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1 Rappels et compléments de topologie des espaces vectoriels
normes

1.1 Topologie et espaces métriques

Définition 1.1 (espace topologique). Une topologie sur un ensemble X est une famille de sous-
ensembles de X qui contient ) et X et qui est stable par union arbitraire et intersection finie. Les
éléments de la topologie sont appelés ouverts. Un espace topologique est un ensemble muni d’une
topologie.
Définition 1.2 (distance, espace métrique). Soit X un ensemble. Une distance sur X est une
application d : X x X — R, vérifiant pour tout x,y,z € X :

i) d(z,y) =0 x =y (séparabilité) ;

ii) d(y,z) = d(x,y) (symétrie);

iii) d(z,z) < d(x,y) +d(y, z) (inégalité triangulaire).
Un espace métrique est un couple (X,d) ou X est un ensemble et d est une distance sur X.

Remarque. Nous avons l'inégalité triangulaire inverse suivante :
Vx»% KRS X7 |d($7 y) - d(l’, Z)| < d(yu Z)

Définition 1.3. Soit (X, d) un espace métrique, soit v € X et soit v € R%.. On appelle boule ouverte
(resp. boule fermée) de centre x et de rayon r l’ensemble

B(z,r)={y € X, d(z,y) <r}
resp. By(z,r)={y e X, d(z,y) <r}.

Les espaces métriques sont des espaces topologiques. Un ensemble A est dit ouvert si pour tout
x € A il existe € > 0 tel que B(z,e) C A. Les ensembles fermés sont les complémentaires des
ensembles ouverts.

L’adhérence d’un ensemble A, noté par A, est le plus petit fermé qui contient A. C’est aussi
I'intersection de tous les fermés qui contiennent A, ou encore I'’ensemble des limites de suites de A.

De méme, l'intérieur de A, noté par A, est le plus grand ouvert inclus dans A, ou encore I'union de
tous les ouverts inclus dans A. Un point appartient a 'intérieur de A si et seulement s’il y toute
une boule autour du point qui est dans A. Nous avons que A est fermé si et seulement s’il est égal a
son adhérence. Il est ouvert si et seulement s’il est égal a son intérieur. Les notions d’adhérence et
d’intérieur sont stables par inclusion. Nous avons que

AUB=AUB

mais seulement

ANBD>ANB
en général.
On peut définir le produit au plus dénombrable d’espaces métriques.
Définition 1.4 (produit fini d’espaces métriques). Soient (X1, d;), (Xa,ds), ..., (X, d,) un nombre
fini d’espaces métriques. Le produit de ces espaces métriques est I’ensemble X = X7 x Xo X --- x X,
munt de la distance
d(z,y) = di(z1,y1) + do(T2,92) + -+ - + du(Tn-Yn)-

Définition 1.5 (produit dénombrable d’espaces métriques). Soient (Xy, di)ren un nombre dénombrable
d’espaces métriques. Le produit de ces espaces métriques est Uensemble X = [[;—, Xy muni de la

distance .
Z 1 dy(g, yr)
261 + di(xk, yk)



1.2 Espaces normés

Dans le reste de ce manuscrit, nous noterons par K le corps R ou C.

Définition 1.6 (espace vectoriel). Un espace vectoriel sur K est un ensemble E muni de deux
opérations :
— l’addition + avec les propriétés suivantes :
elle est associative : x4+ (y +z) = (x +y) + 2 ;
elle est commutative : v +y=y+x;
il existe un élément neutre x : x +0=x;
tout © admet un unique opposé —x : x + (—x) = 0.
— la multiplication par des scalaires A € K avec les propriétés suivantes :

e Nz +y)=X r+Ay;
o Apux) = (Au)w ;

o (At )= A+
e l.-z=ux.

Définition 1.7 (norme, espace normé). On appelle norme sur E une application de E dans R,
habituellement notée || - || vérifiant pour tout x,y € E et tout A € K

a) ||z|| =0 = (z =0) (séparation) ;
b) [[Az]| = [Alllz]l (homogénéité) ;
c) |lz+yll < |lz|| + |yl (inégalité triangulaire).

Un espace vectoriel normé est un couple (E, || -||) ot E est un espace vectoriel et || - || est une norme
sur B.
Un espace normé est aussi un espace métrique pour la distance d(z,y) = ||z — y||. Nous avons la

réciproque suivante de l'inégalité triangulaire :

[l = llyll] < fle =yl

Définition 1.8 (normes équivalentes). Deux normes || - ||1 et || - |2 sont dites équivalentes s’il existe
deux constantes Cy,Cy > 0 telles que

[zl < Ciflllz < Colllly V. (1.1)

On vérifie aisément que deux normes équivalentes engendrent la méme topologie.

Exemples.

— L’espace R? muni de
d

1
el = (3 lwil")?
i=1
sil<p<oo,ou

[Z]|oo = max |z
1<i<d

sl p = 00, est un espace normé.
— L’espace 7 des suites de puissance p sommable : 7 = {x = (x,), ; > |z,/P < co} muni de

n>0
1
ol = (D leal?) "

n>0

la norme

Sip = oo, £°° est 'espace des suites bornées muni de la norme
)
|]loc = sup |@y|.
n>0

On peut aussi munir /* de la norme || - ||, pour tout g > p.
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— L’espace LP(£2) (€ est un espace mesuré o-fini) muni de

1l = / Yok

]l = supess

sil<p<oo,ou

sl p = 00, est un espace normé.

— Si X est un ensemble quelconque, l'espace des fonctions bornées de X sur K muni de || f|| =
supy |f| est un espace normé.

Cela résulte des deux inégalités suivantes :

Proposition 1.9 (inégalité de Holder). Soient 1 < p,q,r < oo tels que - =
g € L% alors fge L" et

1fgller < 1LFll 2o llgllze-

L’inégalité de Minkowski suivante nous permet d’affirmer que les LP sont des espaces normés.

