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Abstract. In this paper we prove two results regarding the large-time behavior of vortex dynamics
in the full plane. In the first result we show that the total integral of vorticity is confined in a region
of diameter growing at most like the square-root of time. In the second result we show that if a
dynamic rescaling of the absolute value of vorticity with spatial scale growing linearly with time
converges weakly, then it must converge to a discrete sum of Dirac masses. This last result extends
in scope a previous result by the authors, valid for nonnegative initial vorticity on a half-plane
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1. Introduction

Incompressible, ideal fluid flow can be described in terms of the behavior of vorticity,
the curl of the fluid velocity. This is especially useful in two space dimensions, as in this
case (the scalar) vorticity is conserved along particle trajectories. The equations of fluid
dynamics can then be recast as the transport of an active scalar with vorticity as the
dynamic variable. In this context, the problem of describing the large time behavior of
vorticity is a very natural one, and it is the broad subject we address in the present work.

Let ω0 be a compactly supported function in Lp(R2), with p > 2, and let ω = ω(x, t)
be the vorticity associated to a weak solution of the incompressible two-dimensional Euler
equations in the full plane, with initial vorticity ω0 (see [5] and references therein for the
existence of such a solution). In vorticity form, the Euler equations may be written as an
active scalar transport equation:

(1.1)

{
ωt + (K ∗ ω) · ∇ω = 0,
ω(x, 0) = ω0,
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with K the Biot-Savart vector kernel for the full plane, given by

(1.2) K(x) = K(x1, x2) =
1

2π|x|2
(−x2, x1) =

x⊥

2π|x|2
.

We are interested in obtaining information on the behavior of the solution ω(·, t) as
t → ∞, particularly with regards to the spatial distribution of vorticity. We consider a
self-similar rescaling of vorticity of the form:

ω̃α(x, t) ≡ t2αω(tαx, t),

with α ∈ (0, 1]. This scaling preserves the integral of vorticity and its L1 norm. The
large time behavior of ω̃α carries information on the distribution of vorticity, focusing on
a certain asymptotic scale determined by the parameter α. The purpose of this note is to
prove two results. The first result is that, for any initial data ω0 and parameter α > 1/2,
we have ω̃α ⇀ mδ0, where m =

∫
ω0 and δ0 is the Dirac measure at the origin. The second

result is a generalization of a previous result by the authors. The main result in [3] can
be reformulated as stating that, if: (i) the initial vorticity ω0 is odd with respect to the
horizontal axis, (ii) its restriction to the upper half-plane has a distinguished sign and (iii)
α = 1, then the hypothesis that |ω̃1(x, t)| ⇀ µ, where µ is a measure (which must be
supported in {|x1| ≤ M}× {x2 = 0} for confinement reasons), implies that µ must consist
of an at most countable sum of Dirac masses whose supports may only accumulate at the
origin. Our second result in this article is to remove conditions (i) and (ii) on ω0, keeping
the same conclusion.

In 1994, C. Marchioro proved that the solution ω = ω(x, t) of equation (1.1) with an
initial vorticity bounded and nonnegative, with support contained in a disk of radius R0 > 0
centered at the origin, has support contained in a disk of radius (Ra

0 + bt)1/a, with a = 3,
for some constant b > 0, see [7]. This first result in confinement of vorticity has been
improved and extended in several ways. The exponent 1/3 has been improved to 1/4+
by P. Serfati, see [12] and independently by Iftimie, Sideris and Gamblin, see [4]. Other
extensions and improvements include unbounded initial vorticity [6, 2], flows in exterior
domains [8], slightly viscous flows [9] and axisymmetric flows, [10, 11]. Confinement results
basically control the rate at which vorticity is spreading. The present work is an attempt to
go beyond controlling this rate, actually describing the way in which vorticity is spreading.

