosen

independent of ¢ if the 3d functions are assumed to have vanishing mean in the
third direction and the | - |; ¢ norm is replaced with the || - |5+ norm. We define
us(x1, T2, x3) = \/eu(xy, xe,exs) or, if u is not depending on x3, u. = u. Next we
compute the || - |s» norm of u in terms of the || - |5 norm of u.. We have

il = |1+ 1 2)2 (g /)
We start with Theorem .

—= 6_8/

) (14 ') n;

02 - 6_8/”“6'3,8’-

Theorem 4.2. Let u and v two periodic functions on the thin three dimensional
torus T. such that u € H>* , v e HY, s <1,t<1,s+t>0,5 <1/2,t' <1/2
and s+t > 0. Then wv € HH-15+=1/2 4pq

||UU|s+t71,s/+t'71/2 < C||U|5,S’||U|t7t”
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with a constant C' independent of <.
Proof. We have

[uv]sst-1,5 40172 = 51/278/7#”(U’U>E|s+t—17s’+t’—1/2 = 578/4||usUe|s+t—1,s’+t/—1/2

and

8/

e uel o |0l

||u|575/||v tt =€

Applying now Theorem [[.T] for u. and v. gives the conclusion. O
We now state the variant of Theorem [.2 on 7.

Theorem 4.3. Let v € H*(T?) and w be a periodic function on the thin three

dimensional torus T. such that w € H", s <1,t <1, s+t > 0. Then
= Hs—l—t—l,t’

and

|vw]sgi—100 < Clo|gser2y||w]ee,

where the constant C' is independent of €.

Proof. The same proof as above holds, all we have to do is to remark that

(vw)e = v(we).

Next we consider the case of the Proposition [[.3.

Proposition 4.1. There exists a constant C' independent of € such that for all
v € H*(T?) and every w periodic on the thin three dimensional torus T. such that
divo =0, Vw € H*" | s <2, t <1 and s+t > 0 there exists a sequence (a,,)
such that

|< Aq,q/ (U . Vw)lA%q/w >| S Caq7q/2—q(s+t_1)_q/t/|v

HS(T2)||vw|t,t/||Aq,q'wHL2,
and |lagq||,. = 1.

Proof. We remark that, in fact, the whole argument takes place on T?, so e should
not affect the inequalities proved there. Let us prove it rigorously. First, we look at
the terms given in ([[.13) and ([[.14). We saw above that in the product Theorem
A3, the constant C' does not depend on . Now we need to prove that in the
inequalities from Lemma [, the constant C' does not depend on . This is proved
by remarking that (Ajw). = A (w.) and (S;w). = S, (w:), hence, definitions ([.9)
imply that

(va)s = Tv(we)7
(R(li» w))e :~R(v,wa),
(va)a = Tv(wa)a
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thus we can conclude as above. It remains to study the estimate on ([.15). The
estimate ([[.1G) is independent of ¢ since v is independent of the third variable.
Finally, the last place where € might have an influence is inequality ([.1§), more
precisely, when we estimate ||zhl|;,. In fact, since f does not depend on the third
variable, a closer look to the proof of inequality ([.LI§) shows that it suffices to
estimate ||2'hl;., thus it suffices to estimate ||h||;,. But hx = A, ,, hence

!/

= ore)t 3 e (o o o)) ot ot )

It follows that
!/
Il = | 3 exp (it + o + mgas)) (o2 |
neZ3 L1

and this is independent of € as a consequence of the proof of Lemma [[L1. This
completes the proof. O

Finally, it is clear that the proofs of Propositions [.1 and [[.2 hold for homoge-
neous norms and with constants independent of ¢.

It remains to look at the proof of relation (2.17). As in (R.13), we have
O Jollzz + 2vfoff < | < M(w® w)|Vo > |.
Furthermore, the definition of the projection M implies
3
< M(w®w)|Vv >=1/(2ne) Z / w;w;0;v;.
ij=1" Te

The product theorem E.3 now gives

3

| < Mw®@w)|Vo>|<Cle Y [lw
ij=1

< Cle|lwlsija-sllwli—ss-1/2/v]1-

§,1/2—6 ||wjaivj | —5,6—1/2

The definition of the norm || - |5¢, the hypothesis 6 < 1/2 along with Proposition
[.2 for homogeneous norms yield
|lwli—s5-1/2 < ellwli—ss+1/2 < Cel|Vw|si/2-s.
The inequalities above imply
Oy ||l +2vjoli < | < M(w @ w)|Vo > | < Clfwls /o5 Vwlsy o-slvl1-

One obtains inequality (B.I5) as in relation (2.14). This completes the proof of
Theorem BT O

As an immediate corollary we find
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Corollary 4.1. There exists a constant C' > 0 independent of € such that if

ug has vanishing mean over the three dimensional torus, vo = Muy € L*(T?),
= (I — M)up € H(T.) and

2
Vo
\wo| g1 (t,) €Xp (%) < Cus_l/Q,
v

then the (N-S) equations have a unique global solution with initial data uy.

Proof. 1t suffices to remark that

leollenry = [lwn(n'[* +n3/e*) |,
> 1/2e77 [Jwn(1+ |0/ P)2 (03 /) 2707,
= 1/2e7?||wl5.1/2-s,
and to use Theorem BT O

The same method may be used to prove that the constant from Theorem B.1] is
independent of . The most delicate argument is the equivalence between

|ul s
and

el g
which is the behavior of the Besov spaces with respect to dilatations. In the
following we give the proof of this equivalence.
Since we want to reduce the problem to an equivalent one but on the torus not
depending on &, we need to define a dyadic decomposition which depends on e
but is for functions on T3. This new decomposition is given by

)x(

|”3|

7)-

|
24

AL yulz) = Z Up, exp (1(n1xy + noxe + n3zs)) xX(—

nezs

Then it is easy to see that

2q8+q/8/

q.q' Ue

] e = | -

21

We have
2(]84’(]’3’

AL |, < Z estd’s’

But A? /Alsu. # 0 only when 1/(Ce) < 2¢~4" < ('/e, that is when

1 1 1 1
Ci+—In-< "< Cy+ —1In-.
1—i_ann ¢ —4q 2—i_11r12n

"
q//'U/E ||L2 .
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We deduce

2qs+q/8/

A; o Ue

S 08_8/ Z 2qs+q//s/ ||Aq,q”u€HL2 .

C’1+ﬁ In igq’fq”§02+ﬁ In L

£

P

Taking the ¢*! norm and applying Young’s inequality we find
ulgpes < O |ue| s

The reverse inequality may be proved in the same way. This completes the proof.

We end up this section with the remark that all the results above are valid for
the domain R?x]0, 27e[. The same proofs apply if, for

w(z) = e 1/? Zun(xl,xQ) exp(in/exs),

nez
we define
_ n .
Spqu(x) =12 Z Sqtn (21, xg)x(y) exp(in/exs).
nez
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