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Abstract. In this work we study the asymptotic behavior of viscous incom-

pressible 2D flow in the exterior of a small material obstacle. We fix the

initial vorticity ω0 and the circulation γ of the initial flow around the obstacle.

We prove that, if γ is sufficiently small, the limit flow satisfies the full-plane

Navier-Stokes system, with initial vorticity ω0 + γδ, where δ is the standard

Dirac measure. The result should be contrasted with the corresponding invis-

cid result obtained by the authors in [15], where the effect of the small obstacle

appears in the coefficients of the PDE and not only in the initial data. The

main ingredients of the proof are Lp−Lq estimates for the Stokes operator in

an exterior domain, a priori estimates inspired on Kato’s fixed point method,

energy estimates, renormalization and interpolation.
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1. Introduction

The purpose of this work is to study the influence of a material obstacle on the

behavior of two-dimensional incompressible viscous flows when the size of the ob-

stacle is small compared to that of a reference spatial scale. More precisely, we fix

both an initial vorticity ω0, smooth and compactly supported, and the circulation

γ of the initial velocity around the boundary of the obstacle, while homothetically

contracting the obstacle to a point P outside the support of ω0. The initial vortic-

ity ω0 and the circulation γ uniquely determine a family of divergence-free initial

velocities uε
0 with curl uε

0 = ω0 and uε
0(x) → 0 at infinity; here ε denotes the size

of the obstacle. The size of the support of the initial vorticity ω0 can be used as

reference spatial scale. Let uε = uε(x, t) be a solution of the Navier-Stokes equa-

tions with initial data uε
0 and no-slip data at the boundary of the small obstacle.

Our problem is to determine the asymptotic behavior of uε as ε→ 0. We will show

that uε converges to a solution of the Navier-Stokes equations in the full plane with

initial vorticity ω0 + γδ(x − P ), as long as γ is sufficiently small. More precisely,

we prove the following theorem.

Theorem 1. Let Ωε = εΩ be a 2D simply-connected smooth obstacle, ω0 a smooth

function compactly supported in R2 \ {0}, independent of ε and γ a real number

independent of ε. Consider the Navier-Stokes equations in the exterior of Ωε with

homogeneous Dirichlet boundary conditions and assume that the initial velocity has

vorticity ω0 and circulation around the obstacle equal to γ. Let uε denote the

corresponding global solution. There exists a constant γ0 > 0 such that if |γ| ≤ γ0,

then uε converges to the solution of the Navier-Stokes equations in R2 with initial

vorticity given by ω0 + γδ0.

There is a sharp contrast between the behavior of ideal and viscous flows around

a small obstacle. In [15], the authors studied the vanishing obstacle problem for

incompressible, ideal, two-dimensional flow. The ideal flow assumption is physically

incorrect in the presence of material boundaries, and part of the motivation for the

present work (and of [15]) is to explore more precisely this incorrectness from a

mathematical standpoint. The main result in [15] is that the limit vorticity in the

ideal case satisfies a modified vorticity equation of the form ωt + u · ∇ω = 0, with

div u = 0 and curl u = ω+ γδ(x−P ). In other words, for ideal flow the correction

due to the vanished obstacle appears as time-independent additional convection

centered at P , whereas in the viscous case, the correction appears on the initial

data and gets convected and diffused as it evolves.
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The small obstacle limit is an instance of the general problem of PDE on singu-

larly perturbed domains. There is a large literature on such problems, specially in

the elliptic case, see [23] for a broad overview. Asymptotic behavior of fluid flow on

singularly perturbed domains is a natural subject for analytical investigation which

is virtually unexplored. The present work, together with [15], may be regarded as

a first attempt to address this class of problems.

There is a natural connection between the approximation problem as we have

formulated it and the issue of uniqueness for the limit problem. In fact, from a

technical point of view, our work is closely related to the classical uniqueness result

due to Y. Giga, T. Miyakawa and H. Osada, on solutions of the incompressible

2D Navier-Stokes equations with measures as initial data, see [14]. Some of the

more striking similarities are: the difficulties with locally infinite kinetic energy,

the use of Lp estimates for the linearized problem and the use of Kato-type norms

to estimate the nonlinearity. The smallness condition on the mass of the point

vortices in the initial data, required in the uniqueness result, is closely related to

our smallness condition on the circulation.

The remainder of this work is organized in eleven sections. In Section 2 we sum-

marize Lp estimates for the time-dependent Stokes problem on exterior domains. In

Section 3 we formulate precisely the problem we wish to discuss and write uniform

estimates for the initial data. In Section 4 we study the asymptotic behavior of

the initial data. In Section 5 we discuss physical motivation for our problem and

we establish the small obstacle asymptotics for circularly symmetric flows, a linear

version of our problem. In Section 6 we derive a priori estimates in the initial layer

for the nonlinear correction term. In Section 7 we deduce global-in-time energy

estimates for the nonlinear correction term. In Section 8 we put together the esti-

mates for the linear part with the estimates for the nonlinear correction, obtaining

a complete set of a priori estimates for velocity. In Section 9 we prove compactness

in space-time, in Section 10 we perform the passage to the limit, in Section 11 we

discuss uniqueness for the limit problem and in Section 12 we add comments and

concluding remarks.

We conclude this introduction with a few remarks regarding notation. Given a

vector z = (z1, z2) ∈ R2 we denote its orthogonal vector by z⊥ = (−z2, z1). We use

the subscript c in function spaces to denote compact support, as in C∞c , and we

use standard notation for Sobolev spaces, W k,p, where 1 ≤ p ≤ ∞ and k ∈ Z, with

Hk standing for the case p = 2. We use the subscript loc in function spaces X to

denote functions which are locally in X. In particular, Lp
loc([0,∞);W k,q) denotes

functions f = f(t, x) ∈ Lp([0,M ];W k,q) for any M > 0, whereas Lp
loc((0,∞);W k,q)
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denotes functions f = f(t, x) ∈ Lp([δ,M ];W k,q) for any δ > 0 and any M > 0, but

not necessarily for δ = 0. Finally, L2,∞ denotes the Lorentz space of functions f

whose distribution function satisfies λf = λf (s) = |{|f | > s}| = O(s−2).

2. Estimates for the Stokes semigroup

In this section we will put together several results on estimates for the Stokes

semigroup on exterior domains. Let us begin by introducing some basic notation.

Let Ω be a bounded, open, simply connected subset of R2 with boundary Γ, a

smooth Jordan curve. We denote by Π the unbounded connected component of

R2 \ Γ. Fix ν > 0 and let P denote the Leray projector onto divergence-free vector

fields on Π. Let A ≡ −P∆ be the Stokes operator on Π and denote the Stokes

semigroup by Sν(t) = e−νtA. Given v0 ∈ C∞c (Π), let v(t, x) = Sν(t)v0 be the

unique solution of the system

(2.1)



∂tv − ν∆v = −∇p, in (0,∞)×Π

div v = 0, in [0,∞)×Π

v = 0, on (0,∞)× Γ

lim|x|→∞ v(t, x) = 0, for all t ≥ 0

v(0, x) = v0(x), on {t = 0} ×Π.

We denote by Xp(Π) the closure of the space of divergence-free, C∞c (Π) vector

fields with respect to the Lp-norm. The Stokes operator in Xp generates an analytic

semigroup of class C0 on Xp(Π), for any 1 < p <∞, see [13], so that, in particular,

problem (2.1) is well-posed in Xp(Π).

We will require two kinds of estimates on the Stokes semigroup, Lp estimates

and renormalized energy estimates. We first state the Lp estimates.

Theorem 2. Let 1 < q < ∞. Consider v0 ∈ Xq(Π) and F ∈ Lq(Π;M2×2(R)).

Then we have the following estimates.

(S1) Let q ≤ p <∞. There exists K1 = K1(Π, p, q) > 0 such that

‖Sν(t)v0‖Lp ≤ K1(νt)
1
p−

1
q ‖v0‖Lq ,

for all t > 0.

(S2) Let q ≤ p ≤ 2. There exists K2 = K2(Π, p, q) > 0 such that

‖∇Sν(t)v0‖Lp ≤ K2(νt)−
1
2+ 1

p−
1
q ‖v0‖Lq ,

for all t > 0.

(S3) Assume q ≥ 2 and let q ≤ p < ∞. Then there exists K3 = K3(Π, p, q) > 0

such that

‖Sν(t) P div F‖Lp ≤ K3(νt)−
1
2+ 1

p−
1
q ‖F‖Lq ,
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for all t > 0, with the divergence taken along rows of the matrix F .

This theorem summarizes several results already contained in the literature,

which we have collated above for convenience.

Proof. Estimates (S1) and (S2) were proved in [5, 20] (see also [6] for the case

p = ∞). Estimate (S3) follows from (S2) by duality. Indeed, the adjoint of Sν(t)

onXp is again Sν(t), defined onXp′ , with 1/p+1/p′ = 1 and therefore the adjoint of

∇Sν(t) is Sν(t) P div . The dependence on the viscosity follows directly by rescaling

time, since Sν(t) = S1(νt) . �

Next we address a renormalized energy estimate for the Stokes semigroup. Our

concerns include infinite energy solutions to the Navier-Stokes equations whose

behavior at infinity is O(1/|x|). In the following result we will prove that solutions

to the Stokes system retain the behavior at infinity of their initial data.

Proposition 3. Let v0 be a smooth divergence-free vector field on Π vanishing

at the boundary Γ. We assume also that v0 ∈ Xp(Π) for some p > 2 and that

∇v0 ∈ L2(Π). Then

Sν(t)v0 − v0 ∈ C0([0,∞);L2(Π)) ∩ L2
loc([0,∞);H1(Π)).

Moreover the following inequality holds

(2.2) ‖Sν(t)v0 − v0‖2L2 + ν

∫ t

0

‖∇[Sν(τ)v0 − v0]‖2L2dτ ≤ νt‖∇v0‖2L2 .

Proof. Let W = Sν(t)v0 − v0. Then W satisfies:

(2.3)



∂tW − ν∆W = −∇p+ ν∆v0, in (0,∞)×Π

div W = 0, in [0,∞)×Π

W = 0, on (0,∞)× Γ

lim|x|→∞ W (t, x) = 0, for all t ≥ 0

W (0, x) = 0, on {t = 0} ×Π.

It is well-known that (2.3) admits a unique solution W̃ in C0([0,∞);L2(Π)) ∩
L2

loc([0,∞);H1(Π)), see, for instance, Theorem III.1.1 in [26]. The fact that W −
W̃ = 0 follows from the well-posedness of (2.1) inXp. The standard energy estimate

gives (2.2). �

One consequence of the nontrivial topology of Π is the existence of harmonic

vector fields, i.e. divergence-free and curl-free vector fields which are tangent to Γ

and vanish at infinity. We denote by HΠ the unique harmonic vector field on the

exterior domain Π which satisfies the condition∮
Γ

HΠ · ds = 1,
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where the contour integral is taken in the counterclockwise sense. It is an elementary

application of Hodge theory that the vector space of these harmonic vector fields

on Π is one dimensional, and we can use HΠ as a basis. In the case where Π is the

exterior of the unit disk centered at the origin, we will denote HΠ simply by H,

and we have:

(2.4) H =
x⊥

2π|x|2
.

We will require detailed information on the behavior of HΠ both at infinity and

near the boundary Γ, which we obtain by means of a conformal mapping. We

denote

U ≡ {|x| > 1}

and switch to complex variables notation in the result below.

Lemma 4. There exists a smooth biholomorphism T : Π → U , extending smoothly

up to the boundary, mapping Γ to {|z| = 1}. Furthermore, there exists a nonzero

real number β and a bounded holomorphic function h : Π → C such that:

(2.5) T (z) = βz + h(z).

Additionally,

(2.6) h′(z) = O
(

1
|z|2

)
, as |z| → ∞.

This Lemma is an excerpt from [15]. Its proof is an exercise in complex analysis.

It was observed in [15] (see identity (2.10) in [15]) that

(2.7) HΠ = HΠ(x) =
1
2π

DT t(x)(T (x))⊥

|T (x)|2
.