Proposition 1.10 (inégalité de Minkowski). Soit 1 < p < oo et f,g € LP. Alors f + g € LP et

1f +gllee < [fllze + llgllze-

Remarquons que 7 est un cas particulier de LP(€) : si Q@ = N muni de la mesure de comptage.
Autre cas particulier important : £ ouvert de R muni de la mesure de Lebesgue.

1.3 Complétude, espaces de Banach

Définition 1.11. — Une suite x,, dans un espace métrique est dite de Cauchy si d(x,, Tmy) — 0

quand m,n — oco. C’est-a-dire que pour tout € > 0 il existe N € N tel que d(x,, x,,) < € pour
tout m,n > N.

— Un espace métrique est dit complet si toute suite de Cauchy est convergente.

— Un espace de Banach est un espace normé complet.

— Un sous ensemble d’un espace métrique est dit complet sl est complet en tant qu’espace
métriqgue muni de la métrique induite. Plus précisément, toute suite de Cauchy de l’ensemble
doit converger vers un élément de l’ensemble.

Un ensemble complet est toujours fermé. Dans un espace complet, un ensemble est fermé ssi il
est complet.
Nous avons la caractérisation suivante de la complétude d’un espace normé en terme de séries.

Proposition 1.12. Soit E un espace normé. L’espace E est complet si et seulement si toute série
absolument convergente (c’est-a-dire si la série des normes converge) est convergente. C’est-a-dire
E est un espace de Banach ssi on a Uimplication suivante : Y -, ||x,|| converge implique Y- -, n
converge.

Exemples.
— R? muni de || - ||,
1
— (? = (*(N; K) muni de ||z, = (307, |2a|P)”. Mais ce n’est pas un espace de Banach si on le
munit d’une norme || - ||, avec ¢ # p. Par exemple, la suite des troncatures de (1), est de
Cauchy pour la norme || - ||, masi ne converge pas dans (.

— Si (9, i) est un espace mesuré o-fini alors LP(€2) est un espace de Banach pour tout 1 < p < oc.
— L’espace des fonctions bornées sur un ensemble arbitraire muni de la norme du sup est un
espace de Banach.



— Plus généralement, si X est un ensemble arbitraire et E est un espace de Banach alors
BXE)={f: X = E; |fllee = supgex [|f(2)||p < oo} muni de || - ||g est un espace
de Banach.

— L’espace C°([0,1]) muni de la norme || - ||z» est un espace de Banach pour p = oo mais n’est
pas un espace de Banach si p < oc.

1.4 Applications linéaires et continues. Dual

Proposition 1.13. Soit (E,|| - ||g) et (F,| - ||r) deuz espaces vectoriels normés. Une application
linéaire f : E — F est continue si et seulement si il existe une constante M > 0 telle que

Ve € E, ||f(x)|lr < M|z g

Corollaire 1.14. Deuz normes sur un espace vectoriel E définissent les mémes ouverts si et seulement
st elles sont équivalentes.

Définition 1.15. Les normes || - ||g et || - ||r €tant fixées, on note L (E; F) lespace des applications
linéaires continues de E dans F. On appelle dual topologique de E et on note E' = £ (F;K)
l’espace des formes linéaires continues sur FE.

Proposition 1.16. L’espace L (E; F) est un espace normé avec la norme suivante :

f(z)||r
1l = sup e o v @l = sup [F@)lr = sup [f@)]r
«20  ||z||E 2]l p=1 2] £ <1 2]z <1

=inf{M ; Vo € E,[|f(2)l[r < Mllz|g} = min{M ; Vo € E,|[f(z)][r < Mlz|g}
Nous avons toujours l'inégalité

Lf @)l < 1 fllz@:pllzle

La norme d’une application linéaire et continue est d’ailleurs la plus petite constante C' avec la
propriété que

If(@)r < Cllz|le.

Nous avons que la norme de la composition est majorée par le produit des normes.

Proposition 1.17. Si (E, || - ||g), (F,|| - |lr) et (G, | - |lc) sont trois espaces vectoriels normés alors
pour f € L(E;F) et g € Z(F;G) la composée go [ appartient & L (F;G) et on a

lg o fllzea < 9llzwEalfllz@Er)-

En particulier, cette norme sur Z(F) = Z(FE; E) est une norme d’algébre.
Fin du cours 1 (05/09/2023).

Exemples.

a) Le dual d'un espace de dimension fini s’identifie a lui-méme.

b) Le dual de ¢? s’identifie & ¢ pour tout 1 < p < oo. Ici % + L = 1. (Preuve en TD)

P
¢) Si (Q, ) est un espace mesuré o-fini, alors pour tout 1 < p < oo nous avons que LP () est
inclus dans (LP(€2))" ou % + z% = 1. Si p < 0o on a méme l'égalite L' (Q) = (LP(R)) (sans
preuve).



1.5 Compacité

Définition 1.18 (compact). Un ensemble est dit compact si de tout recouvrement par des ouverts
on peut extraire un sous-recouvrement fini. De maniére équivalente, de toute suite de [’ensemble on
doit pouvoir extraire une sous suite convergente dans [’ensemble.

Voici quelques propriétés des compacts.

Proposition 1.19. a) Un compact est toujours fermé et complet.
b) L’image d’un compact par une application continue est un compact.
c) Une fonction réelle continue sur un compact est bornée et atteint ses bornes.

d) Une fonction continue sur un compact est uniformément continue.

Définition 1.20. a) Un ensemble est dit relativement compact si son adhérence est compacte.

b) Un ensemble est dit précompact si pour tout € > 0 on peut le recouvrir d’un nombre fini de
boules de rayon ¢.

Proposition 1.21. Un ensemble est compact ssi il est précompact et complet.

De méme, dans un espace complet précompact et relativement compact veut dire la méme chose.
Enfin, produit de compacts est un compact.

Théoréme 1.22. Un produit au plus dénombrable d’espaces métriques compacts est un espace métrique
compact.

1.6 Dimension finie

Les espaces normés de dimension finie ont un certain nombre de propriétés qui les distinguent
des autres espaces normés. En voici quelques-unes.

Théoréme 1.23 (Bolzano-Weierstrass). Dans un espace normé de dimension finie, les ensembles
compacts sont les ensembles fermés et bornés.

On a aussi la réciproque.

Théoréme 1.24 (Riesz). Soit (E,|| - ||) un espace normé (pas forcément de dimension finie). La
boule unité fermée est compacte si et seulement si E est de dimension finie.

Voici un théoréme qui regroupe d’autres propriétés des espaces normés de dimension finie.

Théoréme 1.25. a) Dans un espace normé de dimension finie toutes les normes sont équivalentes.
b) Dans un espace normé quelconque, tout sous-espace vectoriel de dimension finie est fermé.

c) Toute application linéaire définie sur un espace normé de dimension finie & valeurs dans un
espace normé quelconque (pas forcément de dimension finie) est continue.

1.7 Séparabilité et convergences faibles
Rappelons maintenant la notion d’espace séparable.

Définition 1.26. Un espace normé est dit séparable s’il existe un sous-ensemble dénombrable et
dense.

Définition 1.27. Soit E un espace normé sur R ou C.
— On dit que x, — x faiblement dans E, et on note x,, — x, si pour tout f € E' nous avons que



— On dit que f, — [ faiblex dans E' si f,(x) — f(z) pour tout x € E (c’est-a-dire si la suite
converge simplement).

Pour souligner la distinction entre la convergence en norme et les diverses convergences faibles,
la convergence en norme est aussi appelée convergence forte car c’est une notion plus forte que la
convergence faible.

Voici maintenant une proposition qui regroupe quelques propriétés des convergences faibles.

Proposition 1.28. Soit E' un espace normé.
a) Si x, — x en norme (convergence forte) alors x, — x.
b) Si f, = f en norme dans E' alors f, — f faiblex.

Si E est de dimension finie, nous avons de plus :

c) x, = x si et seulement si x, — x fortement ;

d) fn — f faiblex si et seulement si f, — f fortement.

Le théoréme qui suit est la motivation principale pour introduire les notions de convergence faible.
C’est la version en dimension infinie du théoréme de Bolzano-Weierstrass qui dit qu’en dimension
finie de toute suite bornée on peut extraire une sous-suite convergente. En dimension infinie, cela
reste plus ou moins vrai a ceci prés que la suite extraite va converger faiblement et non fortement.

Théoréme 1.29 (Banach-Alaoglu, cas séparable). Soit E un espace normé séparable. De toute suite
bornée de E' on peut extraire une sous-suite qui converge faiblex.

Remarque. L’hypothése de séparabilité est bien nécessaire pour que la conclusion de ce théoréme
reste vraie. En effet, sur ’espace £*° des suites bornées muni de la norme || - ||, les projections P, sur
la n-éme composante définies par © = (2,)n>1 — Pn(z) = x, forment une suite bornée d’applications
linéaires et continues qui n’admet pas de sous-suite convergente faiblex.

Fin du cours 2 (08/09/2023).

1.8 Séparabilité des espaces L”

Nous allons maintenant nous intéresser a la séparabilité des espaces LP. Celle-ci est trés importante
dans la mesure ou c’est elle qui va nous permettre d’extraire des sous-suites (faiblement) convergentes
des suites bornées grace au théoréme de Banach-Alaoglu.

Nous nous plagons dans le cadre d’un ouvert €2 de R avec la mesure de Lebesgue.

Théoréme 1.30. L’espace LP(2) est séparable pour tout 1 < p < oo.

La preuve repose sur la densité de C?(Q) dans L?() et de la séparabilité de espace des fonctions
continues sur un compact.

Proposition 1.31. Pour tout K compact l'espace C°(K) (muni de la norme L™ ) est séparable.

La séparabilité des espaces LP nous permet d’appliquer le théoréme de Banach-Alaoglu (théoréme
1.29). En effet, une suite bornée dans L? avec 1 < p < oo peut étre vue comme une suite bornée dans
(Lp/), oit 1 < p/ < o0o. Alors L” est séparable et le théoréme de Banach-Alaoglu (théoréme 1.29)
implique immédiatement le résultat suivant.

Théoréme 1.32. Soit Q un ouvert de R? avec la mesure de Lebesque et f, une suite bornée dans
LP(Q).

a) Si 1 < p < oo alors la suite f, admet une sous-suite qui converge faiblement dans LP(§2) : il
existe f € LP(Y) et une sous-suite f,, telle que [, fn,g — [o fg pour tout g € L¥(Q).
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b) Sip = oo alors la suite f, admet une sous-suite qui converge faiblex dans L*°(Q) : il existe
[ € L>(Q) et une sous-suite f,, telle que [ fn,g — [, fg pour tout g € L*(2).

c) Sip =1, la suite f, ne posséde pas forcément une sous-suite convergente faiblement dans
LY(9).

Si p =1, la suite f, ne posséde pas forcément une sous-suite convergente faiblement dans L'((Q).
Un contre-exemple est donné par une suite régularisante qui converge vers une masse de Dirac (dans
un sens a préciser. ..). Nous avons regardé jusqu'’ici L' comme un sous espace du dual de L*°, mais
comme L n’est pas séparable on ne peut rien dire sur les suites bornées de son dual. La bonne
maniére de procéder est en fait de regarder L'(€)) comme un sous-espace du dual de C%(Q2) qui lui
est séparable si € est borné. On peut alors de méme appliquer le théoréme de Banach-Alaoglu et
extraire de toute suite bornée dans L'(2) une sous-suite qui converge faiblex dans le dual de C%(().
On peut montrer (c’est le théoréme de Radon-Riesz) que le dual de CY(€2) est formé de mesures. On
obtient alors que de toute suite bornée dans L'(€2) on peut extraire une sous-suite qui converge au
sens des mesures. Si on veut extraire une sous-suite convergente (dans un sens raisonnable) d’une
suite bornée de L, il nous faut donc sortir de L' et se placer dans le cadre plus général des mesures.

Fin du cours 3 (15/09/2023).

2 Espaces de fonctions continues

Dans cette partie on se pose la question de la topologie des espaces de fonctions continues et de
leurs propriétés.

2.1 Topologie

Pour les fonctions continues sur un compact, c’est trés simple, elles sont nécessairement bornées
et on utilise alors la norme || - ||, ce qui en fait un espace de Banach.

Définition 2.1. Soit K un compact. On définit C°(K) = {f : K — C, f continue} et on le munit
de || flloo = supy [f] = max [f].

On a vu les années précédentes que c’est complet.
Proposition 2.2. L’espace C°(K) muni de la norme || - || est un espace de Banach.
On peut faire de méme pour les fonctions continues et bornées sur un ouvert.

Définition 2.3. Soit Q un ouvert. On définit CP(Q) = {f : Q@ — C, [ continue et bornée} et on le
munit de || f|loo = supg |f| = maxq |f].

Comme au-dessus, C?(€2) muni de la norme || - ||o, est un espace de Banach.

Malheureusement, les fonctions continues sur un ouvert ne sont pas forcément bornées. Dés lors,
quelle topologie mettre sur cet espace? Il n’y a pas de norme qui puisse convenir. Il y a cependant
une distance. .

Soit €2 un ouvert de R™ et K; une suite exhaustive de compacts : K; CK ;1 et Q =,y K;. On
introduit la semi-norme p;(f) = supy, | f|. La distance sur C°(2) est définie par

CES W i)

Cela en fait un espace métrique complet dont la convergence est la convergence uniforme sur les
compacts. On appelle d’ailleurs cette distance la distance de la convergence uniforme sur les compacts.



Nous pouvons aussi nous intéresser a d’autres espaces de fonctions réguliéres, comme par exemple
Ck(Q2) et C=(Q). L’étude est entiérement similaire en utilisant la famille dénombrable de semi-normes
suivante :

Paj(f) =sup[0°f]
K;

ol € N" est un multi-indice et 0% = (6%1)&1 . (%)a". Ici j varie dans N, et dans le cas de C*(Q)

il faut aussi imposer la condition |a| = |ay |+ -+ +|a,| < k. Les espaces C*(Q) et C*(£2) deviennent
alors des espaces métriques complets dont la convergence est la convergence uniforme sur tous les
compacts de 2 de toutes les dérivées (d’ordre < k dans le cas de C*(Q)).

2.2 Densité des polynomes

Le but de cette partie est de montrer que les polynomes sont denses dans C°(K). Nous avons
besoin de deux résultats préliminaires. Le premier est un résultat d’extension de fonctions continues.

Théoréme 2.4 (Tietze). Soit 2 un ouvert de R™ et K un compact de ). Toute fonction continue
sur K s’étend a une fonction continue a support compact définie sur 2.

Le deuxiéme affirme la densité des polynémes dans le cas du cube [0, 1]".
Théoréme 2.5 (Bernstein). Soit f : [0, 1]" — C continue. On introduit le polynome de Bernstein
Pu(X Z Z CP...oinf ( ) 2 (1 — )Ml (1 — @) E
J1= =0 ]n—O
Alors Py tend vers f uniformément sur [0, 1]".

On en déduit via un changement de variables que les polyndémes sont denses dans les fonctions
continues sur un pavé. Comme tout compact est inclus dans un pavé, le théoréme de Tietze nous
permet de nous ramener au cas d’un pavé. Nous avons obtenu le théoréme suivant.

Théoréme 2.6 (Weierstrass). Soit K un compact de R"™. Les polynémes sont denses dans C°(K).

Fin du cours 4 (22,/09,/2023).

2.3 Compacité

Nous abordons enfin la question de la compacité dans les espaces de fonctions continues. D’abord
une définition.

Définition 2.7. Soient E, F' deux espaces métriques, f : E — F et F C C°(E, F).

a) La fonction f est continue si pour tout x et € > 0 il existe n > 0 tel qu’on ait implication

d(z,y) <n=d(f(z), f(y)) <e.

b) La famille F est dite équicontinue si le n au-dessus ne dépend pas de f € F

¢) La famille & est dite uniformément équicontinue si le n au-dessus ne dépend pas de f € F
ni de x.

Si espace de départ est compact, alors I’équicontinuité équivaut & 'uniforme équicontinuité.

Proposition 2.8. Soient E compact métrique et F métrique. Une famille & C C°(E,F) est
équicontinue si et seulement si elle est uniformément équicontinue.
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Voici maintenant le théoréme d’Ascoli qui donne une condition nécessaire pour la compacité de
I’espace des fonctions continues.

Théoréme 2.9 (Ascoli). Soit K un espace métrique compact et X un espace métrique. On se donne
une famille F de fonctions continues de K dans X et on munit C°(K,X) de la distance de la
convergence uniforme. La famille F est relativement compacte si et seulement si les deuz conditions
sutvantes sont vérifiées :

a) F est ponctuellement relativement compacte : pour tout v € K Uensemble F (x) = {f(x); f €
F} est relativement compact.

b) F est équicontinue, c’est-a-dire les fonctions de F sont uniformément continues avec les
meémes constantes : pour tout € > 0 il existe 6 > 0 tel que sid(x,y) < J alors d(f(x), f(y)) <e
pour tout f € F.

Remarque. Souvent on travaille avec des fonctions bornées a valeurs dans R”. Dans ce cas la
condition de ponctuellement relativement compact est automatiquement vérifiée. La condition principale
est donc I’équicontinuité.

3 Espaces de Hilbert

Les espaces de Hilbert sont essentiellement des espaces de dimension infinie qui ont un produit
scalaire similaire & celui de R™. Définissons d’abord la notion de produit scalaire.

Définition 3.1. Soit H un espace vectoriel sur K = R ou C. Un produit scalaire sur H est une
application (-,-) : H x H — K avec les propriétés suivantes :

— pour tout x Uapplication x — (x,y) est linéaire ;

— pour tout =,y nous avons (x,y) = (y,x) (symétrie) ;

— pour tout x nous avons que (x,x) > 0 avec égalité seulement si x = 0.
Un espace vectoriel muni d’un produit scalaire est dit espace préhilbertien.

Remarques.
— Un produit scalaire a la propriété que (x, \y) = A(z,%). On dit que I'application y — (x,y)
est antilinéaire.
— Dans certains ouvrages les roles de x et y sont inversés, c’est-a-dire que le produit scalaire est
défini comme étant linéaire en y et antilinéaire en x.
Nous avons une inégalité de Cauchy-Schwarz en dimension infinie.
Proposition 3.2 (inégalité de Cauchy-Schwarz). Soit (H, (-,-)) un espace préhilbertien. Alors

a) Nous avons linégalité de Cauchy-Schwarz suivante

[{z, 9)| < V{z,2)v/ (Y, )

avec éqalité si et seulement si x et y sont liés.
b) La quantité ||z|| = \/{x,z) définit une norme sur H.
c) Nous avons l'identité du parallélogramme suivante :
xr—
2

Ha:+y

Y 2_1 2 2
. I* = S0l + ).

2
"+
La norme est définie a partir du produit scalaire mais on peut aussi retrouver le produit scalaire

a partir de la norme. Cela se fait via 'identité de polarisation suivante :

|z +yl? — |lz — y?
(r,y) = 1
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dans le cas réel et ) 5 . g 9
2+ ylI* = llz =yl +dllz — iy|]” = allz + ay|]
4

(z,y) =
dans le cas complexe.

Définition 3.3. Un espace de Hilbert est un espace préhilbertien complet pour la norme associée.

Exemples.
— L’espace L*(€Q, u) (€ mesuré o-fini) muni de

@mzémw

est un espace de Hilbert.
— L’espace C°([0,1]; C) muni de

(ﬂg>=bélf§dx

est un espace préhilbertien sans étre un espace de Hilbert.
— L’espace £? des suites de carré sommable avec le produit scalaire

(@, y) =l
n=0

est un espace de Hilbert.

3.1 Projection et orthogonal

Un théoréme trés important dans la théorie des espaces de Hilbert est le théoréme de la projection
qui dit que dans un espace de Hilbert, la distance a un convexe fermé est atteinte en exactement un
point.

Théoréme 3.4 (projection sur un convexe fermé). Soit H un espace de Hilbert et K un convexe
fermé. Alors

a) Pour tout x € H la distance d(z, K) = inf ek ||z — y|| est atteinte en un unique point u. On
appelle u la projection de x sur K et on note uw = Pk (z).

b) La projection P (x) est caractérisée par la relation suivante
Vye K Re{x — Pg(x),y — Px(z)) <0.
¢) La projection Pk est une application 1-Lipschitzienne.

Un sous-espace vectoriel fermé est un convexe fermé, on peut donc lui appliquer le théoréme de
la projection sur un convexe fermé. Nous obtenons alors le corollaire suivant.

Corollaire 3.5 (projection orthogonale sur un sous-espace fermé). Soit H un espace de Hilbert et
F un sous-espace vectoriel fermé. Alors la projection sur F' est bien définie et on peut la caractériser
par :

u = Pp(x) si et seulement siuw € F et (x —u,v) =0 Yv € F.

On dit alors que v — Pr(x) L F (x — Pp(z) est orthogonal a F) et la projection Pr est appelée
projection orthogonale sur F'.

Définition 3.6. Soit H un espace de Hilbert et A C H un sous-ensemble. L’orthogonal de A, noté
par AL, est l’ensemble des x tels que x 1 A :

At ={z e H; (v,y) =0Vyc A}.

Fin du cours 5 (29/09/2023).
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Remarque. Si F' est un sous-espace vectoriel fermé dans un espace de Hilbert H, alors tout x € H
se décompose de maniére unique sous la forme x = 1 + x5 ot 1 € F et x5 € F*. Nous avons de
plus que [lz[|? = |21 + ||l22*.
Proposition 3.7. Soit H un espace de Hilbert et F' un sous-espace vectoriel.

a) Pour tour A C H, l'ensemble A+ est un sous-espace vectoriel fermé.

b) Ft=(F)*.

c) (FH)t =F.

d) H=Fq@F*.

e) F est dense dans H si et seulement si F+ = {0}.

3.2 Dualité

Un résultat trés important dans la théorie des espaces de Hilbert dit que le dual d'un espace de
Hilbert est lui-méme.

Théoréme 3.8 (Riesz). Soit H un espace de Hilbert et f € H'. Il existe un unique u € H tel que
f(z) = (x,u) pour tout x € H. Nous avons de plus que || f|| = ||u|| et Uapplication H' > f+— uw € H
est une biyjection isométrique antilinéaire.

Nous pouvons donc identifier H" a I'espace H qui est le méme chose que H & ceci prés que 1'on
a remplacé la loi Az par Az. Ainsi, le théoréme de Banach-Alaoglu peut s’appliquer pour obtenir le
corollaire suivant.

Corollaire 3.9. Dans un espace de Hilbert séparable, de toute suite bornée on peut extraire une

sous-suite faiblement convergente.

3.3 Adjoint

Dans ce suit on note par .Z(H) I’ensemble des applications linéaires et continues (qu’on appelle
aussi opérateurs) de H dans H. Montrons d’abord une proposition qui nous permet de définir
I’adjoint.

Proposition 3.10 (définition et existence de 'adjoint). Soit H un espace de Hilbert et T € £ (H).
Il existe un unique opérateur T* € £ (H) avec la propriété suivante :

(T'(x),y) = (=, T"(y)) Vz,y.
De plus ||T|| = |T*||. On appelle T* l’adjoint de T'.

[’adjoint pour les opérateurs joue le méme role que la transposée pour les matrices. Voici une
proposition qui regroupe quelques propriétés de 1’adjoint.

Proposition 3.11. Soit H un espace de Hilbert et S, T € £ (H). Nous avons que

a) I*=1.
b) (ST)* = T*S".
c) (T*)=T.

d) | T*T|| = |TT*|| = ||IT]>.

Remarque. L’application T+ T™ est antilinéaire.
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3.4 Base hilbertienne

Définition 3.12. Soit H un espace préhilbertien.
— Une famille {e;}icr est dite orthogonale si e; L e; pour tout i # j.

— Une famille {e;};cr est dite orthonormale si elle est orthogonale et si ||e;|| = 1 pour tout i € I.
— Une base hilbertienne est une famille orthonormale totale (les combinaisons linéaires sont
denses).

Les familles orthonormales vérifient 'inégalité de Bessel suivante.

Proposition 3.13 (inégalité de Bessel). Soit H un espace de Hilbert et {e, }n>o une famille orthonormale.
Alors cette famille est libre et on a ["inégalité de Bessel suivante :

S e P < el Ve e H.
n>0
Voici quelques propriétés d’une base hilbertienne.

Proposition 3.14. Soit H un espace de Hilbert et {e,}n>0 une famille orthonormale.

a) La suite {e,}n>0 est une base hilbertienne si et seulement si nous avons l’égalité de Bessel-
Parseval suivante :
> e =|lz|® Va e H.
n>0
b) On suppose que {e,}n>0 est une base hilbertienne. Nous avons

Vee H xr = Z<x7€n>en

n>0

Ve,y € H (z,y) = Z(xaenxya €n)-

n>0

Concernant I'existence des bases hilbertiennes, nous avons le résultat suivant d’existence dans le
cas séparable.

Théoréme 3.15. Soit H un espace de Hilbert de dimension infinie. Alors H admet une base
hilbertienne dénombrable {e,}n>o si et seulement si H est séparable.

On peut montrer que les espaces de Hilbert non séparables ont aussi des bases hilbertiennes
mais elles ne seront pas dénombrables. Il faut alors parler de familles sommables ce qui entraine des
difficultés supplémentaires. Etant donné que les espaces de Hilbert rencontrés en pratique sont en
général séparables, nous nous passerons de ces complications.

3.5 Théoréme de Lax-Milgram

Nous nous placerons dans toute cette partie dans le cas réel : K = R. Commengons par une
définition.

Définition 3.16. Soit E un espace normé et a : E x E — R une forme bilinéaire.
— a est dite continue s’il existe une constante C' > 0 telle que |a(z,y)| < C||lz||||ly|| pour tout
r,y € FE;
— a est dite symétrique si a(z,y) = a(y,z) pour tout x,y € E ;
— a est dite coercive s’il existe une constante a > 0 telle que a(x,x) > al|z||* pour tout v € E.
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Théoréme 3.17 (Stampacchia). Soit H un espace de Hilbert réel et a une forme bilinéaire, continue
et coercive sur H. Soit K C H un convexe fermé non-vide et o € H'. Il existe un unique u € K avec
la propriété suivante :

a(u,v —u) > v —u) Yve K.

Si a est de plus symétrique, alors u est caractérisé par

ue K et %a(u,u) —o(u) = {)réiir(l(%a(v,v) — (v)).

Fin du cours 6 (09/10/2023).| Lorsque K = H on obtient comme cas particulier le théoréme de

Lax-Milgram suivant.

Théoréme 3.18 (Lax-Milgram). Soit H un espace de Hilbert réel, a une forme bilinéaire, continue
et coercive sur H et f € H'. Il existe un unique u € H avec la propriété suivante :

a(u,v) = f(v) Vv e H.

St a est de plus symétrique, alors u est caractérisé par

Lo, = 5(0) = mig(La(w,0) - 7(0).

veH 2

4 Transformation de Fourier pour les fonctions

4.1 Cas des fonctions de L'
Définition 4.1. Soit f € LY(R™). On définit la transformée de Fourier de f par

for = [ e (@)

ou x - & désigne le produit scalaire habituel de R™ : x-§& = Z x;&;. On note F la transformation de
j=1
Fourier en tant qu’application, c’est-a-dire que F(f) = f.

Voici une premiére propriété de la transformation de Fourier.

Lemme 4.2 (Riemann-Lebesgue). Si f € L'(R") alors f est une fonction bornée et uniformément
continue sur R™, nulle a l'infini. De plus, nous avons la majoration || f||r= < || f|lz:-

Nous avons aussi la proposition suivante.

Proposition 4.3. Soient f,g € L'(R"). Nous avons que
a) frg=19.

Introduisons maintenant quelques notations relatives aux multi-indinces et aux dérivées dans
R™. Un multi-indice est un élément o € N™. Son module, ou sa longueur, est définie par |a| =
|ay|+- - -+]a,|. On note 0; = %, 0% =9 ... 0% et (10)* = (101)™ ... (10,)*. Aussi x® = " ... 20n
et (ix)* = (iz1)* ... (iz,)*".

Les deux propositions qui suivent montrent que la transformation de Fourier envoie les dérivées
en des puissances et les puissances en des dérivées.
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Proposition 4.4. Soit f € L'(R") tel que (1 + |z|")f € L'(R"), k € N. Alors f € C*R") et
zof = (10¢)* f pour tout |a| < k.

—_ ~

Proposition 4.5. Soit f € C*(R") tel que 0°f € L'(R™) pour tout |o| < k. Alors 0*f = (i€)*f
pour tout |a| < k.

Un exemple trés important de calcul explicite de transformée de Fourier est celui de la gaussienne :

Proposition 4.6. Soit a € C un nombre complexe de partie réelle strictement positive. Nous avons

que
]:(e—a\xlg) — (E) Ee_%
a

\ n s . . P . P oy
ot a2 = (y/a)" et \/a désigne la racine carrée de a de partie réelle positive.

On verra plus tard que cette formule reste vraie lorsque la parte réelle de a est nulle.
Fin du cours 7 (13/10/2023).

Théoréme 4.7 (formule d’inversion dans L'). Soit f € L'(R") telle que f € L'(R"). Alors

-~
-~

f(2) = @m) " F () = (2m)" / SF© e pp en

Donc, pour une telle fonction la transformation de Fourier est inversible et
F )= em) [ e de

Remarque. Sous les hypothéses du théoréme précédent, nous avons donc que la fonction f est
aussi continue et bornée.

4.2 Cas des fonctions de L2

Nous verrons dans cette partie que ’on peut définir la transformée de Fourier pour des fonctions
de L*(R™). Pour une telle fonction la formule (4.1) ne peut plus étre utilisée car 'intégrande x —
e ¢ f(x) n’est pas nécessairement intégrable. Nous allons procéder d’une autre maniére. Nous avons
besoin du lemme suivant.

Lemme 4.8. Soit ¢ € CX(R"). Alors p € L*(R") et |§||z2 = (27)2 |||z

Ce lemme nous dit que la transformation de Fourier restreinte a C2°(R") est une isométrie linéaire
a une constante prés pour la norme L2 On peut donc I’étendre par continuité a I’adhérence de C2°(R™)
dans L2 Or C2°(R") est dense dans L?, donc cette adhérence est L? tout entier. Ceci nous permet
de poser la définition suivante :

Définition 4.9. La transformation de Fourier sur L*(R™) est l’extension par continuité pour la
norme L?(R™) de F‘COO(]R") a L*(R™) tout entier.

Concrétement, si f € L*(R™) on prend une suite de fonctions f,, € C°(R") telles que f, — f
dans L*(R™) et on pose f = lim f, dans L*(R").
n—oo
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Remarque. Si f € L'(R") N L*(R") alors la transformée de Fourier de f en tant que fonction de
L'(R™) coincide avec la transformée de Fourier de f en tant que fonction de L*(R™).

Fin du cours 8 (20/10/2023).

Sur L?, la transformée de Fourier est une isométrie & une constante pres.

Théoréme 4.10 (Plancherel). Si f € L' N L2 alors f € L2 et ||fllz2 = (27)%]f||z2. De plus,
]?(x) = (2m)" f(—z). Par densité de C° dans L*, ce qui précéde reste vrai pour tout f € L*(R"). La
transformation de Fourier est donc une bijection de L?.

Lorsque f € L? la formule (4.1) n’a pas de sens. Ici fAse définit par densité de L' N L? dans L?
en posant f = klim fr ou f € L' N L? tend vers f dans L2
— 00

4.3 Classe de Schwartz (fonctions a décroissance rapide) et transformation
de Fourier

On appelle multi-indice un élément o € N". On définit 0 = 07" ...0%" = (,i)al e (af )a",

«
=it xlr |al =ar oo, al =gl

Définition 4.11. On appelle espace de fonctions a décroissance rapide ou encore classe de Schwartz
[’ensemble

S (R™) = {f € C®°(R") tel que 20" f soit bornée sur R™ Vo, f multi-indices}.

La classe de Schwartz . (R™) est un espace vectoriel métrique complet (espace de Fréchet) avec
comme distance

o) =3 T

n=1
ou
pu(f) = sup (1+ [z[)"|0%f(x)].

zJal<n

Proposition 4.12. La classe de Schwartz .#(R™) munie de la distance d est un espace vectoriel
métrique complet.

La convergence dans la classe de Schwartz équivaut & la convergence uniforme de tous les 297 f.
La transformation de Fourier est une bijection de la classe de Schwartz :

Théoréme 4.13. .7 est un isomorphisme topologique et algébrique de . dans . d’inverse

FPa) = 2m) " [ e de
La classe de Schwartz est stable par multiplication par des fonctions dites a croissance lente :
ZR") ={f € C*(R") tel que Va Im € N,C > 0,|0%f(z)| < C(1 + |z|™)}.

Voici maintenant quelques propriétés de la transformation de Fourier et de la classe de Schwartz :

Proposition 4.14. a) Soit f € ZL(R™). Alors Uapplication . (R™) 3 ¢ — fp € S (R") est
linéaire et continue sur ./ (R™).
b) Sif,g € L (R") alors f+xg € S (R™) et on a la continuité de Uapplication bilinéaire . (R™) x
SR> (f,9) = frge SR
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c) zf = (i)
d) o°f = (i&)°f
e) Soient ¢ et 1 deux fonctions a décroissance rapide. Alors
i) [§0= [t B
ii) (¢, )12 = [ @ = 2m)™" [ 9 = (2m) 7@, D)1e (Parseval)
e
w) e = (2m) "G * 1)

Fin du cours 9 (10/11/2023).

5 Distributions tempérées

5.1 Définition et premiéres propriétés

Définition 5.1. On note par #'(R"™) ou encore espace de distributions tempérées, le dual de .7,
c’est-a-dire [’ensemble

SL'(R") ={u: S(R") = C, u linéaire et continue }.
Pour v € ., p € . on note u(p) = (u, p) = (U, Y) s ».

Proposition 5.2. Nous avons [’équivalence entre les deux affirmations qui suivent :
— u . — C est distribution tempérée ;
— w est linéaire et AC > 0,m € N tels que |(u, )| < Cpn(p) pour tout ¢ € .

Avant de donner des exemples de distributions tempérées, montrons un résultat préliminaire.

Proposition 5.3. Soit Q un ouvert de R™ et f € L}, () (c’est-a-dire que f est intégrable sur tout
compact de ), ou encore f localement intégrable). On suppose que

/Qfgpzo Y € C(Q).

Alors f =0 p.p.

Nous pouvons maintenant donner des exemples de distributions tempérées :

a) Si f est une fonction telle que W € LP(R™) pour un certain p € [1,00] et m € N, on peut

définir la distribution tempérée uy associée a la fonction f par :

(ug, ) = Rnfcp Vo € S (R").

La proposition 5.3 nous permet d’identifier la fonction f a la distribution qui lui est associée.
On peut donc écrire par abus de notation (f, ) au lieu de (uy, ).

Nous avons en particulier que toutes les fonctions de LP(R™) et toutes les fonctions majorées
par un polyndéme définissent une distribution tempérée.

b) Les mesures boreliennes finies 1 définissent une distribution tempérée par (u, p) = [q. ¢ dp.
c¢) La masse de Dirac 9, définie par (d,,p) = ¢(a). Si a = 0 on note § = d.
d) La valeur principale de % sur R définie par

1 . o(x) o(r) o(x) — ¢(0)
vp —, ) = lim —~dr = —=dx ———dx.
< P xT <,0> /;v|>1 - /|;g|<1

e—0 |l“>6 X i X
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Opérations sur les distributions tempérées :

— Addition et multiplication par un scalaire.

— Multiplication par une fonction f a croissance lente. Plus précisément, soient u € .’ et
f €. On définit fu € . par (fu,p) = (u, f) Vo € L.

— Dérivation. Pour u € .7’ et a € N on définit 0%u € .7’ par (0%u, ¢) = (—1)1*l{u, 0%¢).

Si u est une fonction réguliére, alors la dérivation au sens des fonctions correspond a la
dérivation au sens des distributions.

— Convolution. On peut faire la convolution entre u € .’ et f € . en posant (u * f, ) =
(u, fxp) ot f(z) = f(—2). On peut montrer que dans ce cas la convolution est une distribution
de type fonction ux f(x) = (u(y), f(z—y)) et que cette fonction est C™ a croissance lente. Les
régles usuelles sur la dérivation s’appliquent : pour tout o € N nous avons que 0%(u x f) =
(0%u) * f =ux(0*f).

On dit que u; — u dans %" si

(uj, @) = (u, @) Yo € 7.

L’espace . est complet au sens que toute suite de . qui a la propriété que (u;, ¢) est de Cauchy
pour tout ¢ € . converge dans ..
Fin du cours 10 (17/11/2023).

5.2 Transformation de Fourier pour les distributions tempérées

La continuité de la transformation de Fourier de .¥ dans .¥ nous permet de I’étendre par dualité
a .’ de la maniére suivante :

Définition 5.4. Soit u € '(R™). On définit u € /'(R™) la transformée de Fourier de u par :
Vo € S(R?) (U, 0) = (u,@).

La bijectivité de la transformation de Fourier de . dans .¥ et la formule de sa transformée de
Fourier inverse s’étendent sans difficulté par dualité a ..

Théoréme 5.5. La transformée de Fourier est une bijection de .#'(R™) dans #'(R") d’inverse
Fliu— 2m)"F(u), ou Ve € L (R™), (1, p) = (u,p) et p(x) = p(—x).

Voici enfin quelques propriétés de la transformation de Fourier sur .#” qui s’obtiennent immédiatement
par dualité a partir des propriétés correspondantes sur ..

Théoréme 5.6. a) Siu € L' (R™) alors Vo € N nous avons que dou, = (i€)°T et z°u = (i0¢)* 0.
b) Siac S RY),uec (R alors uxa = ua

6 Distributions sur un ouvert

6.1 Définition

Les distributions tempérées ont le gros avantage d’étre adaptées a la transformation de Fourier,
mais elles ont aussi deux gros désavantages : on peut les définir sur R" seulement et il faut faire des
hypothéses sur le comportement a l'infini. Pour remédier & cela, nous introduisons les distributions
« classiques » sur un ouvert {2 arbitraire de R™.

Définition 6.1. On définit 2(Q2) = €°(2) Uespace des fonctions C*> a support compact sur 2. On
dit que p; — ¢ dans Z(Q) si pour tout a on a que 0%p; — 0%p uniformément et si les p; sont @
support dans un méme compact : il existe un compact K C Q) tel que supp p; C K pour tout j.
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Une distribution sur  est alors définie comme un élément du dual de Z(€2). Comme nous n’avons
pas défini la topologie de Z(€2), ici la notion de dual doit étre comprise par rapport a la convergence
des suites. Plus précisément, nous avons la définition suivante :

Définition 6.2. L’espace 2'(Q) des distributions sur Q est formé des applications u : 2(2) — C
linéaires et séquentiellement continues : si p; — ¢ dans Z(Q) alors u(p;) — u(p). Comme pour les
distributions tempérées, on note u(y) = (u, @) = (u, )9 g.

On peut caractériser les distributions dans 2’(2) en termes de p,,(p) = sup [0%p(x)].

z,|al<m

Proposition 6.3. Nous avons [’équivalence entre les deux propriétés suivantes :
a) ue 2'(Q);

b) u: 2(Q) — C linéaire et pour tout compact K C § il existe C > 0 et m € N tels que
[{(u, )| < Cpm(p) pour tout p € P(2) a support dans K.

Exemples de distributions sur (2 :

— Toute fonction f € L, () définit une distribution uy € 2'(Q) par (us,p) = [, fe. La
proposition 5.3 nous permet d’identifier f et uy. On note aussi (uy, ) = (f,¢) = [, fe.

— