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Abstract. We consider the evolution of a small rigid body in an incompressible viscous
fluid filling the whole space R3. The motion of the fluid is modelled by the Navier-Stokes
equations, whereas the motion of the rigid body is described by the conservation law
of linear and angular momentum. Under the assumption that the diameter of the rigid
body tends to zero and that the density of the rigid body goes to infinity, we prove that
the solution of the fluid-rigid body system converges to a solution of the Navier-Stokes
equations in the full space without rigid body.
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1. Introduction and Statement of results

The motion of one or several rigid bodies in a liquid is a classical topic in fluid mechanics.
We consider here the motion of an incompressible viscous fluid and a small smooth moving
rigid body in the three-dimensional space. In this fluid-rigid body system, we will not take
into account the gravity, and we suppose that the rigid body moves under the influence of
the fluid. We study the asymptotic behavior of the fluid-rigid body system as the diameter
of the rigid body tends to zero.

Assume that the whole three-dimensional space is occupied by an incompressible viscous
fluid of viscosity ν > 0 and by a rigid body of size ε. At the initial time, the domain of
the rigid body Sε0 is a small non-empty smooth compact simply-connected subset of R3

included in the ball B(0, ε) and Fε0 = R3 \Sε0 is the domain of the fluid. We also denote by
Sε(t) the region occupied by the rigid body and by Fε(t) = R3 \Sε(t) the region occupied
by the viscous fluid at time t.

In order to describe the motion of the rigid body, we need to specify its center of mass,
that we denote by hε(t) and a rotation matrix R(t) ∈ SO(3) which describes how the
body rotates compared to the initial position. In other words, we have that

Sε(t) = {x ∈ R3 | x = hε(t) +R(t)x0, x0 ∈ Sε0}.

The velocity of the solid particle x(t) = hε(t) +R(t)x0 is given by

x′(t) = h′ε(t) +R′(t)x0
= h′ε(t) +R′(t)R(t)−1(x− hε(t))
= h′ε(t) +R′(t)R(t)T (x− hε(t))

where the superscript T denotes the transpose. SinceR(t) ∈ SO(3), the matrixR′(t)R(t)T

is skew-symmetric and can therefore be identified to a three-dimensional rotation vector
ωε(t):

R′(t)R(t)T z = ωε(t)× z, z ∈ R3
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where × denotes the standard cross product of vectors in R3. Therefore the velocity of
the solid particle at x is given by

h′ε(t) + ωε(t)× (x− hε(t)), x ∈ Sε(t).(1)

We assume that the rigid body is homogeneous of density ρε. We denote its total mass
by mε so that mε = ρε|Sε0 | where |Sε0 | is the volume of the rigid body. We also introduce
Jε the matrix of inertia of the rigid body defined by

(Jεa) · b = ρε

∫
Sε

(
a× (x− hε(t)

)
·
(
b× (x− hε(t)

)
dx, for any a, b ∈ R3,

(see [11]).
We assume that the fluid is governed by the classical Navier-Stokes equations with no-

slip boundary conditions on the boundary of the rigid body, and the dynamics of the rigid
body is described by the equations of the balance of linear and angular momentum. We
suppose that the fluid is homogeneous of constant density 1 to simplify the notations and
we denote by uε(t, x) the velocity of the fluid and by pε(t, x) the pressure of the fluid.
Moreover, we also denote by Σ(uε, pε) the stress tensor of the fluid

Σ(uε, pε) = 2νD(uε)− pεI3,

where I3 is identity matrix of order 3 and D(uε) is the deformation tensor

(2) D(uε) :=
1

2

(∂uε,i
∂xj

+
∂uε,j
∂xi

)
i,j

i, j = 1, 2, 3.

With the notation introduced above, we have the following mathematical formulation
for the fluid-rigid body system (see [5], [11] and [20]):

• Fluid equations:

∂uε
∂t

+ (uε · ∇)uε − ν∆uε +∇pε = 0 for t ∈ (0,+∞), x ∈ Fε(t).

div uε = 0 for t ∈ (0,+∞), x ∈ Fε(t).
(3)

• Rigid body equations:

mεh′′ε(t) = −
∫
∂Sε(t)

Σ(uε, pε)nεds for t ∈ (0,+∞).(4)

(Jεωε)
′(t) = −

∫
∂Sε(t)

(x− hε)× (Σ(uε, pε)nε)ds for t ∈ (0,+∞).(5)

• Boundary conditions:

uε(t, x) = h′ε(t) + ωε(t)×
(
x− hε(t)

)
, for t ∈ (0,+∞), x ∈ ∂Sε(t).

lim
|x|→∞

uε(t, x) = 0 for t ∈ [0,+∞).(6)

In the above system, we have denoted by nε(t, x) the unit normal vector to ∂Sε pointing
outside the fluid domain Fε. The first line in (6) is the Dirichlet boundary condition: the
fluid velocity and the solid velocity must agree on the boundary of the body.

The system (3)-(6) should be completed by some initial conditions. As mentioned at
the beginning, we assume that the initial position of the center of mass of the rigid body
is in the origin. We denote by u0ε the initial fluid velocity:

uε(0, x) = u0ε, hε(0) = 0, h′ε(0) = l0ε , ωε(0) = ω0
ε .(7)
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The coupled system satisfies some L2 energy estimates at least at the formal level.
Taking the inner product of (3) with uε, integrating the result by parts and using the
equations (4) and (5), we get the following energy estimate (see [11]):

(8) ‖uε(t)‖2L2(Fε(t)) +mε|h′ε(t)|2 + (Jεωε(t)) · ωε(t) + 4ν

∫ t

0
‖D(uε)‖2L2(Fε(t))

≤ ‖u0ε‖2L2(Fε
0 )

+mε|l0ε |2 +
(
Jεω0

ε

)
· ω0

ε .

The sum of the first three terms on the left-hand side of (8) is called the kinetic energy
of the system at time t, while the forth term is called viscous dissipation. Obviously the
initial kinetic energy is the right-hand side of (8).

Over the last few years, there were a lot of works dealing with the well-posedness of
the fluid-rigid body system by using energy estimates. Both weak finite energy solutions
(Leray solutions) and strong H1 solutions were constructed. When the fluid is enclosed
in a bounded region, the existence of solutions is proved under some constraints on the
collisions between the rigid body and the boundary of the domain. When the domain of
motion is the whole of R3 there is of course no such constraint. We give some references
below but we would like to say that this list is not exhaustive. The existence of weak
Leray solutions have been proved in [2], [6], [11] and [20] (see also the references therein).
We refer to [3], [5] and [7] for results about strong H1 solutions. The vanishing viscosity
limit was considered in [22]. Let us also mention that the case of the dimension two was
also considered in the literature, see for example [5], [13], [19] and [23].

The initial conditions should satisfy the following compatibility conditions (see [5]):

(9)
u0ε ∈ L2(Fε0), div u0ε = 0 in Fε0 ,
u0ε · nε = (l0ε + ω0

ε × x) · nε on ∂Sε0 .
The second condition above is a weak version of the Dirichlet boundary condition in which
only the normal components of the fluid velocity and of the solid velocity must agree on
the boundary of the obstacle. This is in agreement with the usual theory of Leray solutions
of the Navier-Stokes equations where the initial velocity is assumed to be only tangent to
the boundary.