From Lemma 4, we see that |HΠ| is O(1/|x|) for large |x|. This implies that HΠ

belongs to the Lorentz space L2,∞(Π).

We close this section with an estimate for the Stokes semigroup acting on infinite

energy initial data.

Proposition 5. Let 2 < p < ∞ and let v0 ∈ L2,∞(Π) ∩ Xp(Π). There exists a

constant K5 > 0 such that

‖Sν(t)v0‖Lp ≤ K5(νt)
1
p−

1
2 ‖v0‖L2,∞ .

In particular, this estimate holds true for v0 = HΠ(x).

Proof. This estimate is contained in Proposition 2.2, item (4), of [17]. To see that

it holds for HΠ, we first show that HΠ ∈ Xp(Π) for any p > 2. This is easy to

prove in the case Π = U because, for any function ϕ ∈ C∞c ((0,∞)), ϕ(|x|)H(x) is
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smooth, compactly supported and divergence-free, and, by taking ϕε a sequence

of cutoffs for the interval (1 + ε, 1/ε), it is easy to see that ϕε(|x|)H → H in

Lp, for p > 2. For general Π, we use the conformal mapping T , approximating

HΠ by ϕε(|T (x)|)HΠ(x), where ϕε is the same family of cutoffs used in the case

of the exterior of the disk. This strategy works because ϕε(|T (x)|)HΠ(x) is also

divergence-free. �

3. The evanescent obstacle

The purpose of this section is to set down a precise statement of the small

obstacle problem. Many of the key issues regarding the small obstacle limit and

incompressible flow have been discussed in detail in [15], so that we will focus on

issues specifically related to viscous flow and briefly outline the rest.

As in [15], fix ω0 ∈ C∞c (R2) and assume that the origin does not belong to the

support of ω0. Let Ω be a bounded, open, connected and simply-connected subset

of the plane whose boundary Γ is a C∞ Jordan curve. The evanescent obstacle

is the family of domains εΩ, with 0 < ε < ε0. The parameter ε0 is chosen small

enough so that the support of ω0 does not intercept εΩ for any 0 < ε < ε0.

Fix 0 < ε < ε0. Let Πε ≡ R2 \εΩ and Γε = ∂Πε. We use the conformal mapping

T : Π1 → U , given in Lemma 4, to define a family of smooth biholomorphisms

(3.1) T ε = T ε(x) ≡ T
(x
ε

)
.

Throughout we write Hε for HΠε and Gε = Gε(x, y) will be the Green’s function

of the Laplacian in Πε. Let Kε(x, y) = ∇⊥x Gε(x, y) be the kernel of the Biot-

Savart law on Πε and denote the associated integral operator by f 7→ Kε[f ] =∫
Πε
Kε(x, y)f(y) dy. Both Kε and Hε are related to KU and HU respectively,

through the conformal mapping T ε, in a way which was made explicit in [15]. The

relevant fact is the way that both the Biot-Savart kernel and the basic harmonic

vector field scale with ε, see identities (3.5) and (3.6) in [15].

Fix α ∈ R and let

(3.2) uε
0 ≡ Kε[ω0] + αHε.

We consider the problem

(3.3)



∂tu
ε + uε · ∇uε − ν∆uε = −∇pε, in (0,∞)×Πε

div uε = 0, in [0,∞)×Πε

uε = 0, on (0,∞)× Γε

lim|x|→∞ uε(t, x) = 0, for all t ≥ 0

uε(0, x) = uε
0(x), on {t = 0} ×Πε.
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We begin by observing that uε
0 ∈ L2,∞(Πε)∩Lp(Πε) for any 2 < p ≤ ∞. Indeed,

uε
0 is smooth, and therefore locally bounded, so that we only require knowledge on

the behavior of uε
0 at infinity. By Lemma 4 and identity (2.7) |Hε| has O(1/|x|)

behavior as |x| → ∞, and therefore it belongs to L2,∞(Πε) ∩ Lp(Πε) for any 2 <

p ≤ ∞. In fact, the L2,∞ bound on |Hε| is independent of ε, as can be readily

seen by rescaling to a fixed domain and using the fact that HΠ belongs to L2,∞.

In [15] it was shown that |Kε[ω0]| has behavior O(1/|x|2) at infinity (see estimate

(2.8) in [15]) and therefore it belongs to Lp(Πε), for any p ≥ 2, and, in particular,

to L2,∞(Πε).

Global-in-time well-posedness for problem (3.3) was established by Kozono and

Yamazaki in [17]. The existence part of Kozono and Yamazaki’s result requires

that the initial velocity satisfy a smallness condition of the form

lim sup
R→∞

R |{x ∈ Πε | |uε
0(x)| > R}|1/2 � 1.

Since uε
0 is bounded, the limsup above is always zero, for any ε > 0. Uniqueness

holds for divergence-free initial data in L2,∞+Xp without any additional conditions.

The evanescent obstacle problem consists of understanding the asymptotic be-

havior of Kozono and Yamazaki’s solution uε(x, t) for small ε. More precisely we

will show that, under appropriate assumptions, uε has a limit, and we will identify

an equation satisfied by this limit.

Fix ϕ : R → [0, 1] a smooth, monotone function such that ϕ(s) ≡ 0 if s ≤ 2 and

ϕ(s) ≡ 1 if s ≥ 3. For each ε > 0 and λ > 0 we introduce the adapted cut-off

functions:

(3.4) ϕε,λ(x) ≡ ϕ
( ε
λ
|T ε(x)|

)
,

Note that the cutoff function ϕε,λ vanishes in a ball of radius O(λ) and it is identi-

cally equal to 1 outside a larger ball of radius O(λ), for large λ. Furthermore, the

radii of the annulus where ϕε,λ is not constant can be made independent of ε. This

follows easily from the fact that T is asymptotically affine at infinity, see (2.5).

We will now introduce a pair of parameters that are useful to describe the as-

ymptotic behavior of uε
0 when ε→ 0. Consider

(3.5) m ≡
∫

R2
ω0 dx and γ ≡

∮
Γε

uε
0 · ds.

By Stokes’ Theorem we have that γ = α−m, and therefore, the circulation γ does

not the depend on ε, see the proof of Lemma 3.1 in [15].

For each λ > 0, we introduce a convenient decomposition of the initial velocity

as

uε
0 = bε

0 + iε0 + oε
0,
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with

bε
0 ≡ Kε[ω0] +m(1− ϕε,λ)Hε,

iε0 ≡ γ(1− ϕε,λ)Hε,

and

oε
0 ≡ αϕε,λHε.

We need to understand the behavior of each of the components of this decom-

position, in the limit ε→ 0. This is the content of our next result. The proof uses

a large part of the work done in [15].

Lemma 6. There exists λ0 > 0, independent of ε, for which ‖bε
0‖Lp1 , ‖iε0‖Lp2

and ‖oε
0‖Lp3 are uniformly bounded in ε, for any 1 < p1 ≤ ∞, 1 ≤ p2 < 2 and

2 < p3 ≤ ∞. The vector fields bε
0, iε0 and oε

0 are divergence-free, the first two are

tangent to Γε and the last one vanishes on Γε. Moreover, ‖∇oε
0‖L2(Πε) is bounded

independent of ε and

(3.6)
∥∥∥∥oε

0 − αϕ

(
β|x|
λ0

)
H

∥∥∥∥
L2(Πε)

→ 0 as ε→ 0,

where H = x⊥/(2π|x|2) and β is as in Lemma 4. We also have that

‖iε0‖L2(Πε) ≤ C| log ε| 12 .

Proof. Choose λ0 such that the radii of the annulus where ϕε,λ0 is not constant are

uniform in ε < ε0.

The L∞ bound on bε
0 comes from Theorem 4.1 in [15]. The Lp1 bound on bε

0,

1 < p1 < ∞ follows from the local L∞ bound above, together with two facts: (1)

m(1− ϕε,λ0)Hε has support in a compact set independent of ε and (2) |Kε[ω0]| =
O(1/|x|2) at infinity, uniformly in ε. As mentioned previously, fact (2) is estimate

(2.8) in [15].

The Lp3 bound on oε
0 follows from the fact that ϕε,λ0 is constant outside an

annulus independent of ε, from formula (2.7), from the scaling Hε(x) = 1
εHΠ(x/ε)

and from the behavior of T far from the obstacle given by Lemma 4.

For iε0, both the logarithmic estimate and the Lp2 estimate follow from adapting

the argument used for estimate (3.7) of [15] in a straightforward manner.

To estimate ∇oε
0 we observe that |∇oε

0| = O(1/|x|2) near infinity, uniformly in

ε. This estimate easily reduces to an estimate on DHε, which in turn reduces to

calculating derivatives of the conformal mapping T using (2.5).

Finally, (3.6) reduces to showing that H −Hε goes to zero in L2 near infinity,

which can be done by a computation similar to the one carried out in the proof of

Lemma 4.2 in [15].

�
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In the remainder of this article, we will fix λ0, independent of ε, as in Lemma 6,

thereby fixing the bounded, inner and outer parts of the initial velocity, bε
0, iε0 and

oε
0, respectively.

Let us denote the Stokes semigroup on Πε by Sε
ν(t), so that Sε

ν(t)[vε
0] is the

solution to the Stokes system (2.1) on Πε with initial data vε
0. We introduce the

notation τε = τε(x) = εx, the contraction by ε. We observe the following funda-

mental relation between the Stokes system on Πε and on Π:

(3.7) (S1
ν(t)[vε

0 ◦ τε])(x) = (Sε
ν(ε2t)[vε

0])(εx), if x ∈ Π.

Our strategy to study the small obstacle limit begins by considering the solu-

tion uε of (3.3) as a perturbation of vε ≡ Sε
ν(t)uε

0. The first thing we require is

information on vε, which we deduce in the result below.

Lemma 7. Let bε ≡ Sε
ν(t)bε

0, iε ≡ Sε
ν(t)iε0, oε ≡ Sε

ν(t)oε
0 and let 2 < p <∞. Then

there exists a constant K = K(p, ω0) > 0 such that for any ε > 0 we have:

(i) ‖bε‖Lp(Πε) ≤ K(νt)
1
p−

1
2 ,

(ii) ‖iε‖Lp(Πε) ≤ K|γ|(νt)
1
p−

1
2 ,

(iii) ‖oε‖Lp(Πε) ≤ K|α|(νt)
1
p−

1
2 .

Proof. By (3.7) we have that bε(ε2t, εx) = (S1
ν(t)[bε

0 ◦ τε])(x), for x ∈ Π. Now, by

Theorem 2, item (S1), it follows that there exists K1 > 0 such that

‖S1
ν(t)[bε

0 ◦ τε]‖Lp(Π) ≤ K1(νt)
1
p−

1
2 ‖bε

0 ◦ τε‖L2(Π).

Item (i) above follows from this estimate, together with (3.7) and the fact that

‖bε
0 ◦ τε‖L2(Π) =

1
ε
‖bε

0‖L2(Πε) ≤ C
1
ε
,

where we have used Lemma 6 in the last inequality. Items (ii) and (iii) follow in an

analogous manner using Proposition 5 together with the fact that

‖iε0 ◦ τε‖L2,∞(Π) =
1
ε
‖iε0‖L2,∞(Πε) ≤ C

|γ|
ε

and

‖oε
0 ◦ τε‖L2,∞(Π) =

1
ε
‖oε

0‖L2,∞(Πε) ≤ C
|α|
ε
.

