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Abstract

We consider the 2D incompressible Navier-Stokes equations with Dirichlet boundary con-
dition in the exterior of one obstacle. Assuming that the circulation at infinity of the velocity
is sufficiently small, we prove that the large time behavior of the corresponding solution to
the initial-boundary value problem is described by the Lamb-Oseen vortex. The later is the
well-known explicit self-similar solution to the Navier-Stokes system in the whole space R2.

1 Introduction

It is well-known that the large time behavior of solutions of the initial-value problem for the
Navier-Stokes equations considered either in the whole space Rn, n > 2, or in an exterior domain
depends on integrability properties of initial conditions. In the finite energy case, that is when
the velocity is square integrable, a solution tends to zero in L2(Rn) as time goes to infinity, see
e.g. [2, 18, 19] and references therein. In this case, nonlinear effects are negligible for large values
of time and asymptotics of solutions is determined by the corresponding Stokes semigroup.

On the other hand, when an initial velocity is not square integrable, a solution of the initial
value problem for the Navier-Stokes in Rn with n > 2 is constructed in a so-called scaling invari-
ant space (e.g. in a homogeneous Besov space or in a weak Ln-space) under suitable smallness
assumption on initial conditions, see the review article [3] and the book [16]. Here, the large time
behavior of solutions is described by self-similar solutions to the Navier-Stokes system.

In this work, we contribute to the theory on the asymptotic behavior of solutions of the Navier-
Stokes system in a two dimensional exterior domain. First, however, we recall that the Navier-
Stokes system in the whole space R2 has an explicit self-similar solution called the Lamb-Oseen
vortex

(1.1) Θ(t, x) =
x⊥

2π|x|2
(

1− e−
|x|2
4t

)
, with x⊥ = (x2,−x1),

which appears in the large time expansions of other infinite energy solutions of this system. Let
us explain this result.

For every initial vorticity ω0 ∈ L1(R2), one obtains the corresponding divergence-free initial
velocity field u0 via the Biot-Savart law. It is well-known that constructed-in-this-way initial
condition belongs to the scaling invariant space L2,∞(R2) (the weak L2-space) and the Navier-
Stokes equations have a unique global-in-time solution corresponding to such an initial datum, see
[12]. Moreover, the large time behavior of solutions to the initial value problem for the 2D Navier-
Stokes equations with an initial vorticity from L1(R2) is given by the multiple of the Lamb-Oseen
vortex αΘ, with the circulation at infinity α ≡

∫
R2 ω0(x) dx. This result was proved in [11] if ω0
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is small in L1, in [5] in the case of small circulation, and in [9] in the general case. In fact, due to
the regularizing effect of the Navier-Stokes equations, as far as large time behavior is concerned,
an initial vorticity can be an arbitrary bounded Radon measure in R2, see [8].

The aim of this paper is to show an analogous result on the large time behavior of solutions
of the 2D Navier-Stokes equations in an exterior domain with the Dirichlet boundary condition,
when the initial velocity is not square integrable. Here, however, due to the fact that a vorticity
does not verify any reasonable boundary conditions, we cannot use the vorticity equation. Hence,
we formulate our hypothesis and results in terms of velocity rather than of vorticity. To see which
hypothesis should be imposed on an initial velocity, we recall that, for every bounded compactly
supported vorticity, one can construct the corresponding velocity field in an exterior domain,
which behaves when |x| → ∞ as the vector field x⊥/|x|2, see [13, Sec. 2.2] and [14, Sec. 3] for
more details. For this reason, we assume in this work that our initial velocity is a small multiple
of the particular vector field x⊥/|x|2 plus a large L2 part.

Let us now be more precise. Assume that Ω ⊂ R2 is an exterior domain, whose complement
is a bounded, open, connected and simply connected set, with a smooth boundary Γ. Moreover,
without loss of generality, we can assume that B(0, 1) ⊂ R2 \ Ω. We consider the incompressible
Navier-Stokes equations in Ω with the Dirichlet boundary condition

∂tu−∆u+ u · ∇u+∇p = 0, div u = 0 for t > 0, x ∈ Ω,(1.2)

u(t, x) = 0 for t > 0, x ∈ Γ,(1.3)

u(0, x) = u0(x) for x ∈ Ω.(1.4)

Above, u0 must be divergence free and tangent to the boundary. In the following, we assume that
the initial condition is of the following particular form

(1.5) u0 = ũ0 + αHΩ

where ũ0 ∈ L2
σ(Ω) is an arbitrary square integrable, divergence free, and tangent to the boundary

vector field, and HΩ the unique harmonic vector field in Ω (i.e. the unique vector field on Ω which
is divergence free, curl free, vanishing at infinity, tangent to the boundary, and with circulation
equal to 1 on the boundary Γ). It was proved in [13, Sec. 2.3] that such a harmonic vector field HΩ

exists and behaves at infinity like x⊥/(2π|x|2). Moreover, it follows directly from [14, Lemma 6
with ε = 1] that every velocity field with a compactly supported bounded vorticity can be written
under the form (1.5). Notice, however, that in an exterior domain, the circulation at infinity α is
not the integral of the vorticity as it is in the full plane case. Namely, here, one has to subtract
the circulation of the velocity on the boundary, so the integral of the vorticity is in fact the total
circulation of the velocity, see [13, Sec. 3.1] for more details.

If the circulation at infinity is sufficiently small, we are able to prove a counterpart of the result
from [11, 5, 9] on the large time behavior of the Navier-Stokes in the whole plane. The following
theorem contains the main result of this work.

Theorem 1. For every ũ0 ∈ L2
σ(Ω) there exists a constant α0 = α0(ũ0,Ω) > 0 such that for all

|α| 6 α0 the solution of problem (1.2)-(1.5) satisfies

(1.6) lim
t→∞

t
1
2
− 1
p‖u(t)− αΘ(t)‖Lp(Ω) = 0

for each p ∈ (2,∞).

In other words, Theorem 1 says that the large time behavior of solutions to the Navier-Stokes
system in an exterior domain, supplemented with the Dirichlet boundary condition and particular
initial condition (1.5) is described by the explicit self-similar solution (1.1) of the Navier-Stokes
system.
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Remark 2. The global-in-time well-posedness for problem (1.2)-(1.5) was established by Kozono
and Yamazaki [15, Thm.4]. The existence part of that result requires an initial velocity u0 to
satisfy a smallness condition of the form lim sup

R→∞
R|{x ∈ Ω : |u0(x)| > R}|1/2 � 1. This condition

is satisfied for every ũ0 ∈ L2
σ(Ω). Since HΩ is bounded, the lim sup above is always zero in this

case.

We apply the following strategy to prove Theorem 1. In the next section, we prove the limit
relation (1.6) for the linear evolution, that is when the nonlinear term u ·∇u is skipped in equation
(1.2). This is achieved by combining results in [14] with a rescaling technique used by Carpio in [5].
Next, in Section 3, we show that we can assume, without loss of generality, that u0 is small in the
norm of the space L2,∞(Ω), by replacing the initial condition in (1.4) with u(t0, x) with sufficiently
large t0 and choosing sufficiently small |α| (see Lemma 11 below). Finally, using the integral
representation of solutions to problem (1.2)-(1.4), we apply a stabilization argument inspired from
[1, 4] to show that, for small data in L2,∞

σ (Ω), the asymptotic stability at the level of the Stokes
equation implies the asymptotic stability at the level of the Navier-Stokes equations.

Notation. In the following, the space Lpσ(Ω) is the closure of the set of smooth, divergence-
free, and compactly supported vector fields C∞c (Ω) with respect to the usual Lp-norm. We denote
by PΩ the Leray projection, i.e. the L2 orthogonal projection onto L2

σ(Ω), which can be extended
to a bounded operator on Lp(Ω) for every p ∈ (1,∞). Thus, the space Lpσ(Ω) is the image of Lp(Ω)
by PΩ. In a similar way, for every p ∈ (1,∞), we define Lp,∞σ (Ω) = PΩ(Lp,∞(Ω)), where Lp,∞(Ω)
is the Marcinkiewicz weak Lp-space. Hence u ∈ Lp,∞σ (Ω) if u ∈ Lp,∞(Ω) × Lp,∞(Ω), div u = 0 in
Ω and u · n = 0 on Γ, where n is the normal vector to the boundary Γ. The ball B(0, R) ⊂ R2

is centered at zero and of radius R > 0. By the letter E, we denote the extension operator of
functions defined on Ω to R2 with zero values outside the domain of definition.

2 Asymptotics of solutions to the linear evolution

It is well-known that the Stokes operator associated with the following linear boundary value
problem

∂tv −∆v +∇p = 0, div v = 0 for t > 0, x ∈ Ω,(2.1)

v(t, x) = 0 for t > 0, x ∈ Γ,(2.2)

v(0, x) = v0(x) for x ∈ Ω,(2.3)

where v0 is divergence free and tangent to the boundary, generates an analytic semigroup S(t) on
Lpσ(Ω), for each 1 < p < ∞, see [10]. Moreover, this semigroup satisfies the following decay Lp

estimates.

Proposition 3. Assume that 1 < q <∞.
Let q 6 p 6∞. There exists K1 = K1(Ω, p, q) > 0 such that for every v0 ∈ Lqσ(Ω)

(2.4) ‖S(t)v0‖Lp(Ω) 6 K1t
1
p
− 1
q ‖v0‖Lq(Ω) for all t > 0.

If, in addition, we assume that q < p 6∞, then for every v0 ∈ Lq,∞σ (Ω) we also have

(2.5) ‖S(t)v0‖Lp(Ω) 6 K1t
1
p
− 1
q ‖v0‖Lq,∞(Ω) for all t > 0.

There exists K2 = K2(Ω, q) > 0 such that for every v0 ∈ Lq,∞σ (Ω) we have the inequality

(2.6) ‖S(t)v0‖Lq,∞(Ω) 6 K2‖v0‖Lq,∞(Ω) for all t > 0.
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Let q 6 p 6 2. There exists K3 = K3(Ω, p, q) > 0 such that

(2.7) ‖∇S(t)v0‖Lp(Ω) 6 K3t
− 1

2
+ 1
p
− 1
q ‖v0‖Lq(Ω) for all t > 0.