Before stating a result of existence of weak solutions for the motion of a rigid body in
a fluid, let us introduce the global density and the global velocity, defined on the whole of
R3. The fluid is homogeneous of constant density 1 while the rigid body is of density ρε,
so we can define the global density ρ̃ε(t, x) as follows:

ρ̃ε(t, x) = χFε(t)(x) + ρεχSε(t)(x), for x ∈ R3

where we denote χA denotes the characteristic function of the set A. Moreover, recalling
the formula for the velocity of the rigid body, see (1), one may define a global velocity ũε
by

ũε(t, x) =

{
uε(t, x) if x ∈ Fε(t)
h′ε(t) + ωε(t)× (x− hε(t)) if x ∈ Sε(t).

Clearly, by conditions (9), we know that

ũ0ε ∈ L2(R3), div ũ0ε = 0 in R3.

Motivated by the energy estimates (8) and by the construction of ρ̃ε and ũε we introduce
the following notion of weak solution (see [2], [6], [11] and [20]).

Definition 1. A triplet (ũε, hε, ωε) is a weak Leray solution of (3)–(7), if
3



• ũε, hε, ωε satisfying

hε ∈W 1,∞(R+;R3), ωε ∈ L∞(R+;R3),

uε ∈ L∞
(
R+;L2(Fε)

)
∩ L2

loc

(
R+;H1(Fε)

)
, ũε ∈ C0

w

(
R+;L2(R3)

)
;

• ũε is divergence free in the whole of R3 with Dũε(t, x) = 0 in Sε(t);
• ũε verifies the equation in the following sense:

−
∫ ∞
0

∫
R3

ρ̃εũε ·
(
∂tϕε + (ũε · ∇)ϕε

)
+ 2ν

∫ ∞
0

∫
R3

D(ũε) : D(ϕε)

=

∫
R3

ρ̃ε(0)ũ0ε · ϕε(0).

for any test function ϕε ∈ W 1,∞ (R+;H1
σ(R3)

)
, compactly supported in R+ × R3

such that Dϕε(t, x) = 0 in Sε(t).

One has the following result of existence of weak solutions of the initial-boundary value
problem (3)–(7) in the sense defined above (see [2], [6], [11] and [20]).

Theorem 1. Let ũ0ε ∈ L2(R3) be divergence free and such that Dũ0ε = 0 in Sε0. Then, there
exists at least one global weak solution (ũε, hε, ωε) of the initial-boundary value problem
(3)–(7) in the sense of Definition 1. Moreover, ũε satisfies the following energy estimate:∫

R3

ρ̃ε|ũε(t)|2 + 4ν

∫ t

0

∫
R3

|D(ũε)|2 ≤
∫
R3

ρ̃ε(0)|ũ0ε|2 ∀t > 0.(10)

We now let ε→ 0 and wish to find the limit of the solution given in Theorem 1. Let us
first review the literature available on related results.

In dimension two the literature is richer. Iftimie, Lopes Filho and Nussenzveig Lopes
[15] proved convergence towards the Navier-Stokes equations in R2 in the case when the
rigid body does not move. Lacave [16] considered the case of a thin obstacle tending to a
curve. Dashti and Robinson [4] were the first to consider the case of an obstacle moving
with the fluid, but it was observed in [1, Subsection 2.1] that the elliptic estimates of
[4] are sometimes faulty. Recently, Lacave and Takahashi [18] considered a small disk
moving under the influence of a two-dimensional viscous incompressible fluid. Under the
condition that the density of the solid is independent of ε and assuming that the initial data
is sufficiently small, they used the Lp−Lq decay estimates of the semigroup associated to
the fluid-rigid body system to deduce the convergence towards the solution of the Navier-
Stokes equations in R2. In [12], the authors extended the result of [18] to the case of
arbitrary shape of the body and with no restriction on the size of the initial data but
assuming that the density of the obstacle is large.

In dimension three, Iftimie and Kelliher [14] considered the case of a fixed obstacle and
proved convergence towards the Navier-Stokes equations in R3. Lacave [17] considered
more general shrinking obstacles (for instance shrinking to a curve) but still fixed. When
the obstacle is moving with the fluid, the limit ε → 0 was considered in [21] in the case
when the rigid body is a ball. Unfortunately, the elliptic estimates in that paper, see [21,
Theorem 3.1], are not correct as was observed in [1, Subsection 2.1].

As far as we know, Theorem 2 below is the first result on the limit ε→ 0 in dimension
three for a moving obstacle. We will essentially show that if the density of the rigid
body goes to infinity, then the energy estimates are sufficient to pass to the limit in the
weak formulation by using a truncation procedure. We obtain then the convergence of
the solutions constructed in Theorem 1 to a solution of the Navier-Stokes equations in R3
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under the assumption that the initial data ũ0ε is bounded in L2. We do not need to impose
any small data condition or any restriction on the shape of the body.

Let us now state the main result of this paper.

Theorem 2. Let ũ0ε ∈ L2(R3) be divergence free and such that Dũ0ε = 0 in Sε0. We assume
that

• Sε0 ⊂ B(0, ε);
• the mass mε of the rigid body satisfies that

(11)
mε

ε3
→∞ as ε→ 0;

• ũ0ε converges weakly in L2(R3) towards some u0.
•
√
mεh′ε(0) and

(
Jεω0

ε

)
· ω0

ε are bounded uniformly in ε.

Let (ũε, hε, ωε) be the global solution of the system (3)–(7) given by Theorem 1. Then there
exists a subsequence ũεk of ũε which converges

ũεk ⇀ u weak∗ in L∞
(
R+;L2(R3)

)
and weakly in L2

loc

(
R+;H1(R3)

)
towards a solution u of the Navier-Stokes equations in R3 in the sense of distributions with
initial data u0(x).

Moreover, suppose in addition that ũ0ε converges strongly in L2(R3) to u0(x) and that
both

√
mεh′ε(0) and

(
Jεω0

ε

)
·ω0

ε converge to 0 as ε→ 0. Then the limit solution u satisfies
the energy estimate

∀t ≥ 0 ‖u(t)‖2L2(R3) + 4ν

∫ t

0
‖D(u)‖2L2(R3) ≤ ‖u0‖

2
L2(R3) .

Let us give a few remarks on the hypotheses of the Theorem above. First, if the rigid
body shrinks isotropically to a point, then hypothesis (11) means that the density ρε of
the rigid body tends to infinity as ε → 0. If the rigid body does not shrink isotropically
to a point, then condition (11) is stronger than simply saying that the density of the
rigid body goes to infinity. Indeed, since Sε0 ⊂ B(0, ε) we have that |Sε0 | ≤ 4π

3 ε
3 so

ρε = mε

|Sε0 |
≥ 3mε

4πε3
→∞ as ε→ 0.

Next, the weak convergence of ũ0ε in L2(R3) implies its boundedness in L2(R3). Together
with the hypothesis that

√
mεh′ε(0) and

(
Jεω0

ε

)
·ω0
ε are bounded uniformly in ε this implies

that the right-hand side of (8) is bounded. Then (10) implies that
√
ρ̃εũε is bounded

in L∞(R+;L2(R3)) and D(ũε) is bounded in L2(R+;L2(R3)). We observed above that
ρε → ∞ so we can assume that ρε ≥ 1. Then we have that ρ̃ε ≥ 1 (recall that ρ̃ε = 1 in
the fluid region and ρ̃ε = ρε in the solid region) so ũε is bounded in L∞(R+;L2(R3)). We
infer that

(12) ũε(t, x) is bounded in L∞
(
R+;L2(R3)

)
∩ L2

loc

(
R+;H1(R3)

)
and we will see that this is all we need to pass to the limit in our PDE. We require neither
the Dirichlet boundary conditions nor the special form of ũε inside the rigid body. All we
need is the above boundedness and the fact that the Navier-Stokes equations are satisfied
in the exterior of the ball B(hε(t), ε). More precisely, we can prove the following more
general statement.