If the initial vorticity does not have a distinguished sign, the best confinement one may
expect in general is at the rate a = 1, see [4]. In fact, [4] contains the construction of an
example of smooth, compactly supported vorticity for which the support grows precisely
in a linear fashion. This means that the self-similar scale of interest is α = 1, and the
time asymptotic behavior of |ω̃1| is what would give a reasonably complete description of
vorticity scattering in this case.

The remainder of this article is divided into three sections. In the next section we discuss
the result on the asymptotic behavior of ω̃α. The following section contains the result on
|ω̃1|. The final section contains a few comments on this work.
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2. Confinement of the net vorticity

Let ω0 ∈ Lp
c(R2), for some p > 2 and consider ω = ω(x, t) a solution of (1.1) with initial

data ω0. Our basic problem is to describe the spatial distribution of the vorticity ω(·, t)
for large t. For α ∈ (0, 1] we introduce the rescaled vorticity:

ω̃α = ω̃α(x, t) ≡ t2αω(tαx, t).

Clearly, if ω0 is single-signed, the known results on confinement tell us that, for any α > 1/4,
the support of ω̃α is contained in a disk centered at the origin whose radius vanishes as
t →∞. What happens when the vorticity is allowed to change sign?

Let ũα ≡ K ∗ ω̃α, with K given by (1.2). It is a straightforward calculation to verify
that ω̃α and ũα satisfy the equation

(2.1)
∂ω̃α

∂t
− α

t
div (xω̃α) +

1

t2α
div (ũαω̃α) = 0.

We are now ready to state and prove our first result.

Theorem 2.1. Let α > 1/2 and set m =
∫

ω0(x) dx. Then ω̃α(·, t) ⇀ mδ0 weak-∗ in
BM(R2) as t →∞.

Proof. We will begin by considering the linear part of the evolution equation (2.1) with
initial condition at t = 1: 

∂f

∂t
− α

t
div (xf) = 0

f(x, 1) = g(x).

The solution f is given by the (multiplicative) semigroup f(x, t) = St[g](x) ≡ t2αg(tαx),
interpreted in the sense of distributions. We then write (2.1) as an inhomogeneous version
of this linear equation, with source term given by

h(x, t) ≡ − 1

t2α
div (ũαω̃α).

With this we can write the solution ω̃α of (2.1), with initial data ω̃α(x, 1) = ω(x, 1) ≡ g(x),
using Duhamel’s formula:

(2.2) ω̃α(x, t) = St[g](x) +

∫ t

1

St/s[h](x, s) ds.

(In the integral above the semigroup is acting in the spatial variable only.) Of course (2.2)
must be interpreted in the sense of distributions. We now turn to the analysis of each term
in (2.2). Let ϕ ∈ C∞

c (R2). We then have:∫
R2

ϕ(x)ω̃α(x, t) dx =

∫
R2

ϕ
( y

tα

)
g(y) dy +

∫ t

1

∫
R2

ϕ

(
sαy

tα

)
h(y, s) dy ds ≡ I1 + I2.

First note that, as t →∞,

I1 →
(∫

R2

g(y) dy

)
ϕ(0),
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by the Lebesgue Dominated Convergence Theorem. Next, recall that the total integral of
vorticity is conserved and hence the proof will be concluded once we establish that I2 → 0.
We compute directly, integrating by parts and using the relation between ũα and ω̃α:

I2 = −
∫ t

1

∫
R2

ϕ

(
sαy

tα

)
1

s2α
div (ũαω̃α)(y, s) dy ds

=

∫ t

1

∫
R2

1

sαtα
∇ϕ

(
sαy

tα

)
· (ũαω̃α)(y, s) dy ds

=

∫ t

1

1

sαtα

∫
R2

∫
R2

∇ϕ

(
sαy

tα

)
·K(y − z)ω̃α(z, s)ω̃α(y, s) dz dy ds.