Assume q > 2 and let q 6 p <∞. Then there exists K4 = K4(Ω, p, q) > 0 such that for every
matrix F ∈ Lq(Ω;M2×2(R))

(2.8) ‖S(t)PΩ divF‖Lp(Ω) 6 K4t
− 1

2
+ 1
p
− 1
q ‖F‖Lq(Ω) for all t > 0,

with the divergence div computed along rows of the matrix F .

Estimates (2.4)–(2.7) were proved in [6, 7, 15, 17] and estimate (2.8) follows from (2.7) by a
duality argument because the adjoint of ∇S(t) on Lpσ(Ω) is S(t)P div.

Remark 4. Recall the following scale invariance of the Stokes equations: the vector (v(t, x), p(t, x))
is a solution of system (2.1) on Ω if and only if for every λ > 0 the vector (λv(λ2t, λx), λ2p(λ2t, λx))
is a solution of the same system on Ω/λ = {x ∈ R2 ; λx ∈ Ω}. It follows from this scale invariance
that the constants K1,. . . ,K4 associated to Ω/λ are independent of λ.

The following corollary contains a minor improvement of the decay estimate (2.4).

Corollary 5. Assume that 1 < q <∞ and let v0 ∈ Lqσ(Ω). Then for every p ∈ (q,∞)

lim
t→∞

t
1
q
− 1
p‖S(t)v0‖Lp(Ω) = 0.

Proof. This limit relation is clear when the initial datum is smooth and compactly supported. To
show it for all v0 ∈ Lpσ(Ω), it suffices to use a standard density argument combined with estimate
(2.4).

Now, we consider the linear problem (2.1)-(2.3) with the initial datum v0 = HΩ, where HΩ the
unique harmonic vector field in Ω. The main goal of this section is to show that the large time
behavior of S(t)HΩ is described by the Lamb-Oseen vortex Θ. More precisely, we will prove the
following theorem.

Theorem 6. For every p ∈ (2,∞), we have lim
t→∞

t
1
2
− 1
p‖S(t)HΩ −Θ(t)‖Lp(Ω) = 0.

The reminder of this section is devoted to the proof of this theorem. Here, we use a scaling
argument that was also applied in [5] to study large time asymptotics for the Navier-Stokes
equations. Hence, for every λ > 1, we define

Ωλ ≡ Ω/λ = {x ∈ R2 ; λx ∈ Ω}.

The vector field λHΩ(λx) is divergence free, curl free, tangent to the boundary of Ωλ, vanishes at
infinity and has circulation equal to 1 on ∂Ωλ. Thus, by [13, Prop. 2.1], this rescaled vector field
has to be equal to the unique harmonic vector field on Ωλ, namely, we have the identity

(2.9) HΩλ(x) = λHΩ(λx).

Let us now denote by Sλ(t) the Stokes semi-group on the domain Ωλ and let us define

(2.10) Hλ(t, x) ≡ Sλ(t)HΩλ .

By the scaling invariance of equations (2.1), by (2.9), and by the uniqueness of solutions to the
Stokes problem, we infer that

Hλ(t, x) = λH1(λ2t, λx),
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where we put H1(t, x) = S(t)HΩ. Recalling, moreover, the scaling property of the Lamb-Oseen
vortex λΘ(λ2t, λx) = Θ(t, x), we observe that the conclusion of Theorem 6 is equivalent to

lim
λ→∞
‖Hλ(1)−Θ(1)‖Lp(Ωλ) = 0 for every p ∈ (2,∞).

In the following, we denote by E the extension operator to R2 with zero values outside the domain
of definition. Since Θ(1) is a bounded function, we immediately obtain that lim

λ→∞
‖Θ(1)‖Lp(R2\Ωλ) =

0. Hence, in order to prove Theorem 6, it suffices to show that

(2.11) EHλ(1, x)
λ→∞−→ Θ(1, x) strongly in Lp(R2) for every p ∈ (2,∞).

First, we state a result on the weak convergence.

Lemma 7. Let Hλ(t, x) = λH1(λ2t, λx). Then

(2.12) EHλ(1, x)
λ→∞−→ Θ(1, x) weakly in Lp(R2) for every p ∈ (2,∞).

Proof. Observe now that due to the identity ‖HΩλ‖L2,∞
σ (Ωλ) = ‖HΩ‖L2,∞

σ (Ω) for every λ > 1, the

scaling invariant estimate (2.5) implies that the family {EHλ(1)}λ>1 is bounded in Lp(R2) for
every p ∈ (2,∞), hence weakly compact in these spaces.

From now on, we follow the reasoning from [14], where the authors considered the Navier-
Stokes equations in Ωλ with a more general initial velocity. In our case, the initial vorticity
vanishes while in [14] the vorticity is smooth, independent of λ and compactly supported in
R2 \ {0}. The difference between the Stokes and the Navier-Stokes equations is the bilinear term
u · ∇u which only complicates matters. Therefore, ignoring all additional difficulties caused by
the bilinear term, the results proved in [14] go through to our case. Note that the smallness
assumption required in [14] is irrelevant in this work since we deal with a linear equation.

Let us be more precise. It was proved in [14] (see Proposition 18 and the end of the proof
of Theorem 22) that PR2 [ηλEHλ] converges to the Lamb-Oseen vortex Θ when λ → ∞, up to
a subsequence, uniformly in time with values in H−3

loc (R2). The precise definition of the cut-off
function ηλ is not required here (the interested reader can find it in relation (4.1) of [14] with
ε = 1/λ). We only need to know that 0 6 ηλ 6 1, that ηλ vanishes in the neighborhood of the
boundary of Ωλ and that ηλ(x) ≡ 1 for all |x| > C/λ.

In particular, we have that PR2 [ηλEHλ(1)] → Θ(1) in H−3
loc (R2) when λ → ∞, up to a sub-

sequence. On the other hand, the sequence PR2 [ηλEHλ(1)] is bounded in Lp(R2) since Hλ(1) is
bounded in Lp(Ωλ). By uniqueness of limits, we infer that PR2 [ηλEHλ(1)] → Θ(1) weakly in
Lp(R2) as λ→∞.

Finally, we observe that

‖PR2 [ηλEHλ(1)]− EHλ(1)‖Lp(R2) = ‖PR2 [(ηλ − 1)EHλ(1)]‖Lp(R2)

6 C‖(ηλ − 1)EHλ(1)‖Lp(R2) 6 C‖Hλ(1)‖L∞(Ω) mes(B(0, C/λ))
1
p 6 Cλ−

2
p
λ→∞−→ 0.

This completes the proof of the lemma.

Consequently, to prove the strong convergence (2.11), in view of the weak convergence (2.12),
it suffices to show that {EHλ(1)}λ>1 is relatively compact in Lp(R2) for every p ∈ (2,∞). Here,
we proceed in two steps; we show that the family {EHλ(1)}λ>1 is:

i) relatively compact in Lploc(R2) for every p ∈ (2,∞) (Lemma 8, below),

ii) small in the Lp-sense for large |x|, uniformly in λ > 1 (Lemma 9).
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Then, the relative compactness of the family {EHλ(1)}λ>1 in the space Lp(R2) is a consequence
of a standard diagonal argument. Here, a set is called to be relatively compact in Lploc(R2) if it is
relatively compact in Lp(B(0, R)) for every R > 0.

In the following two lemmas, R > 1 is a sufficiently large constant and

(2.13) hR(x) = h(x/R), where h ∈ C∞(R2)

is such that h(x) = 0 for |x| < 1 and h(x) = 1 for |x| > 2.

Lemma 8. Let Hλ(t) be defined in (2.10). The set {EHλ(1)}λ>1 is relatively compact in Lploc(R2)
for every p ∈ (2,∞).

Proof. Here, as the usual practice, one could show Lp-estimates for ∇EHλ(1) which are uniform
in λ > 1. Unfortunately, we do not know any scaling invariant gradient estimate for solutions of
the Stokes equation with initial conditions from L2,∞(Ω). Thus, we have to proceed in a different
manner.

Recall first that, by [13, Prop. 2.1], the vector field HΩ is smooth, bounded, and there is a
constant C > 0 such that |HΩ(x)| 6 C/|x| for all x ∈ Ω (recall that Ω ⊂ R2 \ B(0, 1)). Since the
rescaled harmonic vector field HΩλ is divergence free and tangent to the boundary, we can write
the following decomposition

HΩλ = PΩλHΩλ = PΩλ(hRHΩλ) + PΩλ [(1− hR)HΩλ ],

with the cut-off function hR defined in (2.13).
Obviously, the Leray projector PΩλ is a bounded operator on the space Lq(Ωλ) for each 1 < q <

∞, with norm independent of λ. Thus, for fixed q ∈ (1, 2), using the identity (2.9) we estimate

‖PΩλ [(1− hR)HΩλ ]‖Lq(Ωλ) 6 C‖(1− hR)HΩλ‖Lq(Ωλ) 6 Cλ‖HΩ(λ·)‖Lq(Ωλ∩B(0,2R))

= Cλ1− 2
q ‖HΩ‖Lq(Ω∩B(0,2Rλ)) 6 Cλ1− 2

q

∥∥∥ 1

| · |

∥∥∥
Lq(1<|x|<2Rλ)

6 C(q,Ω)R
2
q
−1.

(2.14)

Therefore, the quantity PΩλ [(1 − hR)HΩλ ] is bounded in Lq(Ωλ) with q ∈ (1, 2), uniformly with
respect to λ. Now, we deduce from the scaling invariant decay estimates (2.4) and (2.7) that{
Sλ(1)PΩλ [(1− hR)HΩλ ]

}
λ>1

is bounded in H1(Ωλ). Moreover, since Sλ(1)PΩλ [(1− hR)HΩλ ] van-
ishes on the boundary of Ωλ we have the relation

E∇Sλ(1)PΩλ [(1− hR)HΩλ ] = ∇ESλ(1)PΩλ [(1− hR)HΩλ ]

which implies that
{
ESλ(1)PΩλ [(1− hR)HΩλ ]

}
λ>1

is bounded in H1(R2). By the compactness of

the Sobolev imbedding H1(R2) ⊂ Lploc(R2), we infer that the set
{
ESλ(1)PΩλ [(1− hR)HΩλ ]

}
λ>1

is

relatively compact in Lploc(R2) for all p ∈ (2,∞).
On the other hand, calculations similar to those in (2.14) with p ∈ (2,∞) lead to the inequality

‖PΩλhRHΩλ ]‖Lp(Ωλ) 6 Cλ1− 2
p

∥∥∥ 1

| · |

∥∥∥
Lp(|x|>Rλ)

6 C(p,Ω)R
2
p
−1.

Using the decay estimate (2.4) we infer that

‖ESλ(1)PΩλ(hRHΩλ)‖Lp(R2) = ‖Sλ(1)PΩλ(hRHΩλ)‖Lp(Ωλ)

6 C‖PΩλ(hRHΩλ)‖Lp(Ωλ) 6 C(p,Ω)R
2
p
−1.

(2.15)
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Finally, since ESλ(1)PΩλ(hRHΩλ) tends to zero in Lp(R2) as R→∞ uniformly in λ and since
the family {ESλ(1)PΩλ [(1 − hR)HΩλ ]}λ>1 is relatively compact in Lploc(R2) for every fixed R, we
infer that

(2.16) EHλ(1) = ESλ(1)HΩλ = ESλ(1)PΩλ(hRHΩλ) + ESλ(1)PΩλ [(1− hR)HΩλ ]

is relatively compact in Lploc(R2).

Lemma 9. Let Hλ(t) be defined in (2.10) and hR be defined in (2.13). For every p ∈ (2,∞), we
have that lim

R→∞
‖hREHλ(1)‖Lp(R2) = 0 uniformly in λ > 1.

Proof. Let ε > 0 be an arbitrary small constant and R0 = R0(ε) be a large constant to be chosen
later. We estimate the Lp-norm of hREHλ(1) using the decomposition of EHλ(1) from (2.16) with
R = R0. First, repeating the calculations from (2.15) we have

‖hRESλ(1)PΩλ(hR0HΩλ)‖Lp(R2) 6 C(p,Ω)R
2
p
−1

0 .

Since the right-hand side tends to 0 as R0 →∞ uniformly in λ > 1, there exists R0 independent
of λ such that

‖hRESλ(1)PΩλ(hR0HΩλ)‖Lp(R2) 6 ε for all λ > 1.

Now, for fixed R0, we show that

lim
R→∞

hREvλ(1) = 0 with vλ(t) = Sλ(t)PΩλ [(1− hR0)HΩλ ]

where the convergence is in the norm of Lp(R2) and is uniform with respect to λ > 1.
First, it follows from relation (2.14) that vλ(0) = PΩλ [(1− hR0)HΩλ ] is bounded in Lq(Ωλ) for

each 1 < q < 2, uniformly in λ > 1. Using the decay estimates for the Stokes equation stated in
(2.4) and (2.7), we infer that vλ verifies

(2.17) ‖vλ(t)‖Lq(Ωλ) 6 C(q) and ‖∇vλ(t)‖L2(Ωλ) 6 C(η)t−η, uniformly in λ > 1,

for each q ∈ (1, 2), η = 1/q ∈ (1/2, 1), and all t > 0.
Let ωλ denote the curl of vλ. The quantity EhRωλ verifies the following equation in the full

plane
∂t(EhRωλ)−∆(EhRωλ) = E

[
∆hRωλ − 2 div(∇hRωλ)

]
in R+ × R2,

supplemented with the zero initial datum, because

EhRωλ(0) = EhR curl vλ(0) = EhR curlPΩλ [(1− hR0)HΩλ ]

= EhR curl[(1− hR0)HΩλ ] = −EhRHΩλ · ∇⊥hR0 = 0

for R > 2R0. In these calculations, we used the fact that, for any vector field w, the quantity
w − PΩλw is a gradient, that HΩλ is curl free, that supphR ⊂ {|x| > R} and that supp∇hR0 ⊂
{R0 < |x| < 2R0}.

The Duhamel principle for the inhomogeneous heat equation in the full plane implies now that

(2.18) EhRωλ(1) =

∫ 1

0

1

4π(1− s)
e−

|·|2
4(1−s) ∗ E

[
∆hRωλ − 2 div(∇hRωλ)

]
(s) ds.
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Let q ∈ (1, 2) satisfy 1/q = 1/2+1/p. We estimate the Lq-norm of EhRωλ(1) using relation (2.18)
in the following way

‖EhRωλ(1)‖Lq(R2) 6 C

∫ 1

0

1

1− s
‖e−

|·|2
4(1−s)‖L1(R2)‖∆hRωλ‖Lq(R2) ds

+ C

∫ 1

0

1

1− s
‖∇
[
e−

|·|2
4(1−s)

]
‖L1(R2)‖∇hRωλ‖Lq(R2) ds

6 C

∫ 1

0

‖∆hR‖Lp(R2)‖ωλ‖L2(Ωλ) + C

∫ 1

0

1√
1− s

‖∇hR‖Lp(R2)‖ωλ‖L2(Ωλ) ds

6 C

∫ 1

0

(‖∆hR‖Lp(R2) + ‖∇hR‖Lp(R2))(1 + (1− s)−
1
2 )s−

3
4 ds

6 CR
2
p
−1,

where we used (2.17). We conclude, using again (2.17), that

‖ curl(EhRvλ(1))‖Lq(R2) 6 ‖EhRωλ(1)‖Lq(R2) + ‖Evλ(1) · ∇⊥hR‖Lq(R2)

6 ‖EhRωλ(1)‖Lq(R2) + ‖vλ(1)‖Lq(Ωλ)‖∇hR‖L∞(R2)

6 CR
2
p
−1.

On the other hand, we can also bound

‖ div(EhRvλ(1))‖Lq(R2) = ‖Evλ(1) · ∇hR‖Lq(R2) 6 ‖vλ(1)‖Lq(Ωλ)‖∇hR‖L∞(R2) 6
C

R
.

Finally, putting together these estimates, we obtain

‖EhRvλ(1)‖Lp(R2) 6 C‖∇(EhRvλ(1))‖Lq(R2)

6 C‖ div(EhRvλ(1))‖Lq(R2) + C‖ curl(EhRvλ(1))‖Lq(R2) 6 CR
2
p
−1 R→∞−→ 0

uniformly in λ > 1. This completes the proof of Lemma 9.

3 Proof of the main result

The proof of Theorem 1 proceeds in two steps. First, we reduce the problem to the study
of initial velocities, which are small in the L2,∞-norm. In the second step, we assume that u0 is
sufficiently small in L2,∞(Ω) and we show that if the solution of the Stokes problem (2.1)-(2.3)
converges towards the Lamb-Oseen vortex, then so does the solution of the nonlinear problem.
Once these two steps are completed, Theorem 1 follows from Theorem 6.

3.1 Reduction to the case of small initial velocity.

We begin by recalling a classical result on the L2-decay of weak solutions to problem (1.2)-(1.4).

Theorem 10 (Borchers & Miyakawa [2, Thm. 1.2]). For every ũ0 ∈ L2
σ(Ω) there is a unique weak

solution ũ ∈ L∞((0,∞);L2(Ω)) ∩ L2
loc([0,∞);H1(Ω)), of problem (1.2)-(1.4) with u0 = ũ0 as an

initial datum, such that lim
t→∞
‖ũ(t)‖L2 = 0.

We show now the following auxiliary result.
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Lemma 11. Let u be a solution to (1.2)-(1.4) with u0 of the form (1.5) with arbitrary ũ0 ∈ L2
σ(Ω)

and α ∈ R. Denote by ũ the weak solution from Theorem 10. For every t0 > 0, we have that

sup
[0,t0]

‖u(t)− ũ(t)− αS(t)HΩ‖L2(Ω) → 0 as α→ 0.

Proof. We show a L2-estimate for the function z(t) ≡ u(t) − ũ(t) − αS(t)HΩ which satisfies the
following equation

(3.1) ∂tz −∆z + (ũ+ z + αH1) · ∇(ũ+ z + αH1)− ũ · ∇ũ+∇p = 0,

where H1(t) = S(t)HΩ.
We multiply equation (3.1) by z and integrate in the space variable to obtain, after some

integrations by parts,

1

2

d

dt
‖z‖2

L2(Ω) + ‖∇z‖2
L2(Ω) =α

∫
ũ · ∇z ·H1 −

∫
z · ∇ũ · z + α

∫
z · ∇z ·H1

+ α

∫
H1 · ∇z · ũ+ α2

∫
H1 · ∇z ·H1

≡I1 + I2 + I3 + I4 + I5.

(3.2)

Using the following interpolation inequality

‖f‖L4(Ω) 6 C‖f‖
1
2

L2(Ω)‖∇f‖
1
2

L2(Ω) for every f ∈ H1
0 (Ω),

we bound each term on the right-hand side of (3.2) in the following way

I1 6 |α|‖ũ‖L2(Ω)‖∇z‖L2(Ω)‖H1‖L∞(Ω) 6
1

6
‖∇z‖2

L2(Ω) + Cα2‖ũ‖2
L2(Ω)‖H1‖2

L∞(Ω),

I2 6 ‖z‖2
L4(Ω)‖∇ũ‖L2(Ω) 6 C‖z‖L2(Ω)‖∇z‖L2(Ω)‖∇ũ‖L2(Ω) 6

1

6
‖∇z‖2

L2(Ω) + C‖z‖2
L2(Ω)‖∇ũ‖2

L2(Ω),

I3 6 |α|‖z‖L2(Ω)‖∇z‖L2(Ω)‖H1‖L∞(Ω) 6
1

6
‖∇z‖2

L2(Ω) + Cα2‖z‖2
L2(Ω)‖H1‖2

L∞(Ω),

I4 6 |α|‖H1‖L∞(Ω)‖∇z‖L2(Ω)‖ũ‖L2(Ω) 6
1

6
‖∇z‖2

L2(Ω) + Cα2‖H1‖2
L∞(Ω)‖ũ‖2

L2(Ω),

I5 6 α2‖H1‖2
L4(Ω)‖∇z‖L2(Ω) 6

1

6
‖∇z‖2

L2(Ω) + Cα4‖H1‖4
L4(Ω).

Plugging the above inequalities into (3.2) yields

d

dt
‖z‖2

L2(Ω) +
1

3
‖∇z‖2

L2(Ω) 6C‖z‖2
L2(Ω)(‖∇ũ‖2

L2(Ω) + α2‖H1‖2
L∞(Ω))

+ Cα2‖H1‖2
L∞(Ω)‖ũ‖2

L2(Ω) + Cα4‖H1‖4
L4(Ω).

Recall that z0 = 0 and H1(t) = S(t)HΩ. Thus, the Gronwall inequality implies

sup
[0,t0]

‖z‖2
L2(Ω) 6Cα

2
(∫ t0

0

‖S(τ)HΩ‖2
L∞(Ω)‖ũ(τ)‖2

L2(Ω) dτ + α2

∫ t0

0

‖S(τ)HΩ‖4
L4(Ω) dτ

)
× exp

(
C

∫ t0

0

‖∇ũ(τ)‖2
L2(Ω) dτ + Cα2

∫ t0

0

‖S(τ)HΩ‖2
L∞(Ω) dτ

)
.

Since ũ ∈ L∞((0, t0);L2(Ω))∩L2((0, t0);H1(Ω)) and since HΩ ∈ Lp(Ω) for all p ∈ (2,∞], we infer
from the decay estimate (2.4) that the right-hand side of the above inequality is finite and tends
to zero as α→ 0. This completes the proof of Lemma 11.
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In the following, we need a simple consequence of this lemma.

Corollary 12. Under the assumptions of Lemma 11, for every ε > 0, there exists α0 = α0(Ω, ũ0, ε) >
0 and T0 = T0(Ω, ũ0, ε) > 0 such that if |α| 6 α0 then ‖u(T0)‖L2,∞(Ω) 6 ε.

Proof. Let ε > 0 be arbitrary. First, by Theorem 10, we choose T0 so large to have ‖ũ(T0)‖L2(Ω) 6
ε/3. Next, by (2.6), we have the following bound

‖αS(t)HΩ‖L2,∞(Ω) 6 K2|α|‖HΩ‖L2,∞(Ω) 6
ε

3
,

provided that α0 6 ε/
(
3K2‖HΩ‖L2,∞(Ω)

)
. Finally, we infer from Lemma 11 that if α0 is sufficiently

small, then

sup
[0,T0]

‖u(t)− ũ(t)− αS(t)HΩ‖L2(Ω) 6
ε

3
.

Consequently,

‖u(T0)‖L2,∞(Ω) 6‖u(T0)− ũ(T0)− αS(T0)HΩ‖L2,∞(Ω) + ‖ũ(T0)‖L2,∞(Ω)

+ ‖αS(T0)HΩ‖L2,∞(Ω) 6 ε.

3.2 Large time asymptotics for small velocities.

Now, we show that, for sufficiently small initial conditions, if the linear evolution converges to
the Lamb-Oseen vortex, then so does the nonlinear evolution. This result is stated in the following
proposition.

Proposition 13. Let u0 ∈ L2,∞
σ (Ω) and denote by u = u(t, x) the corresponding solution to

(1.2)–(1.4). There exists ε = ε(Ω) > 0 such that if max{‖u0‖L2,∞(Ω), |α|} 6 ε and if

(3.3) lim
t→∞

t
1
2
− 1
p‖S(t)u0 − αΘ(t)‖Lp(Ω) = 0 for every p ∈ (2,∞)

then

(3.4) lim
t→∞

t
1
2
− 1
p‖u(t)− αΘ(t)‖Lp(Ω) = 0 for every p ∈ (2,∞).

Proof. It follows from the results in [15, Thm. 3] that for every p ∈ (2,∞) there exists a constant
C(p) > 0 such that

(3.5) sup
t>0

t
1
2
− 1
p‖u(t)‖Lp(Ω) 6 C(p)ε,

provided ε > 0 is sufficiently small.
First, we show relation (3.4) for p = 4. The Duhamel principle allows to rewrite problem

(1.2)-(1.4) as the integral equation

u(t) = S(t)u0 −
∫ t

0

S(t− s)PΩ div(u⊗ u)(s) ds.

Subtracting the Lamb-Oseen vortex Θ on the both sides of the above relation we get

u(t)− αΘ(t) = S(t)u0 − αΘ(t)−
∫ t

0

S(t− s)PΩ div(u⊗ u)(s) ds

= S(t)u0 − αΘ(t)−
∫ t

0

S(t− s)PΩ div
[
(u− αΘ)⊗ u+ αΘ⊗ (u− αΘ)

]
(s) ds,
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because PΩ div(Θ⊗Θ) = 0. This is a consequence of the fact that the vector field Θ is orthogonal
to the gradient of a radial function so that div(Θ⊗Θ) is a gradient.