Theorem 3. Let vε(t, x) be a divergence free vector field bounded independently of ε in

L∞loc(R+;L2(R3)) ∩ L2
loc(R+;H1(R3)) ∩ C0

w(R+;L2(R3)).

We make the following assumptions:
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• The vector field vε verifies the Navier-Stokes equations

(13) ∂tvε − ν∆vε + vε · ∇vε = −∇πε
in the exterior of the ball B(hε(t), ε) with initial data vε(0, x) in the following sense:

−
∫ ∞
0

∫
R3

vε · ∂tϕ+ ν

∫ ∞
0

∫
R3

∇vε : ∇ϕ+

∫ T

0

∫
R3

vε · ∇vε · ϕ =

∫
R3

vε(0) · ϕ(0)

for every test function ϕ ∈ W 1,∞(R+ × R3
)

which is divergence free, compactly

supported in R+ × R3 and such that for all t the function x 7→ ϕ(t, x) is smooth
and compactly supported in the set {|x− hε(t)| > ε}.
• The initial data vε(0, x) is divergence free, square integrable and converges weakly

to some v0(x) in L2(R3).

• The center of the ball verifies hε ∈ W 1,∞(R+;R3) and ε
3
2h′ε(t) → 0 strongly in

L∞loc(R+) when ε→ 0.

Then there exists a subsequence of vε which converges weak∗ in L∞loc(R+;L2(R3)) and
weakly in L2

loc(R+;H1(R3)) to a solution v of the Navier-Stokes equations in R3 in the
sense of distributions with initial data v0(x).

Moreover, if we assume in addition that vε(0, x) converges strongly in L2 to v0(x) and
that the following energy estimate holds true for vε

(14) ∀t ≥ 0 ‖vε(t)‖2L2(R3\B(hε(t),ε))
+4ν

∫ t

0
‖D(vε)‖2L2(R3\B(hε(t),ε))

≤ ‖vε(0)‖2L2(R3)+o(1)

as ε→ 0, then the limit solution v satisfies the following energy estimate

∀t ≥ 0 ‖v(t)‖2L2(R3) + 4ν

∫ t

0
‖D(v)‖2L2(R3) ≤ ‖v0‖

2
L2(R3) .(15)

Let us observe that Theorem 2 follows from Theorem 3 applied for vε(t, x) = ũε(t, x).
Indeed, from (12) we have that vε is bounded in L∞loc(R+;L2(R3)) ∩ L2

loc(R+;H1(R3)).
Next we obviously have that ũε verifies the Navier-Stokes equations in the exterior of the
ball B(hε(t), ε) and so does vε. We observed that the right-hand side of (8) is bounded

so
√
mεh′ε is bounded. From (11) we infer that ε

3
2h′ε(t) → 0 strongly in L∞(R+) when

ε→ 0. Then all the hypothesis of the first part of Theorem 3 is verified and the first part
of Theorem 2 follows.

Let us now assume in addition the L2 strong convergence of ũ0ε towards u0 and let us
prove (14). We have the L2 strong convergence of vε(0, x) to v0. Recalling that the matrix
of inertia is non-negative we can ignore the second and the third terms in (8) to estimate

‖vε(t)‖2L2(R3\B(hε(t),ε))
+4ν

∫ t

0
‖D(vε)‖2L2(R3\B(hε(t),ε))

= ‖uε(t)‖2L2(R3\B(hε(t),ε))
+ 4ν

∫ t

0
‖D(uε)‖2L2(R3\B(hε(t),ε))

≤ ‖uε(t)‖2L2(Fε(t)) + 4ν

∫ t

0
‖D(uε)‖2L2(Fε(t))

≤ ‖u0ε‖2L2(Fε(t)) +mε|l0ε |2 +
(
Jεω0

ε

)
· ω0

ε

≤ ‖vε(0)‖2L2(R3) +mε|l0ε |2 +
(
Jεω0

ε

)
· ω0

ε .

By hypothesis mε|l0ε |2 +
(
Jεω0

ε

)
· ω0

ε → 0 so (14) follows.
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The passing to the limit stated in Theorem 3 uses the boundedness of vε in the energy
space L∞

(
R+;L2(R3)

)
∩L2

loc

(
R+;H1(R3)

)
and the construction of a cut-off ϕε supported

in the exterior of the ball B(hε(t), ε). We multiply (13) with the cut-off ϕε, and then pass
to the limit by means of classical compactness methods. The main obstruction is that,
when the rigid body moves under the influence of the fluid, not only the velocity depends
on time, but also the cut-off function. Time derivative estimates for vε are not easy to
obtain and, once obtained, it is not easy to pass to the limit in the term with the time
derivative.

Let us comment now on the hypothesis of large density assumed in Theorem 2. This
hypothesis is not very satisfactory, it would be more natural to assume that the density of
the obstacle is constant like in the paper of Lacave and Takahashi [18] in dimension two.
That would allow for instance to include the case of “tracer particles” to follow a fluid flow.
Unfortunately we are forced to assume here that the density of the obstacle is large. But
if we look at the proof we realize that the large density hypothesis is not really necessary.

What we require is a bound for the velocity of the obstacle, namely h′ε = o(ε−
3
2 ). The

large density hypothesis is only a mean to obtain this bound from the energy estimates
(8) (see the paragraph following Theorem 3). In dimension two, Lacave and Takahashi
[18] were able to use some estimates for the Stokes-rigid body semigroup in order to derive
estimates for hε without resorting to the energy estimates. But in dimension three we
were not able to find another way to bound the velocity of the obstacle.

Another issue which is definitely worth investigating is to find the limit of hε, the
position of the obstacle. The first step in doing this would require some estimates for hε
independent of ε. Here we only rely on energy estimates and the energy estimates (8) give
a bound on mε|h′ε(t)|2. So, if we want to obtain estimates for hε uniform in ε we need the
mass of the particle to be bounded from below by a constant independent of ε. Therefore
the density needs to be larger than Cε−3, which is considerably more restrictive than just
saying that the density should go to infinity. So our method cannot be used to find the
limit of the position of the obstacle. Let us observe that the semigroup method of [18]
allows to find uniform estimates for hε in dimension two in the case of constant density.
However, even [18] does not find the limit of hε. Finally, we remark that in the inviscid
case in dimension two one can find an equation for the limit of hε in various situations,
see for instance [8], [9] and [10]. This is due to the particular form (transport equation) of
the equation of the vorticity which implies many conservation laws for the vorticity. This
is not available neither for the Navier-Stokes equations, nor for the case of the dimension
three.

The rest of the paper is organized as follows. In Section 2, we introduce some notation
and present some preliminary results. The construction of the cut-off near the rigid body
is given in Section 3. We show the strong convergence by means of temporal estimates in
Section 4 and pass to the limit to conclude our proof in Section 5.

2. Notation and Preliminary results

In this section, we will introduce some notations and preliminary results.
For a sufficiently regular vector field u : R3 → R3, we denote by ∇u the second order

tensor field whose components (∇u)ij are given by ∂uj/∂xi, and by D(u) the symmetric
part of ∇u (see (2)). The double dot product M : N of two matrices M = (mij) and
N = (nij) denotes the quantity

∑
i,jmijnij .

For function spaces, we shall use standard notations Lp and Hm to denote the usual
Lebesgue and Sobolev spaces. Cmb denotes the set of bounded functions whose first m
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derivatives are bounded functions. We add subscripts 0 and σ to these spaces to spec-
ify that their elements are compactly supported and divergence free, respectively. For
instance, the notation C∞0,σ defines the space of smooth, compactly supported and diver-

gence free vector fields on R3.
In addition, unless we specify the domain, all function spaces and norms are considered

to be taken on R3 in the x variable. For the t variable, we use the notation R+ = [0,∞)
and emphasize that the endpoint 0 belongs to R+. Throughout this article, we denote by
C a generic constant whose value can change from one line to another.

Let ϕ ∈ C1
b (R+;C∞0,σ). The stream function ψ of ϕ is defined by the following formula:

ψ(x) = −
∫
R3

x− y
4π|x− y|3

× ϕ(y)dy

where × denotes the standard cross product of vectors in R3.
Because ϕ is divergence free, we have that curlψ = ϕ and ψ = curl ∆−1ϕ. Furthermore,

ψ is smooth, ψ ∈ C1
b (R+;C∞), and vanishes at infinity. Moreover, we have the following

well-known estimate:

‖∇ψ(t, ·)‖H2 ≤ C ‖ϕ(t, ·)‖H2 .(16)

In our case, in order to deal with the singularity in hε, we need to have a stream function
vanishing in hε. The stream function ψ defined above has no reason to vanish in hε, so
we are led to introduce a modified stream function ψε. We define

(17) ψε(t, x) = ψ(t, x)− ψ(t, hε(t)).

Clearly ψε(t, hε(t)) = 0. We collect in the following lemma some useful properties of
the modified stream function.

Lemma 1. Let ϕ ∈ C1
b (R+;C∞0,σ) and define the modified stream function ψε as in (17).

We have that:

(i) ψε ∈W 1,∞(R+;C∞) and curlψε = ϕ.
(ii) There exists a universal constant C > 0 such that for all R > 0 we have that

‖ψε(t, ·)‖L∞(B(hε(t),R)) ≤ CR ‖ϕ(t, ·)‖H2(18)

for all t ≥ 0 and

‖∂tψε(t, ·)‖L∞(B(hε(t),R)) ≤ C
(
R ‖∂tϕ(t, ·)‖H2 + |h′ε(t)| ‖ϕ(t, ·)‖H2

)
for almost all t ≥ 0.

Proof. We observe first that curlψε = curlψ = ϕ. Moreover, ψ ∈ C1
b (R+;C∞) and

hε ∈W 1,∞(R+) imply that ψε ∈W 1,∞(R+;C∞). This proves part (i).
Next, to prove (ii) we use the mean value theorem to estimate

‖ψε(t, x)‖L∞(B(hε(t),R)) = ‖ψ(t, x)− ψ(t, hε(t))‖L∞(B(hε(t),R))

≤ |x− hε(t)| ‖∇ψ(t, x)‖L∞(B(hε(t),R))

≤ R ‖∇ψ‖H2

≤ CR ‖ϕ‖H2

where we used relation (16). This proves (18).
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We recall now that hε is Lipschitz in time so it is almost everywhere differentiable in
time. Let t be a time where hε is differentiable. We write

∂tψε(t, x) = ∂t(ψ(t, x)− ψ(t, hε(t)))

= ∂tψ(t, x)− ∂tψ(t, hε(t))− h′ε(t) · ∇ψ(t, hε(t)).

We can bound

‖∂tψε(t, ·)‖L∞(B(hε(t),R)) ≤ ‖∂tψ(t, x)− ∂tψ(t, hε(t))‖L∞(B(hε(t),R)) + |h′ε(t)| ‖∇ψ(t, ·)‖L∞
≤ |x− hε(t)| ‖∂t∇ψ(t, ·)‖L∞ + |h′ε(t)| ‖∇ψ(t, ·)‖L∞
≤ C

(
R ‖∂t∇ψ(t, ·)‖H2 + |h′ε(t)| ‖∇ψ(t, ·)‖H2

)
≤ C

(
R ‖∂tϕ(t, ·)‖H2 + |h′ε(t)| ‖ϕ(t, ·)‖H2

)
.

This completes the proof of the lemma. �

3. Cut-off near the rigid body

In this section, we will construct a cut-off ϕε near the rigid body, which will be used as
a test function in the procedure of passing to the limit in Section 5.

Firstly, we construct a cut-off function ηε(t, x) near the ball B(hε(t), ε). Let η(x) ∈
C∞(R3; [0, 1]) be a function such that

η(x) : R3 → [0, 1], η(x) =

{
0 if |x| ≤ 3

2

1 if |x| ≥ 2

The function η(x) is a cut-off function in the neighborhood of the unit ball B(0, 1). A
cut-off ηε(t, x) in the neighborhood of the domain B(hε(t), ε) is the following function

(19) ηε(t, x) = η

(
x− hε(t)

ε

)
=

{
0 if |x− hε(t)| ≤ 3

2ε

1 if |x− hε(t)| ≥ 2ε.
.

Notice that ηε(t, x) is a space-time function while the function η(x) only has a space
variable. We state some properties of this new cut-off in the following lemma.

Lemma 2. The cut-off function ηε satisfies

(i) ηε ∈W 1,∞(R+;C∞);
(ii) ηε vanishes in the neighborhood of the ball B(hε(t), ε);

(iii) For any real number q ≥ 1 there exists a constant C = C(q) such that

‖ηε(t, ·)‖L∞ = 1, ‖ηε(t, ·)− 1‖Lq ≤ Cε
3
q , ‖∇ηε(t, ·)‖Lq ≤ Cε

3−q
q ,

∥∥∇2ηε(t, ·)
∥∥
Lq ≤ Cε

3−2q
q .

Proof. Since hε is Lipschitz part (i) follows immediately. Part (ii) is also obvious. We
prove now part (iii).

Clearly ‖ηε(t, ·)‖L∞ = 1. Next

‖ηε(t, x)− 1‖Lq =

∥∥∥∥η(x− hε(t)ε

)
− 1

∥∥∥∥
Lq

= ε
3
q ‖η(x)− 1‖Lq ≤ Cε

3
q .

9



Notice that ∇η(x) and ∇2η(x) are bounded functions supported in the annulus {32 < |x| <
2}. So

‖∇ηε(t, x)‖Lq =

∥∥∥∥1

ε
∇η
(
x− hε(t)

ε

)∥∥∥∥
Lq

= ε
3−q
q ‖∇η(x)‖Lq ≤ Cε

3−q
q ,

∥∥∇2ηε(t, x)
∥∥
Lq =

∥∥∥∥ 1

ε2
∇2η

(
x− hε(t)

ε

)∥∥∥∥
Lq

= ε
3−2q

q
∥∥∇2η(x)

∥∥
Lq ≤ Cε

3−2q
q .

This completes the proof of the lemma. �

Given a test function ϕ ∈ C1
b (R+;C∞0,σ), we use the cutoff ηε and the modified stream

function ψε defined in Section 2 (see relation (17)) to construct a new test function ϕε
which vanishes in the neighborhood of the ball B(hε(t), ε). We define

(20) ϕε = curl(ηεψε).

We notice that this new test function ϕε depends on time even if ϕ is assumed to be
constant in time. We state some properties of ϕε in the following lemma:

Lemma 3. The test function ϕε has the following properties:

(i) ϕε ∈W 1,∞(R+;C∞0,σ) and ϕε vanishes in the neighborhood of B(hε(t), ε);

(ii) for all T > 0 we have that ϕε → ϕ strongly in L∞(0, T ;H1) as ε→ 0;
(iii) there exists a universal constant C such that for all T > 0

‖ϕε‖L∞(0,T ;H1) ≤ C‖ϕ‖L∞(0,T ;H2).

Proof. The various norms used below are in the x variable unless otherwise stated.
Clearly, ηε and ψε are W 1,∞ in time and smooth in space, so ϕε has the same properties.

The function ϕε is a curl so it is divergence free. Because ηε vanishes in the neighborhood
of B(hε(t), ε), so is ϕε. The compact support in space follows immediately once we recall
that curlψε = ϕ and observe that

ϕε = curl(ηεψε) = ηεϕ+∇ηε × ψε
Claim (i) is proved.

To prove (ii), we observe that supp ∇ηε ⊂ {|x− hε(t)| ≤ 2ε} and we estimate

‖ϕε − ϕ‖L2 ≤ ‖(ηε − 1)ϕ‖L2 + ‖∇ηε × ψε‖L2

≤ ‖ηε − 1‖L2 ‖ϕ‖L∞ + ‖∇ηε‖L2 ‖ψε‖L∞(B(hε(t),2ε))

≤ C
(
ε

3
2 ‖ϕ‖L∞ + ε

3
2 ‖ϕ‖H2

)
≤ Cε

3
2 ‖ϕ‖H2

where we used Lemmas 1 and 2.
Taking the supremum on [0, T ] we infer that

(21) ‖ϕε − ϕ‖L∞(0,T ;L2) ≤ Cε
3
2 ‖ϕ‖L∞(0,T ;H2) .

Next, by the Sobolev embedding H2(R3) ↪→W 1,6(R3) and by Lemma 2 we estimate

‖∇(ϕε − ϕ)‖L2 =
∥∥∇((ηε − 1)ϕ+∇ηε × ψε

)∥∥
L2

≤ ‖ηε − 1‖L3 ‖∇ϕ‖L6 + ‖∇ηε‖L2 ‖ϕ‖L∞ + ‖∇ηε‖L2 ‖∇ψε‖L∞
+
∥∥∇2ηε

∥∥
L2 ‖ψε‖L∞(B(hε(t),2ε))

≤ C
(
ε ‖ϕ‖W 1,6 + ε

1
2 ‖ϕ‖L∞ + ε

1
2 ‖∇ψε‖L∞ + Cε−

1
2 ‖ψε‖L∞(B(hε(t),2ε))

)
.
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From relations (17) and (16) we get that

‖∇ψε‖L∞ = ‖∇ψ‖L∞ ≤ C ‖∇ψ‖H2 ≤ C‖ϕ‖H2 .

From Lemma 1 we have that

‖ψε‖L∞(B(hε(t),2ε))
≤ Cε‖ϕ‖H2 .

We conclude from the above relations that

‖∇(ϕε − ϕ)‖L2 ≤ Cε
1
2 ‖ϕ‖H2 .

Taking the supremum on [0, T ] we deduce that

(22) ‖∇(ϕε − ϕ)‖L∞(0,T ;L2) ≤ Cε
1
2 ‖ϕ‖L∞(0,T ;H2) .

We conclude form (21) and (22) that

‖ϕε − ϕ‖L∞(0,T ;H1) ≤ Cε
1
2 ‖ϕ‖L∞(0,T ;H2) → 0 as ε→ 0.

This proves (ii). To prove (iii) we simply bound

‖ϕε‖L∞(0,T ;H1) ≤ ‖ϕ‖L∞(0,T ;H1) + ‖ϕε − ϕ‖L∞(0,T ;H1) ≤ C‖ϕ‖L∞(0,T ;H2).

This completes the proof of the lemma. �

4. Temporal estimate and strong convergence

The aim of this section is to derive a temporal estimate and to prove the strong con-
vergence of some sub-sequence of vε in L2

loc(R+ ×R3). We will prove the following result.

Proposition 1. There exists a sub-sequence vεk of vε which converges strongly in L2
loc(R+×

R3).

It suffices to prove that for any T > 0 there exists a sub-sequence vεk of vε which
converges strongly in L2(0, T ;L2

loc(R3)). A diagonal extraction then allows to choose the
same subsequence for all times T . We choose some finite time T and for the rest of this
section we assume that t ∈ [0, T ].

The main idea is to use the Arzelà–Ascoli theorem. Let ϕ ∈ C∞0,σ(R3) be a test function
which does not depend on the time. By the definition of the modified stream function, we
observe that even if ϕ is constant in time, ψε(t, x) still depends on the time through hε(t).
We construct a family of ϕε as in Section 3, so that ϕε is time-dependent and satisfies
Lemma 3.

We first bound∣∣∣∫
R3

vε(t, x) · ϕε(t, x) dx
∣∣∣ =

∣∣∣∫
R3

vε · curl(ηεψε) dx
∣∣∣

=
∣∣∣∫

R3

vε · (ηεϕ+∇ηε × ψε) dx
∣∣∣

≤ ‖vε‖L2 ‖ηε‖L∞ ‖ϕ‖L2 + ‖vε‖L2 ‖∇ηε‖L2 ‖ψε‖L∞(B(hε(t),2ε))

≤ C
(
‖vε‖L2 ‖ϕ‖L2 + ε

3
2 ‖vε‖L2 ‖ϕ‖H2

)
≤ C ‖vε‖L2 ‖ϕ‖H2 .

where we used Lemma 1 and Lemma 2. The boundedness of vε in L2(R3) implies that
there exists a constant C1 independent of ε and t such that∣∣∣∫

R3

vε(t, x) · ϕε(t, x) dx
∣∣∣ ≤ C1 ‖ϕ‖H2 .
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We infer that, for t fixed and ϕ ∈ C∞0,σ, the map

ϕ 7→
∫
R3

vε(t, x) · ϕε(t, x) dx ∈ R

is linear and continuous for the H2 norm. Then, there exists some Ξε(t) ∈ H−2σ such that

〈Ξε(t), ϕ〉 =

∫
R3

vε(t, x) · ϕε(t, x) dx ∀ϕ ∈ H2
σ.

Moreover

(23) ‖Ξε(t)‖H−2 ≤ C1 ∀t ≥ 0.

From Lemma 3 , we know that ϕε vanishes in the neighborhood of B(hε(t), ε), so it is
compactly supported in the exterior of this ball. Therefore it can be used as test function
in (13). Multiplying (13) by ϕε and integrating in space and in time from s to t yields∫ t

s

∫
R3

∂τvε · ϕε + ν

∫ t

s

∫
R3

∇vε : ∇ϕε +

∫ t

s

∫
R3

vε · ∇vε · ϕε = 0.

After integrating by parts in time the first term above and using the definition of 〈Ξε(t), ϕ〉,
we obtain that

(24) 〈Ξε(t)− Ξε(s), ϕ〉 =

∫ t

s

∫
R3

vε · ∂τϕε − ν
∫ t

s

∫
R3

∇vε : ∇ϕε −
∫ t

s

∫
R3

vε · ∇vε · ϕε.

To bound the second term in the right-hand side above, we recall that vε is bounded
independently of ε in L∞(0, T ;L2) ∩ L2(0, T ;H1). Thus, by the Hölder inequality and by
Lemma 3, we deduce that

∣∣ν ∫ t

s

∫
R3

∇vε : ∇ϕε
∣∣ ≤ ν ∫ t

s
‖∇vε‖L2 ‖∇ϕε‖L2

≤ Cν(t− s)
1
2 ‖ϕ‖H2 ‖vε‖L2(0,T ;H1)

≤ Cν(t− s)
1
2 ‖ϕ‖H2 .

Next, we estimate the non-linear term in (24) by the Hölder inequality and by the

Gagliardo-Nirenberg inequality ‖vε‖L3 ≤ C ‖vε‖
1
2

L2 ‖∇vε‖
1
2

L2 ,

|
∫ t

s

∫
R3

vε · ∇vε · ϕε| ≤
∫ t

s
‖vε‖L3 ‖∇vε‖L2 ‖ϕε‖L6

≤ C
∫ t

s
‖vε‖

1
2

L2 ‖∇vε‖
3
2

L2 ‖ϕε‖H1

≤ C(t− s)
1
4 ‖vε‖

1
2

L∞(0,T ;L2)
‖vε‖

3
2

L2(0,T ;H1)
‖ϕ‖H2

≤ C(t− s)
1
4 ‖ϕ‖H2
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It remains to estimate the term with the time-derivative. Notice that since ϕ does not
depend on time, we have that ∂tϕ = ∂t curlψε = 0. Several integrations by parts give us∫ t

s

∫
R3

vε · ∂τϕε =

∫ t

s

∫
R3

vε · curl ∂τ (ηεψε)

=

∫ t

s

∫
R3

curl vε · ∂τ (ηεψε)

=

∫ t

s

∫
R3

curl vε · (∂τηεψε) +

∫ t

s

∫
R3

curl vε · (ηε∂τψε)

=

∫ t

s

∫
R3

curl vε · (∂τηεψε) +

∫ t

s

∫
R3

vε · curl (ηε∂τψε)

=

∫ t

s

∫
R3

curl vε · (∂τηεψε) +

∫ t

s

∫
R3

vε · (∇ηε × ∂τψε)

We estimate the two terms in the right-hand side of the equality above by using Lemmas

1 and 2 and recalling that ε
3
2 |h′ε| is bounded in L∞(0, T ) independently of ε:

|
∫ t

s

∫
R3

curl vε · (∂τηεψε) | ≤
∫ t

s

|h′ε|
ε
‖curl vε‖L2

∥∥∥∥∇η(x− hεε

)∥∥∥∥
L2

‖ψε‖L∞(B(hε,2ε))

≤ C
∫ t

s
ε

3
2 |h′ε| ‖curl vε‖L2 ‖ϕ‖H2

≤ C(t− s)
1
2 ‖vε‖L2(0,T ;H1) ‖ϕ‖H2

≤ C(t− s)
1
2 ‖ϕ‖H2

and

|
∫ t

s

∫
R3

vε · (∇ηε × ∂τψε) | ≤
∫ t

s
‖vε‖L6 ‖∇ηε‖

L
6
5
‖∂τψε‖L∞(B(hε,2ε))

≤ C
∫ t

s
ε

3
2 |h′ε| ‖vε‖L6 ‖ϕ‖H2

≤ C(t− s)
1
2 ‖vε‖L2(0,T ;H1) ‖ϕ‖H2

≤ C(t− s)
1
2 ‖ϕ‖H2

where we used the Sobolev embedding H1(R3) ↪→ L6(R3).
Gathering the two estimates above, we infer that

|
∫ t

s

∫
R3

vε · ∂τϕε| ≤ C(t− s)
1
2 ‖ϕ‖H2 .

Putting together all the estimates above yields the following bound for Ξε:

|〈Ξε(t)− Ξε(s), ϕ〉| ≤ Cν(t− s)
1
2 ‖ϕ‖H2 + C(t− s)

1
4 ‖ϕ‖H2 + C(t− s)

1
2 ‖ϕ‖H2

≤ C(t− s)
1
4 ‖ϕ‖H2

where the constant C above depends on T and ν.
By density of C∞0,σ in H2

σ, we then obtain that Ξε(t) is equicontinuous in time with value

in H−2σ

‖Ξε(t)− Ξε(s)‖H−2 ≤ C(t− s)
1
4 .
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On the other hand, Ξε(t) is also bounded in H−2σ , see relation (23). So the compact
embedding H−2 ↪→ H−3loc and the Arzelà-Ascoli theorem enable us to extract a subsequence

Ξεk of Ξε converging to some Ξ strongly in H−3loc :

(25) Ξεk → Ξ in C0(0, T ;H−3loc ).

We now use Lemmas 1 and 2 to estimate

|〈Ξε(t)− vε(t), ϕ〉| = |
∫
R3

vε(t, x) · ϕε(t, x)−
∫
R3

vε(t, x) · ϕ(t, x)|

= |
∫
R3

vε(t, x) · (ηεϕ+∇ηε × ψε)−
∫
R3

vε(t, x) · ϕ(t, x)|

= |
∫
R3

(ηε − 1)vε(t, x) · ϕ+

∫
R3

vε · (∇ηε × ψε)|

≤ ‖vε‖L2 ‖ηε − 1‖L2 ‖ϕ‖L∞ + ‖vε‖L2 ‖∇ηε‖L2 ‖ψε‖L∞(B(hε,2ε))

≤ C
(
ε

3
2 ‖vε‖L2 ‖ϕ‖L∞ + ε

3
2 ‖vε‖L2 ‖ϕ‖H2

)
≤ Cε

3
2 ‖ϕ‖H2 ‖vε‖L2 .

Using again the density of C∞0,σ in H2
σ, the above estimate implies that

‖Ξε(t)− vε(t)‖H−2 ≤ Cε
3
2 ‖vε‖L2 .

So Ξε − vε → 0 in L∞(0, T ;H−2). In particular Ξε − vε → 0 in L∞(0, T ;H−3loc ). Recalling
(25) and relabelling Ξ = v we infer that

(26) vεk → v in L∞(0, T ;H−3loc ).

Let f ∈ C∞0 (R3). We have the interpolation inequality

‖f(vεk − v)‖L2 ≤ C‖f(vεk − v)‖
1
4

H−3‖f(vεk − v)‖
3
4

H1

so

‖f(vεk − v)‖
L

8
3 (0,T ;L2)

≤ C‖f(vεk − v)‖
1
4

L∞(0,T ;H−3)
‖f(vεk − v)‖

3
4

L2(0,T ;H1)
.

Given relation (26) and the boundedness of vε in L2(0, T ;H1) we observe that the right-
hand side above goes to 0 as εk → 0. We deduce that

vεk → v strongly in L
8
3 (0, T ;L2

loc).

The embedding L
8
3 (0, T ;L2

loc) ⊂ L2(0, T ;L2
loc) completes the proof of Proposition 1.

5. Passing to the limit

In this section we are going to complete the proof of Theorem 3 by passing to the limit
with compactness methods.

Let T > 0 be finite and fixed. We will pass to the limit only on the time interval [0, T ].
A diagonal extraction allows us to find a subsequence which converges to the expected
limit for all t ≥ 0.

Thanks to the assumptions on vε, we know that

vε is bounded in L∞
(
0, T ;L2

)
∩ L2

(
0, T ;H1

)
.
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This implies that there exists some v ∈ L∞
(
0, T ;L2

)
∩ L2

(
0, T ;H1

)
and some sub-

sequence vεk of vε such that

vεk ⇀ v weak∗ in L∞(0, T ;L2),

vεk ⇀ v weakly in L2(0, T ;H1).(27)

Moreover, using Proposition 1, we can further assume that

vεk → v strongly in L2(0, T ;L2
loc).

The main goal of this Section is to prove that the limit v is the solution of the Navier-
Stokes equations in R3 with initial data v0(x).

Let ϕ ∈ C∞0 ([0, T ) × R3) be a divergence-free vector field. We construct the family
of vector fields ϕεk as in Section 3 (see relation (20)). These vector fields are compactly
supported in the exterior of the ball B(hεk(t), εk), so they can be used as test functions
in (13). Multiplying (13) by vεk and integrating in space and time yields

(28) −
∫ T

0

∫
R3

vεk · ∂tϕεk + ν

∫ T

0

∫
R3

∇vεk : ∇ϕεk +

∫ T

0

∫
R3

vεk · ∇vεk · ϕεk

=

∫
R3

vεk(0) · ϕεk(0).

We will pass to the limit εk → 0 in each of the term in the equation above. First, from
Lemma 3, we have that

ϕεk(0)→ ϕ(0) strongly in L2(R3).

We also know by hypothesis that vε(0, x) converges weakly to v0(x) in L2(R3). We infer
that ∫

R3

vεk(0) · ϕεk(0)
εk→0−→

∫
R3

v(0) · ϕ(0).(29)

Next, we also know from Lemma 3 that

∇ϕεk → ∇ϕ strongly in L∞(0, T ;L2).

Recalling that ∇vεk ⇀ ∇v weakly in L2([0, T ]× R3), see relation (27), we deduce that∫ T

0

∫
R3

∇vεk : ∇ϕεk
εk→0−→

∫ T

0

∫
R3

∇v : ∇ϕ.(30)

We decompose the non-linear term in the left-hand of (28) as follows:∫ T

0

∫
R3

vεk · ∇vεk · ϕεk =

∫ T

0

∫
R3

vεk · ∇vεk · ϕ+

∫ T

0

∫
R3

vεk · ∇vεk · (ϕεk − ϕ).

To treat the first term on the right-hand side, we know that ϕ is compactly supported,
that ∇vεk ⇀ ∇v weakly in L2([0, T ] × R3) and that vεk → v strongly in L2(0, T ;L2

loc).
These observations enable us to pass to the limit:∫ T

0

∫
R3

vεk · ∇vεk · ϕ
εk→0−→

∫ T

0

∫
R3

v · ∇v · ϕ.

For the second term, we make an integration by parts to get that∫ T

0

∫
R3

vεk · ∇vεk · (ϕεk − ϕ) = −
∫ T

0

∫
R3

vεk ⊗ vεk : ∇(ϕεk − ϕ).
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By the Hölder inequality, the Gagliardo-Nirenberg inequality ‖vεk‖L4 ≤ C ‖vεk‖
1
4

L2 ‖∇vεk‖
3
4

L2

and the strong convergence of ϕεk in L∞(0, T ;H1) stated in Lemma 3, we obtain that

| −
∫ T

0

∫
R3

vεk ⊗ vεk : ∇(ϕεk − ϕ)| ≤
∫ T

0
‖vεk‖

2
L4 ‖∇(ϕεk − ϕ)‖L2

≤ C
∫ T

0
‖vεk‖

1
2

L2 ‖∇vεk‖
3
2

L2 ‖ϕεk − ϕ‖H1

≤ CT
1
4 ‖vεk‖

1
2

L∞(0,T ;L2)
‖vεk‖

3
2

L2(0,T ;H1)
‖ϕεk − ϕ‖L∞(0,T ;H1)

εk→0−→ 0

where we also used the boundedness of vεk in L∞
(
0, T ;L2

)
∩ L2

(
0, T ;H1

)
.

Combining the relations above, we deduce that

(31)

∫ T

0

∫
R3

vεk · ∇vεk · ϕεk
εk→0−→

∫ T

0

∫
R3

v · ∇v · ϕ.

Now, it remains to pass to the limit in the first term on the left-hand side of (28).
Integrating by parts twice allows us to decompose this term into three parts as follows:

∫ T

0

∫
R3

vεk · ∂tϕεk =

∫ T

0

∫
R3

vεk · curl ∂t (ηεkψεk)

=

∫ T

0

∫
R3

curl vεk · ∂t (ηεkψεk)

=

∫ T

0

∫
R3

curl vεk · (∂tηεkψεk) +

∫ T

0

∫
R3

curl vεk · (ηεk∂tψεk)

=

∫ T

0

∫
R3

curl vεk · (∂tηεkψεk) +

∫ T

0

∫
R3

vεk · curl (ηεk∂tψεk)

=

∫ T

0

∫
R3

curl vεk · (∂tηεkψεk) +

∫ T

0

∫
R3

vεk · (∇ηεk × ∂tψεk)

+

∫ T

0

∫
R3

vεk · (ηεk curl ∂tψεk)

=

∫ T

0

∫
R3

curl vεk · (∂tηεkψεk) +

∫ T

0

∫
R3

vεk · (∇ηεk × ∂tψεk)

+

∫ T

0

∫
R3

vεk · (ηεk∂tϕ)

where we used the fact that curlψεk = ϕ (see Lemma 1).
We will treat the three terms in the right-hand side of the relation above. For the

first term, we use the Hölder inequality twice, the definition of ηε (see relation (19)) and
16



Lemma 1 to bound

|
∫ T

0

∫
R3

curl vεk · (∂tηεkψεk) |

≤
∫ T

0

|h′εk(t)|
εk

‖curl vεk‖L2

∥∥∥∥∇η(x− hεk(t)

εk

)∥∥∥∥
L2

‖ψεk‖L∞(B(hεk (t),2εk))

≤ C
∫ T

0
ε
3/2
k |h

′
εk

(t)| ‖curl vεk‖L2 ‖ϕ‖H2

≤ CT
1
2 ε

3/2
k ‖h

′
εk

(t)‖L∞(0,T ) ‖vεk‖L2(0,T ;H1) ‖ϕ‖L∞(0,T ;H2)

εk→0−→ 0.

where we used the hypothesis ε
3/2
k h′εk(t)→ 0 in L∞loc(R+) when εk → 0.

To bound the second term, we use again the Hölder inequality, Lemmas 1 and 2 and

the hypothesis on ε
3/2
k h′εk :

|
∫ T

0

∫
R3

vεk · (∇ηεk × ∂tψεk) | ≤
∫ T

0
‖vεk‖L6 ‖∇ηεk‖L 6

5
‖∂tψεk‖L∞(B(hεk (t),2εk))

≤ C
∫ T

0
ε
3/2
k ‖vεk‖L6

(
εk ‖∂tϕ‖H2 + |h′εk(t)| ‖ϕ‖H2

)
≤ C

∫ T

0
‖vεk‖H1

(
ε
5/2
k ‖∂tϕ‖H2 + ε

3/2
k |h

′
εk

(t)| ‖ϕ‖H2

)
≤ CT

1
2 ‖vεk‖L2(0,T ;H1)

(
ε
5/2
k ‖∂tϕ‖L∞(0,T ;H2)

+ ε
3/2
k ‖h

′
εk
‖L∞(0,T ) ‖ϕ‖L∞(0,T ;H2)

)
εk→0−→ 0.

where we also used the Sobolev embedding H1(R3) ↪→ L6(R3).
For the third term, we shall write vεkηεk = vεk(ηεk − 1) + (vεk − v) + v to get that∫ T

0

∫
R3

vεk · (ηεk∂tϕ) =

∫ T

0

∫
R3

(ηεk − 1)vεk · ∂tϕ+

∫ T

0

∫
R3

(vεk − v) · ∂tϕ+

∫ T

0

∫
R3

v · ∂tϕ

Recalling that vεk → v strongly in L2(0, T ;L2
loc), we observe that the second term in the

right-hand side of the equality above converges to 0. We estimate the first term by the
Hölder inequality and by Lemma 2∣∣ ∫ T

0

∫
R3

(ηεk − 1)vεk · ∂tϕ
∣∣ ≤ ∫ T

0
‖vεk‖L2 ‖ηεk − 1‖L2 ‖∂tϕ‖L∞

≤ Cε
3
2
k

∫ T

0
‖vεk‖L2 ‖∂tϕ‖L∞

≤ CTε
3
2
k ‖vεk‖L∞(0,T ;L2) ‖∂tϕ‖L∞(0,T ;L∞)

εk→0−→ 0.

We infer that ∫ T

0

∫
R3

vεk · (ηεk∂tϕ)
εk→0−→

∫ T

0

∫
R3

v · ∂tϕ,
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which implies that

(32)

∫ T

0

∫
R3

vεk · ∂tϕεk
εk→0−→

∫ T

0

∫
R3

v · ∂tϕ.

Gathering (28), (29), (30), (31) and (32), we conclude that

−
∫ T

0

∫
R3

v · ∂tϕ+ ν

∫ T

0

∫
R3

∇v : ∇ϕ+

∫ T

0

∫
R3

v · ∇v · ϕ =

∫
R3

v(0) · ϕ(0)

which is the weak formulation of the Navier-Stokes equations in R3. This completes the
proof that v is a solution of the Navier-Stokes equations in R3 in the sense of distributions.

In order to complete the proof of Theorem 3, it remains to prove the energy inequality
(15) under the additional assumption that vε(0) converges strongly to v0 in L2.

Let us observe first that v ∈ C0
w(R+;L2(R3)). This follows from the fact that v ∈

L∞loc(R+;L2(R3)) is a solution in the sense of distributions of the Navier-Stokes equations
in R3. The argument is classical, but let us recall it for the benefit of the reader. We apply
the Leray projector P in R3 to the Navier-Stokes equations verified by v to obtain that

∂tv − ν∆v + P div(v ⊗ v) = 0.

Because v ∈ L∞loc(R+;L2(R3)) we have that v⊗v ∈ L∞loc(R+;L1(R3)) ⊂ L∞loc(R+;H−2(R3)).
We also have that ∆v ∈ L∞loc(R+;H−2(R3)), so ∂tv ∈ L∞loc(R+;H−2(R3)). We infer that v
is Lipschitz in time with values in H−2(R3); in particular it is strongly continuous in time
with values in H−2(R3). This strong continuity in time together with the boundedness of
the L2 norm implies the weak continuity of v in time with values in L2. In particular, we
have that v(t) is well-defined and belongs to L2(R3) for all times t ≥ 0 (and not only for
almost all times).

Let us observe now that for all t ≥ 0 we have that vεk(t) ⇀ v(t) weakly in L2(R3). In-

deed, we know from relation (26) that vεk(t)→ v(t) strongly in H−3loc (R3), so 〈vεk(t), ϕ〉 →
〈v(t), ϕ〉 for all test functions ϕ. The boundedness of vεk(t) in L2 and the density of the
test functions in L2 imply that 〈vεk(t), ϕ〉 → 〈v(t), ϕ〉 for all ϕ ∈ L2, that is vεk(t) ⇀ v(t)
weakly in L2(R3).

Let us denote by χA the characteristic function of the set A. We prove now that for all
t ≥ 0

vεk(t)χB(hεk (t),εk)
⇀ 0

weakly in L2. Indeed, let g ∈ L2. Then

|〈vεk(t)χB(hεk (t),εk)
, g〉| = |

∫
B(hεk (t),εk)

vεk(t)g| ≤ ‖vεk(t)‖L2‖g‖L2(B(hεk (t),εk))
εk→0−→ 0

because ‖vεk(t)‖L2 is bounded and ‖g‖L2(B(hεk (t),εk))
goes to 0 as εk → 0.

We infer that
vεk(t)χR3\B(hεk (t),εk)

⇀ v(t) weakly in L2(R3).

By the weak lower semi-continuity of the L2 norm we infer that

(33) ‖v(t)‖L2(R3) ≤ lim inf
εk→0

‖vεk(t)‖L2(R3\B(hεk (t),εk))
.

Similarly, from the weak convergence

D(vεk) ⇀ D(v) weakly in L2((0, t)× R3)

we infer that

χR3\B(hεk (t),εk)
D(vεk) ⇀ D(v) weakly in L2((0, t)× R3)

18



so by lower semi-continuity

(34) ‖D(v)‖2L2((0,t)×R3) ≤ lim inf
εk→0

∫ t

0
‖D(vεk)‖2L2(R3\B(hεk (t),εk))

.

We also observe at this point that the strong L2 convergence of vε(0) towards v0 gives
that

(35) ‖v0‖L2 = lim inf
εk→0

‖vεk(0)‖L2 .

Finally, taking the lim inf
εk→0

in (14) and using (33), (34) and (35) implies the required

energy inequality (15). This completes the proof of Theorem 3.

We end this paper with a final remark about the weak time continuity assumed in
Theorem 3: vε ∈ C0

w(R+;L2(R3)). We know that ũε ∈ C0
w(R+;L2(R3)) so we made

this hypothesis for the sake of simplicity, but it is in fact not necessary to make such an
assumption. Indeed, we used it to make sense of the various terms of the form

∫
R3 vε(t, x) ·

ϕε(t, x) dx, see for instance on page 11. But the Navier-Stokes equation itself implies a
time-continuity property allowing to make sense of such terms. More precisely, let us make
a change of variables to go to a fixed domain. The vector field ṽε(t, x) = vε(t, x − hε(t))
verifies the following PDE:

(36) ∂tṽε + h′ε · ∇ṽε − ν∆ṽε + ṽε · ∇ṽε = −∇π̃ε for |x| > ε

where π̃ε(t, x) = πε(t, x− hε(t)). Since vε ∈ L∞loc(R+;L2(R3)) ∩ L2
loc(R+;H1(R3)) we also

have that ṽε ∈ L∞loc(R+;L2(R3)) ∩ L2
loc(R+;H1(R3)). Recalling that hε is Lipschitz, we

infer by classical estimates that h′ε · ∇ṽε− ν∆ṽε + ṽε · ∇ṽε ∈ L
4
3
loc(R+;H−1(R3)). So, if we

choose some Φ ∈ C∞0,σ(|x| > ε) and we multiply (36) by Φ, the pressure goes away and we
obtain that

|〈∂tṽε,Φ〉| = |〈h′ε · ∇ṽε − ν∆ṽε + ṽε · ∇ṽε,Φ〉| ≤ ‖h′ε · ∇ṽε − ν∆ṽε + ṽε · ∇ṽε‖H−1‖Φ‖H1 .

If we denote by X the dual of C∞0,σ(|x| > ε) for the H1 norm, the relation above implies
that

‖∂tṽε‖X ≤ ‖h′ε · ∇ṽε − ν∆ṽε + ṽε · ∇ṽε‖H−1

so ∂tṽε ∈ L
4
3
loc(R+;X). In particular ṽε ∈ C0(R+;X). We infer that

∫
ṽε(t, ·) · Φ is well-

defined for all t ≥ 0 and Φ ∈ C∞0,σ(|x| > ε). Going back to the original variables, we infer

that if ϕε ∈ C∞0,σ(|x− hε(t)| > ε) then
∫
vε(t, ·) · ϕε is well-defined.
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J. He: Université de Lyon, Université Lyon 1 – CNRS UMR 5208 Institut Camille
Jordan – 43 bd. du 11 Novembre 1918 – Villeurbanne Cedex F-69622, France.
Email: jiao.he@univ-evry.fr
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