We now use the antisymmetry of the Biot-Savart kernel K to obtain:

I2 =
1

2

∫ t

1

1

sαtα

∫
R2

∫
R2

Hϕ(s, t, z, y)ω̃α(z, s)ω̃α(y, s) dz dy ds,

where

Hϕ(s, t, z, y) ≡
(
∇ϕ

(
sαy

tα

)
−∇ϕ

(
sαz

tα

))
·K(y − z).

Let us observe that

|Hϕ| ≤
sα

tα
‖D2ϕ‖L∞|y − z||K(y − z)| ≤ C(ϕ)

sα

tα
.

Hence we arrive finally at

|I2| ≤ C(ϕ)

(∫
R2

|ω0|
)2

t− 1

t2α
,

which clearly converges to 0 as t →∞ as long as 2α > 1. This concludes the proof. �

Remark 2.1. The particular way in which we use the antisymmetry of the Biot-Savart
kernel together with the bilinearization of the nonlinearity of the Euler equations is due
to J.-M. Delort, who used it in his proof of existence of weak solutions for 2D Euler with
vortex sheet initial data, see [1].

Remark 2.2. This result does not say anything new if the initial vorticity has a distinguished
sign. As we mentioned in the introduction, if the vorticity has a distinguished sign, the
support of vorticity is contained in a ball whose radius grows like O(tα), with 1/4 < α.
From that, Theorem 2.1 follows immediately.

Remark 2.3. What new information is contained in the conclusion of Theorem 2.1? Imagine
that we are given initial vorticity ω0 = ω+

0 −ω−0 , which are the positive and negative parts
of the initial vorticity. Let ω = ω+−ω− be the solution of 2D Euler with initial vorticity ω0.
Due to the nature of vortex dynamics, both ω+ and ω− are time-dependent rearrangements
of ω+

0 and ω−0 respectively, and hence their integrals, which we may call m+ and m−, are
constant in time. Additionally, a consequence of Theorem 2.1 is that the integral of vorticity
in a ball of radius tα converges to m+ −m−, for any α > 1/2. This is weak confinement
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of the imbalance between the positive and negative parts of vorticity in a ball of sublinear
radius. This weak confinement is consistent with the conjectural picture that the only way
for the support of vorticity to grow fast is through the shedding of vortex pairs.

3. Vortex scattering

Let ω = ω(x, t) be a solution of the incompressible 2D Euler equations (1.1) with initial
vorticity ω0 ∈ Lp

c(R2), for some p > 2. The simplest picture consistent with what is
known regarding large-time vortex dynamics would have ω0 scattering into a confined
part, which would remain near the center of motion for all time, plus a number of soliton-
like vortex pairs, travelling with roughly constant speed. One illustration of this behavior
was provided in [4] involving the interaction of two mirror-image vortex pairs, scattering
in opposite directions. This example suggests that the scale of linear growth in time is of
particular interest for vortex dynamics. In the notation of the previous section, this means
concentrating in the behavior of

ω̃ = ω̃(x, t) ≡ ω̃1(x, t) = t2ω(tx, t).

The main result in the previous section implies that ω̃ ⇀ mδ0 when t →∞, but the weak
convergence completely ignores the scattering of vortex pairs, due to their linear-scale self-
cancellation. We propose that the large-time behavior of |ω̃| provides a useful rough picture
of vortex scattering.

First note that |ω̃(·, t)| is a bounded one-parameter family in L1(R2). Since the velocity
K ∗ω is a priori globally bounded, the family |ω̃(·, t)| has its support contained in a single
disk D. One can therefore extract a sequence of times tk →∞ such that |ω̃(·, tk)| ⇀ µ, for
some measure µ ∈ BM+(D). It follows from Theorem 2.1 that µ ≥ |m|δ0, where m =

∫
ω0.

Indeed, if ϕ is a nonnegative test function,

〈|m|δ0, ϕ〉 = lim
k→∞

∣∣∣∣∫ ϕ(x)ω̃(x, tk)dx

∣∣∣∣ ≤ lim
k→∞

∫
ϕ(x)|ω̃(x, tk)|dx = 〈µ, ϕ〉.

