Licence de Mathématiques, 3ème année Parcours «Mathématiques générales et applications» Calcul différentiel et analyse complexe Examen terminal Jeudi 11 mai 2017 – Durée : 3h

Le matériel électronique (smartphone, calculatrice, etc.) et les documents sont interdits.

Exercice 1. Soit $\varphi : \mathbb{R}^2 \to \mathbb{R}^2$ l'application définie par

$$\varphi(x) = \left(\sin\left(\frac{x_2}{2}\right) - x_1, \sin\left(\frac{x_1}{2}\right) - x_2\right).$$

- a) Justifier que φ est de classe C^1 et calculer sa différentielle.
- b) Montrer que $D\varphi(x)$ est inversible pour tout $x \in \mathbb{R}^2$.
- c) Montrer l'inégalité $\left|\sin\left(\frac{a}{2}\right)-\sin\left(\frac{b}{2}\right)\right| \leq \frac{|a-b|}{2}$ pour tout $a,b\in\mathbb{R}$.
- d) Soit $y \in \mathbb{R}^2$. On définit $T : \mathbb{R}^2 \to \mathbb{R}^2$, $T(x) = \varphi(x) + x y$. On munit \mathbb{R}^2 de la norme $||x|| = |x_1| + |x_2|$. Montrer l'inégalité

$$||T(x) - T(x')|| \le \frac{||x - x'||}{2}.$$

- e) Montrer que φ est un C^1 difféomorphisme de \mathbb{R}^2 dans \mathbb{R}^2 .
- f) L'application ϕ est-elle un biholomorphisme de \mathbb{R}^2 dans \mathbb{R}^2 ?
- g) Déterminer explicitement $D(\varphi^{-1})(p)$ où $p = (1 \frac{\pi}{2}, \frac{1}{\sqrt{2}} \pi)$.

Exercice 2.

a) Étant donnés deux nombres complexes z_1 et z_2 , montrer que $e^{z_1} = e^{z_2} \iff z_1 - z_2 \in 2i\pi\mathbb{Z}$.

On rappelle que la fonction tangente est définie par tan $=\frac{\sin}{\cos}$.

- b) Montrer que le domaine de définition de tan est $D := \mathbb{C} \setminus \{\frac{\pi}{2} + k\pi, \ k \in \mathbb{Z}\}.$
- c) Montrer que pour tout $z \in D$, $\tan(z) = -i\frac{e^{iz} e^{-iz}}{e^{iz} + e^{-iz}}$.
- d) Montrer que pour tout $z \in D$, $\tan'(z) = 1 + (\tan(z))^2$.

Étant donné un ouvert U de \mathbb{C} , on appelle détermination holomorphe de la fonction arctangente sur U toute fonction holomorphe f sur U à valeurs dans $D = \mathbb{C} \setminus \{\frac{\pi}{2} + k\pi, \ k \in \mathbb{Z}\}$ telle que pour tout $z \in U$, $\tan(f(z)) = z$.

- e) Étant donné un ouvert U de \mathbb{C} , montrer que s'il existe une détermination holomorphe de la fonction arctangente sur U alors $-i \notin U$ et $i \notin U$.

 Indication: on pensera à dériver.
- f) Soit U un ouvert de \mathbb{C} ne contenant ni i ni -i. Montrer que les assertions suivantes sont équivalentes.
 - (i) f est une détermination holomorphe de la fonction arctangente sur U.
 - (ii) f est une fonction holomorphe sur U telle que pour tout $z \in U$, $e^{2if(z)} = \frac{1+iz}{1-iz}$ (autrement dit, 2if est une détermination holomorphe du logarithme de $z \mapsto \frac{1+iz}{1-iz}$).

- g) Soit U un ouvert **connexe** de \mathbb{C} ne contenant ni i ni -i. Montrer que si f et g sont deux déterminations holomorphes de arctangente sur U alors il existe $k \in \mathbb{Z}$ tel que pour tout $z \in U$, $g(z) = f(z) + k\pi$.
- h) Notons $A = \{iy; y \in \mathbb{R}, |y| \ge 1\}$. Pour $z \in \mathbb{C} \setminus \{-i, i\}$, montrer que

$$z \in A \iff \frac{1+iz}{1-iz} \in \mathbb{R}^-.$$

i) Soit $U = \mathbb{C} \setminus \{iy; y \in \mathbb{R}, |y| \ge 1\}$. Construire toutes les déterminations holomorphes de l'arctangente sur U.

Exercice 3. Soient 0 < a < 1 et f la fonction définie par l'expression

$$f(z) = \frac{\exp(az)}{\exp(z) - 1} - \frac{1}{z}.$$

- a) Montrer que 0 est une fausse singularité pour f et déterminer la valeur du prolongement de f en 0.
- b) Déterminer les pôles de f, leur ordre ainsi que les résidus correspondants.
- c) Soit z = x + iy.
 - (i) Montrer que si $y = (2k+1)\pi$, $k \in \mathbb{Z}$, alors

$$\left|\frac{\exp(az)}{\exp(z)-1}\right| = \frac{e^{ax}}{e^x+1}.$$

(ii) Montrer que si $x \neq 0$ alors

$$\left|\frac{\exp(az)}{\exp(z)-1}\right| \le \frac{e^{ax}}{|e^x-1|}.$$

d) Pour $n \in \mathbb{N}$, on désigne par A_n le carré centré en l'origine et dont l'un des sommets est $\pi(2n+1)(1+i)$. Montrer qu'il existe une constante C indépendante de n telle que $|f(z)| \le C$ pour tout $z \in \partial A_n$ et $n \in \mathbb{N}$.

Soit $z_0 \neq 2k\pi i$ pour tout $k \in \mathbb{Z}$.

- e) Déterminer les pôles de la fonction $z\mapsto \frac{f(z)}{z(z-z_0)}$, leur ordre ainsi que les résidus correspondants.
- f) Soit $n \in \mathbb{N}$ tel que $z_0 \notin \partial A_n$. Déterminer la valeur de l'intégrale

$$\int_{\partial A_n} \frac{f(z)}{z(z-z_0)} \, dz$$

où ∂A_n est parcouru dans le sens direct (on discutera suivant les valeurs de n et z_0).

g) Montrer que

$$\lim_{n\to\infty}\int_{\partial A_n}\frac{f(z)}{z(z-z_0)}\,dz=0.$$

h) Montrer enfin que

$$f(z_0) = z_0 \sum_{k=-\infty}^{+\infty} \frac{\lambda_k}{z_0 - 2k\pi i},$$

où les λ_k sont des nombres complexes indépendants de z_0 que l'on déterminera.