We have used the scalingHε(x) = (1/ε)H1(x/ε) above, see identity (3.6) in [15]. �

Remark 8. Using the rescaling (3.7) we may deduce that the estimates (S1), (S2)

and (S3) in Theorem 2 are valid in Πε with constants K1, K2 and K3 independent

of ε.
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We will conclude this section with an observation on the amount of vorticity

generated at the boundary in the initial layer. This is a “fixed ε” calculation,

before we take the vanishing obstacle limit. We denote vorticity associated to the

velocity uε, at time t, by ωε = ωε(t, ·) ≡ curl uε(t, ·). Let us recall the discussion of

flow in an exterior domain found in [15]. It was shown there that, if div uε(t, ·) = 0,

curl uε(t, ·) = ωε(t, ·), and if uε(t, ·) is tangent to Γε and vanishes at infinity, then

there exists unique a = a(t) ∈ R such that one can write uε(t, ·) as:

uε(t, ·) = Kε[ωε(t, ·)] + a(t)Hε;

(see Section 3.1 of [15] for details). For the initial data (3.2) we have, of course,

a(0) = α. We will argue that a(t) = α for any t > 0. This fact relies on a result

whose proof we defer to Section 8, see Corollary 17. Using the notation introduced

above we have:

uε − oε
0 = Kε[ωε] + a(t)[1− ϕε,λ0 ]Hε + [a(t)− α]ϕε,λ0Hε.

It will be proved in Corollary 17 that uε − oε
0 belongs to L∞loc([0,∞);L2(Πε)),

although the estimate blows up as ε → 0. Next we recall that the harmonic

vector field Hε is smooth (because the conformal map T ε is smooth and ex-

tends smoothly to Γε) and has O(1/|x|) behavior near infinity. Therefore we

find that [1 − ϕε,λ0 ]Hε ∈ L2(Πε), but ϕε,λ0Hε /∈ L2(Πε). Hence, assuming that

Kε[ωε] ∈ L∞loc([0,∞);L2(Πε)), the only way for uε − oε
0 to be square-integrable is

for a(t)− α = 0, as we wished.

Since the flow uε satisfies the no-slip condition at any positive time, the circu-

lation around Γε at t > 0 vanishes. We make use once more of Stokes’ Theorem to

conclude that 0 = a(t)−mε(t), where mε(t) =
∫
Πε
ωε(t, x) dx. We can now account

for the mass of vorticity produced at the boundary in the initial layer. We have:

mε(t) = α.

4. Initial data asymptotics

The purpose of this section is to study the limit, as ε→ 0, of the initial velocity

fields uε
0. We begin by introducing some notation.

For each function f defined on Πε, we introduce Ef , the extension of f to R2,

by setting Ef ≡ 0 in εΩ.

Lemma 9. If f ∈ W 1,1
loc (Πε) and if its trace vanishes on the boundary Γε then

Ef ∈W 1,1
loc and E∇f = ∇Ef .
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The proof of this fact is elementary and we leave it to the reader. We will now

introduce notation which will be used in the remainder of this paper. We denote

by P the Leray projector on all of R2. Additionally, we introduce the cutoff

(4.1) ηε = ηε(x) ≡ ϕε,ε(x) = ϕ(|T ε(x)|) = ϕ(|T (x/ε)|),

where T ε, ϕε,ε and ϕ, were introduced in Section 3, see (3.1), (3.4). Note that there

exists a constant C > 0 independent of ε such that ηε(x) ≡ 1 in {|x| > Cε}.
Let

(4.2) K(x) =
x⊥

2π|x|2

be the kernel of the Biot-Savart law in all of R2, f 7→ K ∗ f . Note that we denoted

the same vector field by H in (2.4). The different notations used for the same vector

field are natural since x⊥/(2π|x|2) plays two very different roles – one as the kernel

for the Biot-Savart law for the full plane and another as a harmonic generator for

the cohomology of the exterior of any disk centered at the origin.

Let uε
0 be as in (3.2) and γ as in (3.5).

Lemma 10. Let u0 = K ∗ ω0 + γH. Then we have that

P[ηεEuε
0] → u0 in D′(R2)

as ε→ 0.

Proof. We split uε
0 in a different way than before:

uε
0 = (Kε[ω0] +mHε) + γHε ≡ vε

0 + γHε,

where m was defined in (3.5). By Lemma 4.2 in [15], ηεEHε → H strongly in

L1
loc(R2) as ε → 0, and by Lemma 4.1, in [15] ηεEHε is divergence-free, so that

PηεEHε = ηεEHε. Therefore,

γP[ηεEHε] → γH in D′(R2).

All that remains to prove is that P[ηεEvε
0] → K ∗ ω0 in D′(R2). To see this, we

begin by observing that ηεEvε
0 is uniformly bounded in L∞(R2), see Theorem 4.1 in

[15]. Furthermore, we have additional control over the behavior of Evε
0 at infinity,

so that there exists a constant C > 0, independent of ε, such that |ηεEvε
0| ≤ C/|x|.

This follows from the explicit expressions for Kε, Hε given in (3.5) and (3.6) of

[15], from estimate (2.8) in [15] and from the compactness of the support of ω0.

Therefore, ηεEvε
0 is also uniformly bounded in Lp(R2) for all p > 2. Fix p > 2 and

let ζ ∈ L∞(R2) ∩ Lp(R2) be a weak-∗ limit of {ηεEvε
0}.

Next we observe that div ηεEvε
0 = ∇ηε ·Evε

0 and curl ηεEvε
0 = ∇⊥ηε ·Evε

0+ηεω0.

The cutoff ηε is such that |∇ηε| is bounded by C/ε and supported on a set of
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measure Cε2. Thus, ∇ηε (and ∇⊥ηε) converges to zero strongly in Lq(R2) for any

1 ≤ q < 2. Hence, div ηεEvε
0 → 0 and curl ηεEvε

0 → ω0 strongly in L1. This,

together with the convergence of a subsequence of ηεEvε
0 to ζ weak in Lp implies

that div ζ = 0 and curl ζ = ω0 in the sense of distributions. Using that ζ ∈ Lp for

p <∞, we obtain that ζ = K ∗ ω0.

Since we identified the limit, we have actually proved that ηεEvε
0 ⇀ K ∗ ω0

weakly in Lp, without the need to pass to subsequences. Therefore, as P is linear

and continuous from Lp to itself, it follows that

P[ηεEvε
0] ⇀ P[K ∗ ω0] = K ∗ ω0,

which concludes the proof.

�

5. The impulsively stopped rotating cylinder

In this section we illustrate the physical meaning of the small obstacle problem

by means of a concrete example.

Consider an infinite solid cylinder of radius r > 0 immersed in a viscous fluid

occupying the whole space outside the cylinder. If the cylinder rotates with con-

stant angular velocity λ, boundary friction will induce rotational motion in the

surrounding fluid which, one expects, will settle to a steady flow with velocity u0

of the form

u0 =
λr2x⊥

|x|2
,

see [1] for a discussion of this example.

We consider viscous flow in the exterior of the cylinder with initial velocity

u0, imposing the standard no-slip condition u = 0 at |x| = r for positive time.

Physically, this corresponds to first “preparing” the initial data by rotating the

cylinder for a long time, letting the flow settle into the steady configuration u0,

and then suddenly halting the motion of the cylinder at time t = 0. A shorthand

description of this situation is that of the flow induced by an impulsively stopped

rotating cylinder. The inconsistency between initial and boundary data in this

problem generates a rather singular initial layer in the fluid motion. The symmetries

of the problem allow us to reduce the equations to the Stokes equation in the exterior

of a disk. One may find in [1] an explicit treatment of this problem, involving passing

to polar coordinates, using separation of variables and expressing the solution by

means of Fourier-Bessel integrals.

The problem we wish to consider is the small obstacle limit of the impulsively

stopped rotating cylinder as posed above. This means that we consider Πε = {|x| >
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ε}. We have Hε = x⊥/(2π|x|2), independent of ε. In the notation of the previous

section we pick ω0 = 0 and

uε
0 = γ

x⊥

2π|x|2
, in Πε.

Note that, γ = 2πλε2, so that fixing the circulation γ independent of ε means that

the angular velocity λ of the obstacle must blow up as the obstacle becomes smaller.

We consider uε = uε(x, t) and pε = pε(x, t) solving (3.3) with initial data as

above. It is a nice exercise, which we leave to the reader, to prove that the solution

preserves circular symmetry. One consequence of circular symmetry is that uε ·∇uε

is a gradient field, so that we can absorb the nonlinearity into the pressure term.

Therefore, uε satisfies the Stokes system on Πε.

We introduce the Lamb-Oseen vortex as the unique solution U of

(5.1)


Ut + U · ∇U = −∇p+ ν∆U, in (0,∞)× R2

div U = 0, in [0,∞)× R2

lim|x|→∞ U(t, x) = 0, for all t ≥ 0

U(0, x) = x⊥

2π|x|2 ,

see [10, 12]. We have the following result.

Proposition 11. Let γ ∈ R. Then the extension of velocity, Euε, converges weakly

in L2
loc((0,∞), L2

loc(R2)) to γU .

This is a special case of our main result, so we do not include a proof here.

We would like to use the impulsively stopped rotating cylinder as an illustration

of what is taking place in the initial layer. We describe the events at time t = 0

for the flow generated by an impulsively stopped rotating cylinder noting that, for

an (infinitesimally) small positive time, the fluid velocity vanishes at the boundary

but has a nonvanishing limit as one approaches the boundary from inside the fluid.

Tangential discontinuities in fluid velocity are called vortex sheets in hydrodynamics.

The effect of impulsively stopping the rotation of the boundary amounts to placing

a vortex sheet at the boundary and letting it diffuse into the bulk of the fluid

through viscosity. The same rough picture describes what happens in the initial

layer for our general problem.

6. Initial-layer and the nonlinear evolution

We have fixed an arbitrary initial vorticity ω0 and a circulation γ, and hence we

must understand solutions of the Navier-Stokes equations with initial data which

does not satisfy the no-slip boundary condition. As we have seen in the previous

Section, the effect of the consequent initial layer can be understood roughly as that
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of placing a vortex sheet at the boundary Γε and letting it evolve, diffusing into

the flow. The problem of resolving this initial layer for the Navier-Stokes system

and obtaining uniform estimates for the small obstacle problem is rather delicate

and it is the subject of the present section.

Let uε be the solution of the Navier-Stokes equations (3.3) with initial velocity

uε
0 given by (3.2) and let vε = Sε

ν(t)[uε
0] as in Section 3. Let W ε ≡ uε − vε. Let Pε

be the Leray projector on Πε. The evolution of W ε is described by the following

system:

(6.1) W ε
t − νPε∆W ε + Pε div (W ε ⊗W ε +W ε ⊗ vε + vε ⊗W ε + vε ⊗ vε) = 0,

with the initial condition W ε(0, x) = 0 and the boundary condition W ε = 0 on Γε.

We introduce the weighted-in-time norms. Let p ≥ 1 and f : (0, T ) → Lp(Πε)

measurable. Let T > 0. We use the following notation:

‖f‖p,T ≡ sup
0≤t≤T

t
1
2−

1
p ‖f(t, ·)‖Lp(Πε).

The use of these norms for the Navier-Stokes equations was pioneered by H. Fujita

and T. Kato, see for example [7].

Lemma 12. Let 2 ≤ p < ∞. There exist positive constants C0 and Cp such that,

if 0 < T ≤ C0ν
3 and |γ| < C0ν then

‖W ε‖p,T ≤ Cpν
p+2
2p ,

for every 0 < ε < ε0.

Proof. We use Duhamel’s principle to write

W ε(t) = −
∫ t

0

Sε
ν(t− τ)Pε div (W ε ⊗W ε +W ε ⊗ vε + vε ⊗W ε + vε ⊗ vε)(τ) dτ.

Take the Lp-norm and apply Theorem 2, estimate (S3), with 2 ≤ q ≤ p to obtain

‖W ε‖Lp(Πε) ≤
∫ t

0

‖Sε
ν(t−τ)Pε div (W ε⊗W ε+W ε⊗vε+vε⊗W ε+vε⊗vε)(τ)‖Lp(Πε) dτ

≤ K3

∫ t

0

(ν(t− τ))−
1
2+ 1

p−
1
q ‖(W ε⊗W ε +W ε⊗ vε + vε⊗W ε + vε⊗ vε)(τ)‖Lq(Πε) dτ

≤ K3

∫ t

0

(ν(t− τ))−
1
2+ 1

p−
1
q (‖W ε(τ)‖Lq1‖W ε(τ)‖Lq2 + ‖W ε(τ)‖Lq1‖vε(τ)‖Lq2 +

+‖vε(τ)‖Lq1‖vε(τ)‖Lq2 ) dτ,

where q1 and q2 are chosen so that 1/q = 1/q1 + 1/q2 and where we have used

Hölder’s inequality. Next we use the definition of the (p, t)-norm to find

‖W ε‖Lp(Πε) ≤ K3(‖W ε‖q1,t‖W ε‖q2,t + ‖W ε‖q1,t‖vε‖q2,t+
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+‖vε‖q1,t‖vε‖q2,t)
∫ t

0

(ν(t− τ))−
1
2+ 1

p−
1
q τ

1
q−1 dτ.

We note that, for any α > −1, β > −1, we have

(6.2)
∫ t

0

(t− τ)ατβ dτ ≤ C(α, β)tα+β+1.

The proof of this inequality is an elementary calculation.

We wish to use (6.2) with α = −1/2 + 1/p− 1/q and β = 1/q− 1. Assume that:

(6.3) 2 ≤ q ≤ p.

Note that this condition implies

α = −1
2

+
1
p
− 1
q
> −1 and β =

1
q
− 1 > −1.

Therefore, we find

(6.4)

‖W ε‖p,t ≤ Cν−
1
2+ 1

p−
1
q (‖W ε‖q1,t‖W ε‖q2,t + ‖W ε‖q1,t‖vε‖q2,t + ‖vε‖q1,t‖vε‖q2,t)

We divide the remainder of the proof in two steps: p = 4 and any p ≥ 2.

First assume p = 4. Set q1 = q2 = 4, so that q = 2 and (6.3) is satisfied. In this

situation, (6.4) gives that X(t) ≡ ‖W ε‖4,t satisfies

(6.5) X2 +
(
‖vε‖4,t −

ν3/4

C

)
X + ‖vε‖24,t ≥ 0.

Note that X(0) = 0 and the parabola described by (6.5) has, at t = 0, two

distinct nonnegative roots. We observe that, as long as this parabola has two distinct

nonnegative roots r1(t) < r2(t), we have that inequality (6.5) together with the

continuity in time of X, r1 and r2 imply that

(6.6) 0 ≤ X(t) ≤ r1(t).

The condition for the polynomial above to have two distinct roots is

(6.7)
(
‖vε‖4,t −

ν3/4

C

)2

− 4‖vε‖24,t > 0.

Since ‖vε‖4,t ≥ 0 and ν3/4/C > 0 we find that (6.7) is equivalent to

(6.8) ‖vε‖4,t <
ν3/4

3C
.

Furthermore, under the above assumption, the two distinct roots are also nonneg-

ative. The (4, t)-norm is nondecreasing in t and hence, in order to guarantee that

the polynomial in (6.5) have two distinct nonnegative roots, it is enough to verify

(6.8) for t = T . Now we use the linear estimates from the previous section to find

conditions under which (6.8) is valid at t = T .
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First, recall that vε = bε + oε + iε, and that both bε
0 and oε

0 belong to Lp(Πε),

for p > 2, with Lp-norms uniformly bounded in ε, see Lemma 6. We use estimate

(S1) from Theorem 2 with p = q = 4, together with Lemma 7 to deduce:

‖vε‖4,T ≤ sup
0≤t≤T

t
1
4 ‖bε(t) + oε(t)‖L4(Πε) + sup

0≤t≤T
t

1
4 ‖iε(t)‖L4(Πε)

≤ K1T
1
4 (‖bε

0‖L4(Πε) + ‖oε
0‖L4(Πε)) +K|γ|ν− 1

4

≤ C(T
1
4 + |γ|ν− 1

4 ).

(6.9)

Choose C0 > 0 so that the conditions

(6.10) T ≤ C0ν
3 and |γ| ≤ C0ν

imply (6.8) with t = T .

Assuming now that (6.10) are valid, using (6.6) we have that

(6.11) ‖W ε‖4,t = X(t) ≤ r1(t) ≤ Cν3/4,

for 0 ≤ t ≤ T . This concludes the proof in the case p = 4.

For any p ≥ 2 we bootstrap the (4, T )-estimate in the following way. We return

to (6.4) and set q1 = q2 = 4. We then impose (6.10) to obtain

‖W ε‖p,T ≤ Cν−
1
2+ 1

p−
1
2 (‖W ε‖24,T + ‖W ε‖4,T ‖vε‖4,T + ‖vε‖24,T ) ≤ C(p)ν

p+2
2p .

�

We conclude this section with the observation that

‖W ε‖2,T = ‖W ε‖L∞((0,T );L2(Πε)),

so Lemma 12 actually provided a renormalized energy estimate on the initial layer.

7. Global-in-time nonlinear evolution

In the previous section we obtained a priori estimates for W ε in the initial layer

which are uniform in ε. We will now splice the information we already possess with

a standard energy estimate, in order to obtain a result which is global in time. We

retain the context introduced in the previous section.

Lemma 13. Let 1 ≤ p < 2. Then W ε ∈ L∞loc([0,∞);L2(Πε))∩L2
loc((0,∞);H1(Πε)),

W ε ∈ Lp
loc([0,∞);H1(Πε)), and the respective norms are bounded independently of

ε.

Remark 14. Note that the bound in L2
loc((0,∞);H1(Πε)) means that W ε is

bounded in L2((δ, T );H1(Πε)) for any 0 < δ < T , but not necessarily for δ = 0.
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Proof. We rewrite the evolution equation (6.1) for W ε as
W ε

t − ν∆W ε + (W ε + vε) · ∇W ε +W ε · ∇vε + vε · ∇vε = −∇p, in (0,∞)×Πε

div W ε = 0 in [0,∞)×Πε

W ε(0, ·) = 0 on {t = 0} ×Πε

W ε(t, ·) = 0 on [0,∞)× Γε

We multiply the equation above by W ε and integrate to obtain

E ≡ 1
2
d

dt
‖W ε‖2L2 + ν‖∇W ε‖2L2 = −

∫
Πε

[W ε · (W ε · ∇vε) +W ε · (vε · ∇vε)] dx

=
∫

Πε

[vε · (W ε · ∇W ε) + vε · (vε · ∇W ε)] dx

≤ ‖W ε‖L4‖∇W ε‖L2‖vε‖L4 + ‖∇W ε‖L2‖vε‖2L4 .

We will use the following interpolation inequality:

‖W ε‖L4 ≤ C‖W ε‖1/2
L2 ‖∇W ε‖1/2

L2 ,

with a constant C > 0 independent of ε. This inequality in the case of R2 can

be found in Chapter 1 of [18]. To obtain the corresponding inequality in Πε, one

simply extends W ε to R2 by setting it identically equal to zero inside εΩ. As W ε

vanishes on Γε, the extension has H1-norm in the plane identical to the H1-norm

of W ε in Πε. Finally one uses the inequality in R2 on the extension.

We proceed with the estimate of E :

E ≤ C‖W ε‖1/2
L2 ‖∇W ε‖3/2

L2 ‖vε‖L4 + ‖∇W ε‖L2‖vε‖2L4

≤ ν

2
‖∇W ε‖2L2 +

C

ν3
‖W ε‖2L2‖vε‖4L4 +

1
ν
‖vε‖4L4 ,

where we used Young’s inequality to estimate each of the products above. Next,

we use Lemma 7 to deduce

‖vε‖4L4 ≤
C

νt
.

Hence,
d

dt
‖W ε‖2L2 + ν‖∇W ε‖2L2 ≤

C

ν4t
‖W ε‖2L2 +

C

ν2t
,

for some constant C independent of ε. Gronwall’s inequality now gives, for any

0 < t1 < t2,

(7.1)
‖W ε(t2, ·)‖2L2

t
C/ν4

2

+ ν

∫ t2

t1

‖∇W ε(s, ·)‖2L2

sC/ν4 ds ≤ ν2

t
C/ν4

1

− ν2

t
C/ν4

2

+
‖W ε(t1, ·)‖2L2

t
C/ν4

1

.

First choose t1 = C0ν
3/2, with C0 given in Lemma 12. It follows from Lemma 12

with p = 2 that

‖W ε(t1, ·)‖2L2 ≤ Cν2.
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Therefore,

(7.2) ‖W ε(t, ·)‖2L2 ≤ Cν2

(
Ct

ν3

)C/ν4

,

for any t ≥ t1, and we conclude thatW ε is uniformly bounded in L∞loc([0,∞);L2(Πε))

as desired.

Next, we return to (7.1) for the derivative estimate. Let a > 0, multiply (7.1)

by t
a+(C/ν4)−1
1 and integrate the resulting inequality with respect to t1 from 0 to

t2. We obtain,

(7.3)
∫ t2

0

sa ‖∇W ε(s, ·)‖2L2 ds ≤
aν4 + C

ν5

[
ν2

a
ta2 +

∫ t2

0

sa−1 ‖W ε(s, ·)‖2L2 ds

]
.

Since we already know that W ε is uniformly bounded in L∞loc([0,∞);L2), this esti-

mate implies that W ε is bounded in L2
loc((0,∞);H1), uniformly in ε. Moreover, if

1 ≤ p < 2, then the choice a = (2− p)/2p above allows to conclude that W ε is also

bounded in Lp
loc([0,∞);H1). �

8. Velocity estimates

In this section we derive global estimates on velocity using the analysis performed

thus far. Before we begin, we require the following interpolation inequality.

Lemma 15. Let 2 < p <∞, q0 = 2p/(p− 2), 1 ≤ q ≤ q0. Let r ≥ q(p− 2)/p and

set

θ =
2qr

rp− q(p− 2)
.

If p > 2q assume further that r ≤ q(p − 2)/(p − 2q). Then θ ≥ 1 and for any

interval I ⊆ R and any f ∈ Lr(I;H1(R2)) ∩ Lθ(I;L2(R2)), we have

‖f‖Lq(I;Lp(R2)) ≤ C‖f‖(p−2)/p
Lr(I;H1(R2))‖f‖

2/p

Lθ(I;L2(R2))
.

Proof. We start by recalling the following standard interpolation inequality: for

any g ∈ H1(R2) we have

(8.1) ‖g‖L2/(1−s)(R2) ≤ C‖g‖Hs ≤ C‖g‖1−s
L2 ‖g‖s

H1 , for any 0 ≤ s ≤ 1.

Fix exponents p, q, r and θ as in the statement of this lemma. Observe that,

if p > 2q then θ ≥ 1 if and only if r ≤ q(p − 2)/(p − 2q); we hence assume this

further restriction on r if p > 2q. In the other case, p ≤ 2q, there is no additional

restriction on r to guarantee that θ ≥ 1.
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Next, fix an interval I ⊆ R and let f ∈ Lr(I;H1(R2)) ∩ Lθ(I;L2(R2)). Let

s = (p−2)/p, so that 2/(1−s) = p. We use (8.1) and Hölder’s inequality to obtain:

‖f‖q
Lq(I;Lp(R2)) =

∫
I

‖f(τ, ·)‖q
Lp dτ ≤ C

∫
I

‖f(τ, ·)‖q(p−2)/p
H1 ‖f(τ, ·)‖2q/p

L2 dτ

≤ C‖f‖q(p−2)/p
Lr(I;H1(R2))‖f‖

2q/p

Lθ(I;L2(R2))
,

which concludes the proof. The condition r ≥ q(p − 2)/p was used in Hölder’s in-

equality when estimating the product of two functions in Lrp/q(p−2)(I) and Lθp/(2q)(I)

above, so as to guarantee that rp/q(p− 2) ≥ 1.

�

Theorem 16. Let uε be the solution of (3.3) with initial velocity uε
0 as in (3.2)

and recall that uε
0 = bε

0 + iε0 + oε
0. Then the following hold true.

(1) Let 2 < p < ∞, q0 = 2p/(p − 2) and 1 ≤ q < q0. Then {Euε} is bounded

in Lq0
loc((0,∞);Lp) ∩ Lq

loc([0,∞);Lp).

(2) The family {Euε − Eoε
0} is bounded in L∞loc((0,∞);L2) and the family

{Euε − Eoε
0 − Eiε} is bounded in L∞loc([0,∞);L2).

(3) The family {Euε} is bounded in L∞loc((0,∞);L2
loc).

(4) For any 1 ≤ p < 2, we have {∇Euε} is bounded in L2
loc((0,∞);L2) ∩

Lp
loc([0,∞);L2).

Proof. Statement (1) involves two estimates: the first one on the open time interval

(0,∞) and the second on the closed interval [0,∞). We begin by addressing the

first estimate.

Fix 2 < p < ∞. Fix 0 < δ < T and set I = (δ, T ). We first show that

{Euε − Eoε
0} is bounded in L∞((δ, T );L2(R2)) ∩ L2((δ, T );H1(R2)). We write

(8.2) Euε − Eoε
0 = E(iε + bε) + E(oε − oε

0) + EW ε ≡ A1 +A2 +A3.

We observe that A1 is bounded in L∞(I;H1(R2)). To see that, choose 1 < r < 2

and use Theorem 2 together with Lemma 6 and Remark 8 to obtain

(8.3)
t

1
r−

1
2
(
‖iε‖L2(Πε) + ‖bε‖L2(Πε)

)
+ t

1
r

(
‖∇iε‖L2(Πε) + ‖∇bε‖L2(Πε)

)
≤ (K1 +K2)

(
‖iε0‖Lr(Πε) + ‖bε

0‖Lr(Πε)

)
≤ K(r),

for some K(r) > 0, independent of ε. The estimate on A1 follows from Lemma 9,

together with the inequality above. For A2, we use Proposition 3, together with

Lemma 6 to conclude that

(8.4) ‖oε(t, ·)−oε
0‖2L2(Πε)+ν

∫ t

0

‖∇oε(s, ·)−∇oε
0‖2L2(Πε) ds ≤ νt‖∇oε

0‖2L2(Πε) ≤ C,

for some C > 0 independent of ε. This, together with Lemma 9, implies that A2

is uniformly bounded in L∞(I;L2(R2)) ∩ L2(I;H1(R2)). For the estimate on A3,
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we simply use Lemma 13, together with Lemma 9, showing that A3 is uniformly

bounded in L∞(I;L2(R2)) ∩ L2(I;H1(R2)) as well.

We use Lemma 15 with q = q0 and r = 2, so that θ = ∞, to conclude that

{Euε −Eoε
0} is bounded in Lq0(I;Lp(R2)). Next we note that {Eoε

0} is uniformly

bounded in Lp(R2) by Lemma 6, which concludes this portion of the proof.

We now address the second part of (1), which is an estimate on the closed time

interval [0,∞). The difficulty here is that we do not have Leray-type estimates on

the pieces of uε all the way down to t = 0, so that the result becomes more delicate.

Fix 2 < p <∞ and 1 ≤ q < q0. Let T > 0 and set I = [0, T ]. We consider again

the decomposition (8.2) and we estimate each piece. Estimate (8.3), together with

Lemma 9 implies that A1 is uniformly bounded on Lr1(I;H1(R2))∩Lθ1(I;L2(R2)),

for any 1 ≤ r1 < 2 and any 1 ≤ θ1 <∞. We use Lemma 15 with p and q as above.

We need to find r ∈ [1, 2) satisfying the restrictions in Lemma 15 in order to be able

to use r = r1. This is always possible because the restriction on r always includes

r ≥ q(p− 2)/p, and q < q0 is equivalent to q(p− 2)/p < 2. This implies that A1 is

bounded in Lq(I;Lp(R2)). For A2, we merely observe that (8.4) gives an uniform

bound in L∞(I;L2(R2)) ∩ L2(I;H1(R2)) on A2, which in turn yields the desired

estimate. To treat A3, we put together Lemma 13 and Lemma 9 to conclude that

A3 is uniformly bounded in L∞(I;L2(R2)) ∩ Lr2(I;H1(R2)), for any 1 ≤ r2 < 2.

Clearly, this is enough to obtain the estimate in Lq(I;Lp(R2)) for A3. The proof

of (1) is concluded once we recall the observation that {Eoε
0} is uniformly bounded

in Lp(R2), which we already used in the proof of the first part of (1).

We now address statement (2), which also consists of two estimates. The proof

of the first estimate in (2) is contained in the proof of the first part of (1), the

estimate on the open time interval. As for the second estimate in item (2), we

write

Euε − Eoε
0 − Eiε = Ebε + E(oε − oε

0) + EW ε.

We have already shown that the second and third terms in the decomposition above

are bounded in L∞loc([0,∞);L2(R2)). The first term satisfies

‖Ebε(t, ·)‖L2 ≤ ‖bε(t, ·)‖L2(Πε) ≤ C‖bε
0‖L2(Πε) ≤ C,

by Theorem 2 and Lemma 6.

The third item, statement (3), can be obtained from (2) by observing that, by

Lemma 6 and Lemma 9, Eoε
0 is uniformly bounded in Lr(R2), for any r > 2, which

is contained in L2
loc(R2).

Statement (4) again consists of two estimates, one on the open time interval, the

other on the closed interval. The estimates on the open time interval are trivially
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contained in the proof of the first estimate in item (1), once we observe that Lemma

6 and Lemma 9 give a uniform estimate in L2(R2) for ∇Eoε
0. Similarly, the proof

of the second part of (4) is contained in the proof of the second part of (1), together

with the L2(R2) estimate for ∇Eoε
0 which we have just derived.

This concludes the proof.

�

The last result in this section is an estimate for “fixed ε”, which was already

used to deduce that the amount of vorticity generated at the boundary in the

initial layer, mε(t) =
∫
Πε
ωε(t, x) dx is the same for any ε and equals α.

Corollary 17. For each fixed 0 < ε < ε0 we have: Euε−Eoε
0 ∈ L∞loc([0,∞);L2(R2)).

Proof. This is an immediate consequence of item (2) in Theorem 16, together with

the observation that Eiε ∈ L∞loc([0,∞);L2(Πε)) for each fixed ε. This last fact

follows from the estimates on the Stokes semigroup in Theorem 2 and the fact that

Eiε0 ∈ L2(Πε) with an L2-norm that blows up as | log ε| 12 , see Lemma 6. �

9. Compactness in space-time

As far as a priori estimates go, the last ingredient we require is uniform control

on how solutions evolve in time. This is often very easy to accomplish once spatial

estimates are in place because ultimately the PDE itself is nothing more than an

expression of time-derivatives of the solution in terms of spatial information. In

our case, however, there are two difficulties that will make this step of the analysis

somewhat involved: (i) the spatial estimates available are for Euε, which does not

satisfy a PDE: and (ii) the nonlinearity in our problem is quadratic, but the estimate

up to time zero in Theorem 16 item (1) is Lp, p > 2, which entails problems at

infinity. We deal with these difficulties through the following main ideas: we use the

vorticity equation to describe the time evolution, we use the interplay of vorticity

and velocity and we renormalize problem terms.

Let Φ be a smooth, compactly supported vector field and consider P the Leray

projector for the plane. We consider the Hodge decomposition of the vector field

Φ, given by Φ = PΦ + (Φ − PΦ). The divergence-free part PΦ is smooth, but not

compactly supported. In fact,

(9.1) |PΦ(x)| = O
(

1
|x|2

)
, as |x| → ∞,

see the proof of Proposition 1.16 in [22]. Let ψ = ψ(x) be the stream function

associated with PΦ, so that ∇⊥ψ = PΦ. We assume that ψ(0) = 0, at the expense

of having ψ = O(1) at ∞. Clearly, |ψ(x)| ≤ |x|‖∇ψ‖L∞ , so that using the Sobolev
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imbedding H2 ↪→ L∞ followed by the fact that ∇ψ = ∇(∆)−1∇⊥ · Φ, a zeroth

order singular integral operator acting on Φ, we obtain

(9.2) |ψ(x)| ≤ C|x|‖Φ‖H2(R2).

We now observe that for 1 < q < ∞ and χ ∈ C∞c (R2), there exists a constant

C = C(q, χ) > 0 such that

(9.3) ‖P[χΦ]‖Lq(R2) ≤ C‖Φ‖H2(R2).

Indeed, as P is a zero-th order singular integral operator we have

‖P[χΦ]‖Lq(R2) ≤ C‖χΦ‖Lq(R2) ≤ C‖χ‖Lq(R2)‖Φ‖L∞(R2) ≤ C(q, χ)‖Φ‖H2(R2).

Recall the extension operator E, introduced in beginning of Section 4. For each

ε > 0, consider the cutoff ηε introduced in (4.1). We are ready to state and prove

the main result in this section.

Proposition 18. The sequence {P[ηεEuε]} is precompact in L∞loc([0,∞);H−3
loc (R2)).

Proof. Fix Φ a smooth, compactly supported vector field and let

ψ = ψ(x) = [(∆)−1 curl Φ](x)− [(∆)−1 curl Φ](0),

satisfying (9.2). For each t ≥ 0, we introduce an auxiliary functional F ε = F ε(t) ∈
H−2(R2) defined by

〈F ε(t),Φ〉 =
∫

(Euε(t, x)− Eoε
0(x)) · (∇⊥ηε)(x)ψ(x) dx.

The proof will be divided into two steps. We will show that, for each (t1, t2) ⊂
[0,∞), we have {P[ηεEuε] + F ε} is bounded and equicontinuous as a function of

(t1, t2) intoH−2
loc (R2) and we will show that F ε → 0 strongly in L∞loc([0,∞);H−2(R2)).

The desired conclusion follows from these two steps by using Arzela-Ascoli’s The-

orem.

Let us begin by proving that F ε → 0 strongly in L∞loc([0,∞);H−2(R2)). Indeed,

we use Theorem 16, (9.2) and the properties of the cutoff ηε to deduce

(9.4) |〈F ε(t),Φ〉| ≤ ‖Euε(t, ·)− Eoε
0‖L2‖ψ∇⊥ηε‖L2

≤ C‖Euε(t, ·)− Eoε
0‖L2

(∫
|x|<Cε

|x|2‖Φ‖2H2 |∇ηε|2 dx

)1/2

≤ Cε‖Euε(t, ·)− Eoε
0‖L2‖Φ‖H2

≤ Cε(‖Eiε(t, ·)‖L2+‖Euε(t, ·)−Eoε
0−Eiε(t, ·)‖L2)‖Φ‖H2 ≤ Cε(C1| log ε| 12 +C2)‖Φ‖H2 ,

by Lemma 6, Theorem 2 and Theorem 16. Clearly, this proves our assertion. The

proof of the other assertion is a bit more involved.
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We introduce a cutoff for infinity. For eachR > 0, let χR = χR(x) = 1−ϕ(|x|/R).

The vorticity ωε = curl uε satisfies the equation

ωε
t + uε · ∇ωε = ν∆ωε.

Let 0 ≤ t1 < t2 <∞ and denote the interval [t1, t2] by J . We multiply the vorticity

equation by ηεψχR, integrate in space and time between t1 and t2, and integrate

by parts to obtain

(9.5)
∫

[Euε(t2, ·)− Euε(t1, ·)] · ∇⊥(ηεψχR) dx

=
∫ t2

t1

∫
(Euε · ∇Eωε)ηεψχR dxdt− ν

∫ t2

t1

∫
(∆Eωε)ηεψχR dxdt ≡ I1 − I2.

We first estimate I1. We integrate by parts and deduce

I1 = −
∫ t2

t1

∫
(Euε · ∇ηε)EωεψχR dxdt+

∫ t2

t1

∫
(Euε · (PΦ)⊥)EωεηεχR dxdt

−
∫ t2

t1

∫
(Euε · ∇χR)Eωεψηε dxdt ≡ −I11 + I12 − I13.

Using Hölder’s inequality first in space and then in time we have

|I11| ≤
∫ t2

t1

‖Euε‖L4‖Eωε‖L2‖ψ∇ηε‖L4‖χR‖L∞ dt

≤ C‖ψ∇ηε‖L4‖Euε‖L3(J;L4)‖Eωε‖L9/5(J;L2)|t2 − t1|1/9 ≤ C‖Φ‖H2 |t2 − t1|1/9,

where in the last inequality we used Theorem 16 and we used again (9.2) along

with the properties of ηε.

Similarly, we have

|I12| ≤ ‖PΦ‖L4‖Euε‖L3(J;L4)‖Eωε‖L9/5(J;L2)|t2 − t1|1/9 ≤ C‖Φ‖H2 |t2 − t1|1/9,

since P is a zeroth order operator and H2 ↪→ L4. Finally,

|I13| ≤ C‖ψηε‖L∞‖∇χR‖L4‖Euε‖L3(J;L4)‖Eωε‖L2/3(J;L2) ≤ C‖Φ‖H2R−1/2,

as

|ψ(∞)| = |[(∆)−1 curl Φ](0)| ≤ C‖Φ‖H2

and ∇χR = O(1/R), supported on a set of measure O(R2).

Therefore,

(9.6) lim sup
R→∞

|I1| ≤ C‖Φ‖H2 |t2 − t1|1/9.

Next we treat I2. We integrate by parts and use the fact that the supports of

∇ηε and of ∇χR are disjoint to obtain:

I2 = ν

∫ t2

t1

∫
Eωε(∆ηε)ψχR dxdt+ ν

∫ t2

t1

∫
Eωεηε(∆ψ)χR dxdt
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+ν
∫ t2

t1

∫
Eωεηεψ(∆χR) dxdt− 2ν

∫ t2

t1

∫
Eωε(χR∇ηε + ηε∇χR)(PΦ)⊥ dxdt

= νI21 + νI22 + νI23 − 2νI24.

By arguments similar to those used for I1 we have

|I21| ≤ ‖∆ηεψ‖L2‖Eωε‖L9/5(J;L2)|t2 − t1|4/9 ≤ C‖Φ‖H2 |t2 − t1|4/9;

|I22| ≤ ‖∆ψ‖L2

∫ t2

t1
‖Eωε‖L2 dt ≤ C‖ curl Φ‖L2 |t2 − t1|4/9 ≤ C‖Φ‖H2 |t2 − t1|4/9;

|I23| ≤ ‖∆χR‖L2‖ψ‖L∞

∫ t2

t1

‖Eωε‖L2 dt ≤ C‖Φ‖H2 ;

|I24| ≤ ‖PΦ‖L∞‖χR∇ηε + ηε∇χR‖L2

∫ t2

t1

‖Eωε‖L2 dt ≤ C‖Φ‖H2 |t2 − t1|4/9.

Therefore,

(9.7) lim sup
R→∞

|I2| ≤ C‖Φ‖H2 |t2 − t1|4/9.

We expand the left hand side of identity (9.5) to find

∫
[Euε(t2, ·)− Euε(t1, ·)] · ∇⊥(ηεψχR) dx

=
∫

[Euε(t2, ·)−Euε(t1, ·)]·(∇⊥ηε)ψχR dx+
∫

[Euε(t2, ·)−Euε(t1, ·)]·ηε(∇⊥ψ)χR dx

+
∫

[Euε(t2, ·)− Euε(t1, ·)] · ηεψ(∇⊥χR) dx = A1 +A2 +A3.

We will show that each of the Ai’s has a limit when R → ∞. To see that, first

note that

Euε(t2, ·)− Euε(t1, ·)

= [Euε(t2, ·)−Eoε
0−Eiε(t2, ·)]−[Euε(t1, ·)−Eoε

0−Eiε(t1, ·)]+Eiε(t2, ·)−Eiε(t1, ·),

which belongs to L2(R2), for each fixed ε > 0 and 0 ≤ t1 < t2 < ∞. To see this

note that the first two terms are bounded in L2 by Theorem 16 whereas the last

two terms were estimated in L2, with a logarithmically growing norm as ε→ 0, in

(9.4).

Therefore, since ∇⊥ηε and ∇⊥ψ = PΦ are both square integrable functions, it

follows by the Dominated Convergence Theorem that

lim
R→∞

A1 =
∫

[Euε(t2, ·)− Euε(t1, ·)] · (∇⊥ηε)ψ dx

and

lim
R→∞

A2 =
∫

[Euε(t2, ·)− Euε(t1, ·)] · ηε(∇⊥ψ) dx.
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Furthermore, it is easy to see that ∇⊥χR converges to zero weakly in L2 when

R→∞. As [Euε(t2, ·)−Euε(t1, ·)] · ηεψ does not depend on R and belongs to L2,

we infer that A3 → 0 as R→∞.

We have found that the left hand side of identity (9.5) has a limit as R → ∞.

We can rewrite this limit as follows

lim
R→∞

(A1 +A2 +A3) = 〈P[ηεEuε](t2, ·) + F ε(t2),Φ〉 − 〈P[ηεEuε](t1, ·) + F ε(t1),Φ〉.

On the other hand, by identity (9.5), and using (9.6) and (9.7) we have

(9.8) lim
R→∞

|A1 +A2 +A3| ≤ lim sup
R→∞

|I1|+ |I2| ≤ C‖Φ‖H2 |t2 − t1|1/9,

which shows that P[ηεEuε] + F ε is equicontinuous as a function of time into H−2.

We conclude this proof by showing that {P[ηεEuε] + F ε} is uniformly bounded

in L∞(J ;H−2
loc (R2)). We do not need to prove that {F ε} is bounded in this space

because we have already shown that F ε → 0 as ε→ 0 in L∞(J ;H−2(R2)). The only

thing left is to prove the boundedness of {P[ηεEuε]}. To this end, let χ ∈ C∞c (R2),

fix p > 2, 1 < r < 2 and write

|〈χP[ηεEuε],Φ〉| = |〈ηεEuε,P[χΦ]〉|

≤ |〈ηε(Euε − Eoε
0 − Eiε),P[χΦ]〉|+ |〈ηεEoε

0,P[χΦ]〉|+ |〈ηεEiε,P[χΦ]〉|

≤ ‖Euε−Eoε
0−Eiε‖L2‖P[χΦ]‖L2+‖Eoε

0‖Lp‖P[χΦ]‖Lp/(p−1)+‖Eiε‖Lr‖P[χΦ]‖Lr/(r−1)

≤ C(χ, p, r, J)‖Φ‖H2 ,

where in the last inequality we used Theorem 2, Lemma 6, Theorem 16 and relation

(9.3). Note that C is independent of t ∈ J .

It follows from Arzela-Ascoli that, for each [t1, t2] ⊂ [0,∞) and each BR ⊂ R2,

there is a subsequence of P[ηεEuε] which converges strongly in L∞([t1, t2];H−3(BR)).

By taking diagonal subsequences we may assume that there is a subsequence which

converges strongly in L∞loc([0,∞);H−3
loc (R2)).

This concludes the proof.

�

Remark 19. It follows from the proof of Proposition 18 that any strong limit of

{P[ηεEuε]} in L∞loc([0,∞);H−3
loc (R2)) in fact belongs to C([0,∞);H−3

loc (R2)). This

is true as {P[ηεEuε] + F ε} is equicontinuous and bounded as a function of time

into H−2
loc and therefore, by Arzela-Ascoli, its limits are continuous. Furthermore,

F ε → 0, so that the limits of {P[ηεEuε]} and of {P[ηεEuε] + F ε} are the same.
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10. Passing to the limit

In this section we state and prove our main result. Let us begin with an improve-

ment of the space-time compactness we have, which is a consequence of Proposition

18, obtained by means of interpolation.

Lemma 20. The sequence {Euε} is precompact in L2
loc((0,∞)× R2).

Proof. By Lemma 9, first order derivatives of functions that vanish on Γε commute

with the extension operator, and therefore, for any positive time, Euε = P[Euε].

We write

Euε = P[(1− ηε)Euε] + P[ηεEuε] ≡ B1 +B2.

First we note that B1 → 0 strongly in L2
loc([0,∞)×R2). Indeed, let us fix 0 ≤ t1 <

t2 < ∞ and set J = [t1, t2]. By Theorem 16, properties of the cutoff ηε and the

fact that the Leray projector is continuous from L2 to itself we have

‖P[(1− ηε)Euε]‖L2(J×R2) ≤ C‖(1− ηε)Euε‖L2(J×R2)

≤ C‖1− ηε‖L4(R2)‖Euε‖L2(J;L4(R2)) ≤ Cε1/2,

which proves the desired estimate on B1.

Next we work on B2. We know from Proposition 18 that B2 is precompact in

L∞loc((0,∞);H−3
loc (R2)). We will show that, for any 1 < q < 2, B2 is bounded in

L2
loc((0,∞);W 1,q

loc (R2)). The result will follow by interpolation. Fix 1 < q < 2 and

let q∗ = 2q/(2−q) > 2. By Theorem 16, {Euε} is bounded in L4
loc((0,∞);L4(R2)).

Since |ηε| ≤ 1 and since P is continuous from L4(R2) into itself, it follows that

B2 is bounded in L4
loc((0,∞);L4(R2)) which can be continuously imbedded into

L2
loc((0,∞);Lq

loc(R2)).

What remains is to show that derivatives of B2 are also uniformly bounded

in L2
loc((0,∞);Lq

loc(R2)). Since the gradient and the Leray projector P are both

Fourier multipliers, the gradient commutes with P. Therefore,

D(P[ηεEuε]) = P[ηε(DEuε)] + P[(Dηε)Euε] ≡ B21 +B22.

By Theorem 16, DEuε is bounded in L2
loc((0,∞);L2(R2)). Since |ηε| ≤ 1 and

P is continuous from L2(R2) to itself, we immediately obtain the desired esti-

mate for B21. As for the term B22, we use Theorem 16 once again to obtain

that Euε is bounded in L
2q∗/(q∗−2)
loc ((0,∞);Lq∗(R2)) and we recall that Dηε is

uniformly bounded in L2(R2). With this, we have that (Dηε)Euε is bounded in

L
2q∗/(q∗−2)
loc ((0,∞);Lq(R2)), continuously imbedded into L2

loc((0,∞);Lq(R2)). This

concludes the proof.

�
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We will prove that limits of the sequence {Euε} are solutions of the Navier-

Stokes equations in a suitable weak sense. To be precise, we formulate the notion

of weak solution we will use.

Definition 21. Let u ∈ L2
loc((0,∞)×R2) ∩C([0,∞);D′(R2)). We say that u is a

weak solution of the incompressible Navier-Stokes equations with initial velocity u0

if, for any divergence-free test vector field Ψ ∈ C∞c ((0,∞)× R2), we have∫ ∞

0

∫
R2

(
u ·Ψt + [(u · ∇)Ψ] · u+ νu ·∆Ψ

)
dxdt = 0.

Furthermore, for every t ≥ 0, div u(t, ·) = 0 in the sense of distributions and

u(t, ·) ⇀ u0 in the sense of distributions as t→ 0+.

Recall that K denotes the kernel of the Biot-Savart law, as introduced in (4.2).

We are finally ready to state and prove the main result of this work.

Theorem 22. There exists γ0 > 0 such that, if |γ| < γ0, then any strong limit u of

{Euε} in L2
loc((0,∞)× R2) is a weak solution of the incompressible Navier-Stokes

equations in R2 with initial velocity given by u0 = K ∗ ω0 + γH.

Remark 23. As {Euε} is precompact, by virtue of Lemma 20, there exists at least

one such strong limit.

Proof. For each ε sufficiently small, choose 0 < δ < 1 such that {|x| > 2δ} ⊆ Πε.

Clearly, if {|x| > 2δ} ⊆ Πε0 then {|x| > 2δ} ⊆ Πε, for all ε ≤ ε0. Also consider

R > 2 > 2δ. We use the cutoff ϕ introduced in Section 3 (see (3.4)) to define:

ϕδ = ϕδ(x) ≡ ϕ(|x|/δ) and χR = χR(x) ≡ 1− ϕ(|x|/R).

As in the proof of Proposition 18 we let Φ be a smooth, compactly supported

vector field in R2, which, in addition, we assume to be divergence-free. We define

ψ = ψ(x) = [(∆)−1 curl Φ](x)− [(∆)−1 curl Φ](0). Recall that ∇⊥ψ = Φ and that

ψ satisfies (9.2). We also consider θ = θ(t) ∈ C∞c ((0,∞)).

We use the test function ϕδθψχR, which belongs to C∞c ((0,∞)×Πε) in the weak

form of the vorticity equation. We can rewrite the integrals on Πε as full plane

integrals using the extension operator to obtain the following integral identity∫ ∞

0

∫
R2
Eωεθtϕ

δψχR dxdt+
∫ ∞

0

∫
R2
EuεEωε · θ∇(ϕδψχR) dxdt

(10.1) +ν
∫ ∞

0

∫
R2
Eωεθ∆(ϕδψχR) dxdt = 0.

Our first step is to pass to the limit ε→ 0 in this identity, while keeping δ and R

fixed. Let u be a strong limit in L2
loc((0,∞)×R2) of a subsequence Euεk of Euε. We
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observe that Eωεk → curl u ≡ ω strongly in L2
loc((0,∞);H−1

loc (R2)). Similarly, we

may also deduce that u is divergence-free in the sense of distributions. The passage

to the limit is immediate in the linear terms of (10.1). For the nonlinear term we

recall that, by Theorem 16, {Eωεk} is uniformly bounded in L2
loc((0,∞);L2(R2)).

Hence a subsequence of {Eωεk} converges weakly in L2
loc((0,∞);L2(R2)). Using

the convergence Eωεk → ω strong in L2
loc((0,∞);H−1

loc (R2)) and uniqueness of weak

limits we conclude that Eωεk ⇀ ω weakly in L2
loc((0,∞);L2(R2)), without passing

to further subsequences. Now EuεkEωεk is a weak-strong pair, so that we can pass

to the limit in the nonlinear term as well. We arrive at the identity

J1 + J2 + J3 ≡
∫ ∞

0

∫
R2
ω θtϕ

δψχR dxdt+
∫ ∞

0

∫
R2
uω · θ∇(ϕδψχR) dxdt

(10.2) + ν

∫ ∞

0

∫
R2
ω θ∆(ϕδψχR) dxdt = 0.

Now we pass to the limit both δ → 0 and R → ∞ in each separate term in

(10.2). We begin with J1.

First we observe that

(10.3) u− αϕ

(
β|x|
λ0

)
H ≡ u− F ∈ L∞loc((0,∞);L2(R2)),

where α was introduced in (3.2), β in Lemma 4 and λ0 in Lemma 6 and H is the

harmonic vector field introduced in (2.4). Estimate (10.3) follows from the conver-

gence Euεk → u, from the fact that Euε−Eoε
0 is bounded in L∞loc((0,∞);L2(R2)),

see Theorem 16 and from the fact that Eoε
0 → αϕ

(
β|x|
λ0

)
H strongly in L2(R2) by

Lemma 6.

Next, write ω = ∇⊥ · u and integrate by parts to obtain

J1 = −
∫ ∞

0

∫
R2
u · θt∇⊥(ϕδψχR) dxdt = −

∫ ∞

0

∫
R2

(u− F ) · θt∇⊥(ϕδψχR) dxdt,

where we have used the fact that F does not depend on time, so that the additional

integral vanishes.

We write

J1 = −
∫ ∞

0

∫
R2

(u− F ) · θt(∇⊥ϕδ)ψχR dxdt−
∫ ∞

0

∫
R2

(u− F ) · θtϕ
δΦχR dxdt

−
∫ ∞

0

∫
R2

(u− F ) · θtϕ
δψ(∇⊥χR) dxdt ≡ −J11 − J12 − J13.

It is easy to see that ∇ϕδ converges to zero weakly in L2(R2) when δ → 0 and

therefore,

(10.4) lim
R→∞

lim
δ→0

J11 = 0.
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On the other hand, ∇χR also converges to zero weakly in L2(R2) when R→∞.

Furthermore, ϕδ → 1 pointwise when δ → 0, so by dominated convergence, we find

that

(10.5) lim
R→∞

lim
δ→0

J13 = 0.

We also note that ϕδχR converges pointwise to 1 as δ → 0 and R → ∞ (no

matter which order), so that, by dominated convergence, we deduce that

(10.6) lim
R→∞

lim
δ→0

J12 =
∫ ∞

0

∫
R2

(u− F ) · θtΦ dxdt =
∫ ∞

0

∫
R2
u · θtΦ dxdt.

Putting together (10.4), (10.5) and (10.6) we obtain

(10.7) lim
R→∞

lim
δ→0

J1 = −
∫ ∞

0

∫
R2
u · θtΦ dxdt.

Next we treat the nonlinear term J2. First note that the uniform estimates on

Euε contained in Theorem 16 imply that u ∈ L4
loc((0,∞);L4(R2)). The argument

is the same we used to prove ω ∈ L2
loc((0,∞);L2(R2))

We write

J2 =
∫ ∞

0

∫
R2
uω · θ(∇ϕδ)ψχR dxdt−

∫ ∞

0

∫
R2
uω · θϕδΦ⊥χR dxdt

+
∫ ∞

0

∫
R2
uω · θϕδψ(∇χR) dxdt ≡ J21 − J22 + J23.

We have that

|J21| ≤
∫ ∞

0

|θ|‖u‖L4‖ω‖L2‖ψ∇ϕδ‖L4 dt = O(
√
δ)

and

|J23| ≤ ‖ψ‖L∞

∫ ∞

0

|θ|‖u‖L4‖ω‖L2‖∇χR‖L4 dt = O(R−1/2).

We conclude that

(10.8) lim
R→∞

lim
δ→0

(J21 + J23) = 0.

In addition, by dominated convergence we have that

(10.9) lim
R→∞

lim
δ→0

J22 =
∫ ∞

0

∫
R2
uω · θΦ⊥ dxdt = −

∫ ∞

0

∫
R2

(u · ∇)uθ · Φ dxdt,

where this last equality follows from the identity u · ∇u − (uω)⊥ = ∇(|u|2/2),

together with the fact that Φ is divergence free.

Therefore, using (10.8) and (10.9) and integrating by parts we find

(10.10) lim
R→∞

lim
δ→0

J2 = −
∫ ∞

0

∫
R2

[(u · ∇)θΦ] · u dxdt.

Lastly we treat J3. Once again, we write

J3 = ν

∫ ∞

0

∫
R2
ω θ(∆ϕδ)ψχR dxdt+ ν

∫ ∞

0

∫
R2
ω θϕδ(∆ψ)χR dxdt
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+ν
∫ ∞

0

∫
R2
ω θϕδψ(∆χR) dxdt+ 2ν

∫ ∞

0

∫
R2
ω θ∇ψ · ((∇ϕδ)χR + ϕδ(∇χR)) dxdt

≡ J31 + J32 + J33 + J34.

Using, similarly to what we have already done, that: ω ∈ L2
loc((0,∞);L2(R2)),

ψ∆ϕδ ⇀ 0 weakly in L2(R2) as δ → 0, ∆χR → 0 strongly in L2(R2) as R → ∞,

∇ϕδ ⇀ 0 weakly in L2(R2) as δ → 0, ∇χR ⇀ 0 weakly in L2(R2) as R → ∞ and

dominated convergence, we deduce that

(10.11) lim
R→∞

lim
δ→0

(J31 + J33 + J34) = 0.

Therefore we obtain, integrating by parts,

(10.12) lim
R→∞

lim
δ→0

J3 = ν

∫ ∞

0

∫
R2
ω θ(∆ψ) dxdt = −ν

∫ ∞

0

∫
R2
u · θ∆Φ dxdt.

Recall that J1 + J2 + J3 = 0, so that, adding (10.7) with (10.10) and (10.12) we

find

(10.13)
∫ ∞

0

∫
R2

(
u · θtΦ + [(u · ∇)θΦ] · u+ νu · θ∆Φ

)
dxdt = 0.

We observe that linear combinations of products of smooth, compactly supported

functions of the form θΦ are dense in C∞c ((0,∞) × R2). With this observation

and (10.13) we find that u satisfies the integral identity in Definition 21. We have

already noted that u is divergence-free in the sense of distributions. All that remains

is to show that u ∈ C([0,∞);D′(R2)) and that u(t, ·) ⇀ u0 in D′ as t→ 0.

First note that in the proof of Lemma 20 we showed that Euε − P[ηεEuε] → 0

strongly in L2
loc((0,∞)×R2). Therefore, P[ηεkEuεk ] → u in L2

loc((0,∞)×R2). By

Remark 19, we have a subsequence of {P[ηεkEuεk ]} which converges strongly in

L∞loc([0,∞);H−3
loc (R2)) to a limit v ∈ C([0,∞);H−3

loc (R2)). It follows by uniqueness

of limits (in L2
loc((0,∞);H−3

loc ), for example) that u(t, ·) = v(t, ·) for almost all

t ∈ (0,∞), which implies that u can be identified with v. This in turn implies that

u ∈ C([0,∞);D′(R2)). Furthermore, as P[ηεkEuεk ] converges to u uniformly in

time with values in H−3
loc , one has that P[ηεkEuεk

0 ] converges to u0 in H−3
loc . On the

other hand, Lemma 10 says that P[ηεkEuεk
0 ] converges to K∗ω0+γH in the sense of

distributions. By uniqueness of the limit in D′, we conclude that u0 = K∗ω0 +γH.

This concludes this proof. �

Remark 24. At the end of the proof above we showed that the initial data for the

limit problem is attained in C([0,∞);D′(R2)). We can actually prove a stronger

statement, namely that there exists a positive constant C > 0 such that

|〈u(t)− u0, φ〉| ≤ C‖φ‖H2 t1/9,
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for all φ ∈ D. Indeed, to see this fix φ ∈ C∞c (R2) and let ψ = ψ(x) = [∆−1 curl φ](x)−
[∆−1 curl φ](0). Consider the sequence of approximations {uεk} constructed in the

proof above. For each εk recall the auxiliary functional F εk used in the proof of

Proposition 18, given by

〈F εk(t), φ〉 =
∫

(Euεk(t, x)− Eoεk
0 (x)) · (∇⊥ηεk)(x)ψ(x) dx.

Write

(10.14) 〈u(t)− u0, φ〉 ≡ L1 + L2 + L3 + L4,

where

L1 = 〈u(t)− P[ηεkEuεk ](t)− F εk(t), φ〉;

L2 = 〈P[ηεkEuεk ](t) + F εk(t)− P[ηεkEuεk
0 ]− F εk(0), φ〉;

L3 = 〈F εk(0), φ〉;

L4 = 〈P[ηεkEuεk
0 ]− u0, φ〉.

By Remark 19, we have that limεk→0 L1 = 0 uniformly in time. By the argument

in the proof of Proposition 18, see estimate (9.8), we find that |L2| ≤ C‖φ‖H2t1/9.

By estimate (9.4) we know that limεk→0 L3 = 0. Finally, by Lemma 10 we obtain

that limεk→0 L4 = 0. Therefore, using (10.14) we deduce

|〈u(t)− u0, φ〉| ≤ C‖φ‖H2t1/9,

as desired.

11. Uniqueness for the limit problem

Our result above provides strong compactness of viscous flows around a small

obstacle but does not address actual convergence. The passage from compactness to

convergence is clearly reduced to the issue of uniqueness for the limit problem. The

issue of uniqueness of solutions for the 2D incompressible Navier-Stokes equations

with initial data of the form u0 is classical and delicate. Let us briefly review the

related literature. The first relevant results are due to G. Benfatto, R. Esposito

and M. Pulvirenti, see [2], who showed uniqueness for initial flows of the form∑
γiH(x − xi) if

∑
|γi| is sufficiently small, and to G.-H. Cottet, see [4], who

showed uniqueness for small initial vorticities which are general bounded measures.

Later, Y. Giga, T. Miyakawa and H. Osada generalized this uniqueness result for

initial flows of the form K∗ω with ω a Radon measure with sufficiently small atomic

part, see [14, 16]. As we observed in the Introduction, this smallness condition is

closely related, in a technical sense, to the smallness condition on γ which we also

had to impose, see (6.10). Recently the uniqueness assumption on the atomic part
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of ω was removed, first by T. Gallay and C. E. Wayne for initial flow of the form γH

in [12], see also [10], and then for general K ∗ ω0 initial flows with ω0 an arbitrary

Radon measure by I. Gallagher and T. Gallay in [9]. These results are a byproduct

of the remarkable large-time asymptotics results obtained by Gallay and Wayne in

[11].

We now address the problem of uniqueness of the limit flow. Trying to prove

that our solution verifies the conditions imposed in [9] is not the shortest way to

deal with this issue since in that result, the vorticity is supposed to be bounded

in L1 and we have no L1 a priori bounds for vorticity. On the other hand, since

the circulation γ is small, our solution falls within the setting of the small data

uniqueness results of [4, 14, 16]. There, among other things, uniqueness is proved

in the class of small solutions belonging to the weighted in time space used in Section

6. Adapting those proofs to our case requires to prove that the limit solution is a

mild solution, i.e. a solution of the integral version of the Navier-Stokes equations;

this is what we are dealing with in the sequel.

We first collect additional information on the limit flow u. Recall that (10.3)

claims that

(11.1) u− F ∈ L∞loc((0,∞);L2(R2)),

where F is a time-independent divergence-free smooth vector field which belongs

to Lp for all p ∈ (2,∞] and such that ∇F and 4F belong to L2 ∩ L∞. Next, the

a priori estimates given in Theorem 16 imply immediately that

(11.2) ∇u ∈ L2
loc((0,∞);L2).

Next, we go back to the proof of Lemma 12 and, with the notations of that Lemma,

we observe that ‖uε − vε‖4,T ≤ ‖vε‖4,T . Indeed, the estimate (6.11) claims that

‖uε − vε‖4,T is bounded by r1, the smallest root of X2 +
(
‖vε‖4,t − ν3/4

C

)
X +

‖vε‖24,t = 0. On the other hand, one easily checks that under the assumption (6.8),

‖vε‖4,T lies between the two roots of the above equation, so ‖uε − vε‖4,T ≤ r1 ≤
‖vε‖4,T . Using also (6.9), we finally deduce that the limit velocity verifies that

(11.3)

∃T0 > 0, ‖u‖4,T ≡ sup
0<t≤T

t
1
2−

1
4 ‖u(t, ·)‖L4(R2) ≤ C(γ + o(1)) ∀0 < T ≤ T0,

where o(1) denotes a quantity that goes to 0 as T → 0 independently of γ. We now

state the uniqueness result that completes the proof of Theorem 1.

Proposition 25. There exists a constant γ0 > 0 such that if |γ| < γ0, then there

exists at most one global solution in the sense of Definition 21, verifying the regu-

larity assumptions (11.1), (11.2), (11.3) and with initial velocity u0 = K∗ω0 +γH.
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Proof. As explained above, we need to prove that u is a mild solution. The argu-

ment is pretty standard, so we will omit some of the details. From Definition 21,

we know that

(11.4) ∂tu− ν4u+ P(u · ∇u) = 0

in the sense of distributions. Here P denotes the Leray projector. From (11.3)

we deduce that P(u · ∇u) ∈ L1
(
(0, T0);H−1

)
and 4u ∈ L1

(
(0, T0);W−2,4

)
. Since

H−1 ↪→ W−2,4, we infer from (11.4) that ∂tu ∈ L1
(
(0, T0);W−2,4

)
so that u ∈

C0
(
[0, T0];W−2,4

)
.

Let t0 ∈ (0, T0) and set ũ = u − F . Relations (11.1) and (11.2) clearly imply

that ũ ∈ L∞loc

(
(0,∞), L2

)
∩ L2

loc

(
(0,∞),H1

)
. By interpolation, we also have that

ũ ∈ L4
loc

(
(0,∞),H

1
2
)
. Since a product of two H

1
2 functions is an L2 function,

we now deduce that ∂tũ = ν4u − P(u · ∇u) ∈ L2
loc

(
(0,∞),H−1

)
. Combining this

with the information that ũ ∈ L∞loc

(
(0,∞), L2

)
∩ L2

loc

(
(0,∞),H1

)
, we deduce in a

classical manner that ũ ∈ C0
(
(0,∞), L2

)
.

Next we write (11.4) under the form

∂tũ− ν4ũ = G ≡ ν4F − P(u · ∇u).

Clearly G ∈ L2
(
(t0, T0); Ḣ−1

)
, where Ḣ−1 is the usual homogeneous Sobolev space.

We consider G to be given and solve the above equation. The standard L2 theory

for the heat equation on the time interval [t0, T0] says that there is exactly one

solution ũ ∈ C0
(
[t0, T0], L2

)
∩L2

(
(t0, T0),H1

)
and this solution verifies the integral

form of the equation

ũ(t) = e(t−t0)ν4ũ(t0) +
∫ t

t0

e(t−s)ν4G(s) ds.

Going back to u, we deduce that u verifies the integral form of (11.4):

(11.5) u(t) = e(t−t0)ν4u(t0)−
∫ t

t0

div e(t−s)ν4 P(u⊗ u)(s) ds.

Above, the Leray projector P is applied along the rows of the matrix u⊗u. We use

standard estimates for the fundamental solution of the heat operator to conclude

that

‖div e(t−s)ν4 P(u⊗ u)(s)‖L2 ≤ C(t− s)− 1
2 ‖P(u⊗ u)(s)‖L2 ≤ C(t− s)− 1

2 s−
1
2 ‖u‖24,t

Since the function (0, t) 3 s 7→ (t − s)−
1
2 s−

1
2 is integrable, we deduce that the

integral
∫ t

0
div e(t−s)ν4 P(u⊗ u)(s) ds is convergent in L2 so that

lim
t0↘0

∫ t

t0

div e(t−s)ν4 P(u⊗ u)(s) ds =
∫ t

0

div e(t−s)ν4 P(u⊗ u)(s) ds in L2.
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Next, denoting by E(t) the convolution kernel of etν4, we clearly have that, as

t0 ↘ 0, E(t− t0) converges to E(t) in the class of Schwarz S. Recalling that u(t0)

converges to u0 in W−2,4, we deduce that, when t0 ↘ 0, e(t−t0)ν4u(t0) converges

to etν4u0 in S ′, the space of tempered distributions. Letting t0 ↘ 0 in (11.5) we

infer that

u(t) = etν4u0 −
∫ t

0

div e(t−s)ν4 P(u⊗ u)(s) ds.

In other words, u is a mild solution of the Navier-Stokes equations on [0, T0]. Lo-

cal uniqueness now follows with similar arguments as in [14]. We briefly recall

the argument for the convenience of the reader. Let u1 and u2 be two solutions.

Subtracting the equations for u1 and u2 one obtains

(u1 − u2)(t) =
∫ t

0

div e(t−s)ν4 P[(u2 − u1)⊗ u2 + u1 ⊗ (u2 − u1)](s) ds.

With an argument analogous to that of the proof of Lemma 12, we get

‖u1 − u2‖4,t ≤ C0‖u1 − u2‖4,t(‖u1‖4,t + ‖u2‖4,t),

for some constant C0. According to (11.3), if γ and T are sufficiently small, one

has that ‖u1‖4,T + ‖u2‖4,T ≤ 1
2C0

. We deduce that ‖u1 − u2‖4,T ≤ 1
2‖u

1 − u2‖4,T

which of course implies that u1 = u2 up to time T if the circulation γ is sufficiently

small.

Uniqueness starting from time T is similar to the uniqueness of finite energy solu-

tions of the Navier-Stokes equations. Indeed, given that u1−u2 ∈ C0
(
[T,∞);L2

)
∩

L2
loc

(
[T,∞);H1

)
, one can multiply the equation of u1−u2 by u1−u2 and integrate

in space and from T to some t > T to obtain that

‖u1 − u2‖2L2 + 2ν
∫ t

T

‖∇(u1 − u2)‖2L2 = −2
∫ t

T

∫
R2

(u1 − u2) · ∇u2 · (u1 − u2)

≤ 2
∫ t

T

‖u1 − u2‖2L4‖∇u2‖L2

≤ C

∫ t

T

‖u1 − u2‖L2‖∇(u1 − u2)‖L2‖∇u2‖L2

≤ ν

∫ t

T

‖∇(u1 − u2)‖2L2 + C

∫ t

T

‖u1 − u2‖2L2‖∇u2‖2L2 .

Global uniqueness now follows from the Gronwall lemma. �

12. Conclusions

The purpose of this section is to interpret what we have done in a broader context

and to point out some directions for improvement and further work. Our basic

problem was to find conditions under which the presence of a single small obstacle

could be ignored in the modelling of large scale flow. The precise formulation we
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used, working in the unbounded exterior domain and fixing the large scale flow

by choosing an initial vorticity ω0 and a circulation γ, was convenient from the

mathematical point of view, although perhaps not physically natural.

One natural issue to explore is the possibility that the circulation γ might depend

on the size of the obstacle. The circulation is a passive parameter in our analysis,

and it is easy to see that the limit flow would depend on γ(ε) only through its limit

as ε→ 0. From the physical interpretation of the case γ(ε) 6= 0, given in Section 5,

together with the natural scaling of this problem, we can see that the cases γ(ε) = 0

or γ(ε) → 0 are by far the most physically interesting situations. However, there

would have been no substantial simplification of the argument by restricting our

problem to the case γ(ε) = o(1). Moreover, the situation in which γ(ε) = O(1)

is mathematically very interesting. Indeed, the smallness condition on the initial

circulation only appears when we assume γ(ε) = O(1). Also, there is a discrepancy

between the results obtained for the inviscid and viscous cases when γ(ε) = O(1),

which suggests that the limits ε→ 0 and ν → 0 do not commute.

We have assumed throughout that ω0 was smooth and compactly supported.

How much regularity on ω0 did we really use? The answer is none. We actually

needed u0 bounded in L2
loc and L2,∞ and nothing else. We contrast this with the

inviscid argument, where we needed ω0 in Lp, p > 2.

Let us turn to some problems which arise naturally from our work. One par-

ticularly interesting question is the issue of considering both the viscosity and the

obstacle small. This should be a difficult problem, because the wake due to an

obstacle becomes more pronounced and turbulent as viscosity vanishes. It is well-

known that, for full plane flow, one can take the vanishing viscosity limit, obtaining

solutions of the incompressible 2D Euler equations, see [3, 8, 21]. In the presence of

a material boundary, the vanishing viscosity limit is a classical open problem, even

if the flow is very smooth. The difficulty is due to the boundary layer. The prob-

lem of taking the vanishing viscosity limit outside a very small obstacle interpolates

nicely between the full plane result and the open problem of taking the vanishing

viscosity limit in the presence of a fixed material boundary. In fact, this question

is one of the main motivations of the present work and it is still under consider-

ation by the authors. Taking into account the result obtained in this paper it is

clear that one should first pursue the small viscosity problem in the case γ(ε) = 0

or γ(ε) = o(1) as ε → 0, since the smallness condition in our convergence result

gets more restrictive as viscosity vanishes. With this future work in mind we have

included the specific dependence of our estimates on viscosity for as long as it was

practical.
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A second problem is to extend our analysis to velocity fields which are constant

at infinity, in order to include the classical case of a material body moving in a fluid

with roughly constant speed.

Yet another problem that arises from our work is to remove the smallness con-

dition on the initial circulation. The parallel between our convergence problem

and uniqueness for the limit flow suggests a strategy. Is it possible to adapt the

entropy-entropy flux techniques used by Gallay and Gallagher for the uniqueness

problem to the small obstacle asymptotics?

A fourth problem is to obtain an asymptotic description of the correction term in

the small obstacle limit, i.e. a description of the “wake” associated with the small

obstacle. Finally, one can consider a whole host of related problems, described

loosely as the study of limit flows in singularly perturbed domains. For instance,

one can study limit flows in a bounded domain with one or more small obstacles,

or in a domain composed of a small neck joining two fat domains, or in a domain

having a long thin tail, etc.
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