Our purpose is to obtain more information about the measure µ. The result we will
present is a generalization of a previous result by the authors, see [3], which described the
structure of the measure µ in the situation of half-plane vortex scattering, and under an
important restriction, which we will have to impose in the present context as well. In [3],
we introduced the terminology asymptotic velocity density for any measure µ which is a
limit of |ω̃(·, tk)| for some sequence tk →∞. In fact, due to a sign restriction, the explicit
use of the absolute value in the definition of asymptotic velocity densities was not needed
in [3], and because scattering in the half-plane is a one-dimensional affair, the density µ
in the previous article was a measure on the real line, describing the asymptotic density
only of the relevant component of velocity. Our result about the structure of µ in [3]
and the result we will present here only applies to initial vorticities which have a unique
asymptotic velocity density, i.e. those initial vorticities for which |ω̃|(·, t) converges weakly
to a measure µ, rather than being merely weakly compact.
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Theorem 3.1. Suppose that the initial vorticity ω0 ∈ Lp
c(R2), p > 2 has a unique asymp-

totic velocity density µ. Then µ must be of the form:

µ =
∞∑
i=1

mi δαi

where:

(a) αi 6= αj if i 6= j and αi → 0 as i →∞;
(b) the masses mi are nonnegative and verify

∑∞
i=1 mi = ‖ω0‖L1;

(c) for all i, |αi| ∈ [0, M ], where M = ‖u‖L∞([0,∞)×R2);
(d) there exists a constant D > 0, depending solely on p, such that, for all i with mi 6= 0

we have

|αi| ≤ D‖ω0‖
p′
2
Lp m

1− p′
2

i .

Remark 3.1. In the statement above, the masses mi are allowed to vanish only to include the
case when the limit measure contains a finite number of Diracs. For notational convenience,
in the case when there are only a finite number of Dirac masses, we artificially added a
countable number of Dirac masses with zero masses and positions converging to 0.

Proof. The proof we will present here has much in common with the special case done in
[3], so that we will concentrate on the aspects of the proof which differ from the original
case, briefly outlining the remainder.

We first note that, since ω is transported by the velocity u, the same holds for |ω|. This
means that |ω| satisfies, in the weak sense, the equation

∂t|ω|+ div(u|ω|) = 0.

The equation for the absolute value of the rescaled vorticity is then given by

∂t| ω̃(y, t)| − 1

t
div

[
y| ω̃(y, t)|

]
+

1

t2
div

[
ũ(y, t)| ω̃(y, t)|

]
= 0,

where ũ(y, t) denotes the rescaled velocity ũ(y, t) = tu(ty, t).
Let us take the product with a test function ϕ ∈ C1(R2) and integrate in space:

(3.1) ∂t

∫
| ω̃(y, t)|ϕ(y) dy = −1

t

∫
| ω̃(y, t)| y · ∇ϕ(y) dy

+
1

t2

∫
| ω̃(y, t)| ũ(y, t) · ∇ϕ(y) dy.

We now recall the following argument that was used in [3]. The left-hand side of (3.1),
when integrated from 1 to t, is uniformly bounded in t. By hypothesis, we know that

lim
t→∞

∫
| ω̃(y, t)| y · ∇ϕ(y) dy =

〈
yµ,∇ϕ

〉
,

so that the integral from 1 to t of the first term on the right-hand side of (3.1) behaves
like

〈
yµ,∇ϕ

〉
log t. As for the third term, it is not difficult to see that it is O(1/t). The
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dominant part of the third term must balance the logarithmic blow-up in time of the second
term. This argument implies, adapting [3, Lemma 3.3] to the present situation, that the
following inequality must hold:

(3.2) lim sup
t→∞

(1

t

∫
| ω̃(y, t)| ũ(y, t) · ∇ϕ(y) dy

)
≥

〈
yµ,∇ϕ

〉
.

A straightforward adaptation of [3, Lemma 3.1] to compactly supported nonnegative
finite measures on the plane yields a decomposition of µ into the sum of a discrete part
plus a continuous part, i.e.:

(3.3) µ = ν +
∞∑
i=1

miδαi
.

On the other hand, it was also proved in [3, Proposition 3.1] a key estimate that in the
present case reads

(3.4) lim sup
t→∞

∣∣∣1
t

∫
| ω̃(y, t)| ũ(y, t) · ∇ϕ(y) dy

∣∣∣ ≤ D‖ω0‖
p′
2
Lp

∞∑
i=1

m
2− p′

2
i |∇ϕ(αi)|

where
∑∞

i=1 miδαi
is the discrete part in the decomposition (3.3). The proof of [3, Propo-

sition 3.1] valid in the case of the half-plane can be adapted in a straightforward manner
to the full plane context due to the fact that the key estimate in the original proof is the
inequality below, which relates the rescaled velocity to the rescaled vorticity:

|ũ(x, t)| ≤
∫

C

|x− y|
| ω̃(y, t)| dy,

and this inequality holds in the case of the full space as well.
It follows from (3.2) and (3.4) that〈

yµ,∇ϕ
〉
≤ D‖ω0‖

p′
2
Lp

∞∑
i=1

m
2− p′

2
i |∇ϕ(αi)|.

Substituting ϕ by −ϕ we obtain

(3.5) |
〈
yµ,∇ϕ

〉
| ≤ D‖ω0‖

p′
2
Lp

∞∑
i=1

m
2− p′

2
i |∇ϕ(αi)|.

Next we will use (3.5) to deduce that

(3.6) |αi| ≤ D‖ω0‖
p′
2
Lpm

1− p′
2

i .

To this end, let us fix i0 ∈ N and choose ϕ ∈ C∞
c (R2) such that ∇ϕ(0) = αi0 . Define

ϕε(x) = εϕ
(x−αi0

ε

)
and use it as test function in (3.5) to obtain

(3.7)
∣∣〈yµ,∇ϕ

(y − αi0

ε

)〉∣∣ ≤ D‖ω0‖
p′
2
Lp

∞∑
i=1

m
2− p′

2
i

∣∣∇ϕ
(αi − αi0

ε

)∣∣.
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The series on the right-hand side converges uniformly for ε > 0 and hence, when ε → 0,
it converges to

D‖ω0‖
p′
2
Lpm

2− p′
2

i0
|αi0 |.

As for the left-hand side, first we note that the functions ∇ϕ
(y−αi0

ε

)
converge pointwise

to αi0χ{αi0
} (which does not vanish µ-almost everywhere, since µ attaches positive mass

to αi0). Also, these functions are bounded uniformly with respect to ε and have supports
contained in a single disk. The Lebesgue Dominated Convergence Theorem therefore
implies that 〈

yµ,∇ϕ
(y − αi0

ε

)〉
→

〈
yµ, αi0χ{αi0

}
〉
= |αi0|2mi0

as ε → 0. Putting these arguments together yields (3.6) in the limit, as ε → 0.

We just proved part (d) of Theorem 3.1. Part (a) also follows at once by remarking that
we have mi → 0 so, by (3.6), αi → 0 as i →∞ too. Part (c) is a trivial consequence of the
fact that the support of the vorticity is transported by the flow of u. Finally, part (b) is a
direct consequence of the nonnegativity of the measure µ and also from the conservation
of the L1 norm of | ω̃|, once we established that the continuous part of µ vanishes.

We now go to the last part of the argument, i.e. the proof that the continuous part
of the measure µ vanishes. Here is where the present proof requires a more substantial
modification of the original one.

Let D be a strip of the form D = {c ≤ ay1 + by2 ≤ d} disjoint with the set A ≡
{0}

⋃
i≥1{αi}. We prove that the measure µ must necessarily vanish in the interior of

such a strip. First, since 0 /∈ D we must have that cd > 0. We assume without loss of
generality that c, d > 0. Let [c′, d′] a subinterval of (c, d) and choose a smooth function
h ∈ C∞(R) such that h′ ∈ C∞

c (c, d), h′ ≥ 0 and h′(s) = 1/s for all s ∈ [c′, d′]. Choose
now ϕ(y1, y2) = h(ay1 + by2) as test function in (3.5). Since supp ϕ ⊂ D we have that
supp ϕ ∩ A = ∅, which implies in turn that the right-hand side of (3.5) vanishes for this
choice of test function. Therefore the left-hand side must vanish too:

(3.8) 0 =
〈
yµ,∇

(
h(ay1 + by2)

)〉
=

〈
µ, (ay1 + by2)h

′(ay1 + by2)
〉
.

The function y 7→ (ay1 + by2)h
′(ay1 + by2) is nonnegative and it is equal to 1 on the strip

{c′ ≤ ay1 + by2 ≤ d′}. Since the measure µ is nonnegative too, we deduce from (3.8) that µ
vanishes on the strip {c′ ≤ ay1 + by2 ≤ d′}. Also, since [c′, d′] was an arbitrary subinterval
of (c, d), we finally deduce that µ vanishes in the interior of the strip D.

In order to conclude the proof of Theorem 3.1, we only need to show that the measure
µ vanishes in the neighborhood of each point of Ac. Let y0 ∈ Ac. Since the only possible
accumulation point of the set A is 0, there exists a line {ay1 + by2 = c} passing through
y0 and which does not cross A. A continuity argument using again that the points αi can
only accumulate at {0} shows that there exists a strip {c− ε ≤ ay1 + by2 ≤ c + ε} disjoint
of A. But we proved that the measure µ must vanish on such a strip. This implies that µ
vanishes in the neighborhood of y0 and this completes the proof of Theorem 3.1.
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4. Final comments

First we observe that Theorem 2.1 does not require that the initial vorticity ω0 belong
to Lp. The argument works just as well if the initial vorticity is a bounded (signed) Radon
measure, as long as the existence of a (global in time) weak solution is provided. The
estimate itself only depends on the total mass of the initial vorticity.

We note also that Theorem 3.1 draws a much stronger conclusion than Theorem 2.1,
but it relies on the hypothesis that the initial vorticity ω0 ∈ Lp

c , with p > 2 have a unique
asymptotic velocity density. This hypothesis clearly deserves further scrutiny, and we have
provided a lengthy discussion in the special case of the half-plane in [3]. The discussion in
the present case is similar, so we have omitted it.

One natural question arising from this work is the role of the critical exponent α = 1/2
in Theorem 2.1. This exponent is far from the known critical exponent α = 1/4 for the
vorticity confinement in the distinguished sign case, see [4, 7, 12]. In the vortex confinement
literature, the critical exponent α = 1/2 appears naturally when one does not have a priori
control over moments of vorticity, see [8], whereas the sharper estimates are obtained when
using the conserved moments of vorticity. Using just the moment of inertia one obtains
critical exponent α = 1/3, in the case of the full plane, see [7], and in the case of the
exterior of a disk, see [8]. Using both the moment of inertia and the center of vorticity,
we obtain, in the case of the full plane, the critical exponent α = 1/4, see [4, 12]. It is
therefore reasonable to expect that we might improve the condition on α in Theorem 2.1
by using the conserved moments of vorticity, but this would require a new approach.
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Dragoş Iftimie
IRMAR, Univ. Rennes 1, Campus de Beaulieu, 35042 Rennes, France.
E-mail address: Dragos.Iftimie@univ-rennes1.fr

Milton C. Lopes Filho
Departamento de Matemática, IMECC-UNICAMP.
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