Now, computing the L4-norm of the above equality, using the decay estimates for the Stokes
semigroup (2.8), the Hölder inequality, the assumption on α, and estimate (3.5) we obtain

‖u(t)− αΘ(t)‖L4(Ω) 6 ‖S(t)u0 − αΘ(t)‖L4(Ω)

+ C

∫ t

0

(t− s)−
3
4‖[(u− αΘ)⊗ u+ αΘ⊗ (u− αΘ)](s)‖L2(Ω) ds

6 ‖S(t)u0 −Θ(t)‖L4(Ω)

+ C

∫ t

0

(t− s)−
3
4‖(u− αΘ)(s)‖L4(Ω)(‖u(s)‖L4(Ω) + ‖αΘ(s)‖L4(Ω)) ds

6 ‖S(t)u0 − αΘ(t)‖L4(Ω) + Cε

∫ t

0

(t− s)−
3
4 s−

1
4‖(u− αΘ)(s)‖L4(Ω) ds.

Hence, denoting ζ(t) = t
1
4‖u(t)− αΘ(t)‖L4(Ω) we infer that

ζ(t) 6 t
1
4‖S(t)u0 − αΘ(t)‖L4(Ω) + Cεt

1
4

∫ t

0

(t− s)−
3
4 s−

1
2 ζ(s) ds

6 t
1
4‖S(t)u0 − αΘ(t)‖L4(Ω) + Cε

∫ 1

0

(1− τ)−
3
4 τ−

1
2 ζ(tτ) dτ.

Now, we compute lim sup
t→∞

of both sides of this inequality and we use (3.3) for p = 4. By the

Lebesgue dominated convergence theorem, we obtain

lim sup
t→∞

ζ(t) 6 Cε lim sup
t→∞

ζ(t)

∫ 1

0

(1− τ)−
3
4 τ−

1
2 dτ = C1ε lim sup

t→∞
ζ(t),

where C1 is a constant independent of ε. If C1ε < 1, this inequality implies immediately that
lim sup
t→∞

ζ(t) = 0, which is the relation (3.4) for p = 4.

The same argument as above works for p 6= 4 but the constant C1 will depend on p so the
smallness condition C1ε < 1 cannot hold true unless ε = 0. To get around this difficulty, we show
that if (3.4) holds true for p = 4 then it holds true for all p ∈ (2,∞). Using similar computations
as above we obtain

‖u(t)− αΘ(t)‖Lp(Ω) 6 ‖S(t)u0 − αΘ(t)‖Lp(Ω)

+ C(p)ε

∫ t

0

(t− s)−1+ 1
p s−

1
4‖u(s)− αΘ(s)‖L4(Ω) ds

6 ‖S(t)u0 − αΘ(t)‖Lp(Ω) + C(p)εt
1
p
− 1

2

∫ 1

0

(1− τ)−1+ 1
p τ−

1
2 ζ(τt) dτ.

Multiplying both sides of this inequality by t
1
2
− 1
p , computing lim sup

t→∞
, and using the already-proved

decay for p = 4 completes the proof of Proposition 13.

3.3 Proof of Theorem 1.

We fix ε > 0 required in Proposition 13 and choose α0 ∈ (−ε, ε) and T0 as in Corollary 12 to
have that ‖u(T0)‖L2,∞(Ω) 6 ε. Let us observe that u(T0) verifies

(3.6) u(T0)− αHΩ ∈ L2
σ(Ω).
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Indeed, it follows from Lemma 11 that u(T0)−ũ(T0)−αS(T0)HΩ ∈ L2
σ(Ω). Clearly ũ(T0) ∈ L2

σ(Ω),
because ũ is a square integrable weak solution of the Navier-Stokes equations. Moreover, we have
S(t)HΩ −HΩ ∈ L2

σ(Ω) as was shown in [14]. Thus, the proof of (3.6) is complete.
In particular, using Corollary 5 we have

lim
t→∞

t
1
2
− 1
p‖S(t)(u(T0)− αHΩ)‖Lp(Ω) = 0 for every p ∈ (2,∞).

Thus, we infer from Theorem 6 that

lim
t→∞

t
1
2
− 1
p‖S(t)u(T0)− αΘ(t)‖Lp(Ω) = 0 for every p ∈ (2,∞).

Apply now Proposition 13 starting from time T0 to obtain

lim
t→∞

(t− T0)
1
2
− 1
p‖u(t)− αΘ(t− T0)‖Lp(Ω) = 0 for every p ∈ (2,∞).

A calculation using the explicit formula for Θ given in (1.1) shows that

(t− T0)
1
2
− 1
p‖Θ(t)−Θ(t− T0)‖Lp(Ω) = ‖Θ(1)−Θ

( t

t− T0

)
‖Lp(Ω) → 0 as t→∞

by the dominated convergence theorem (observe that
∣∣Θ( t

t−T0

)∣∣ 6 |Θ(1)
∣∣). This completes the

proof of Theorem 1.
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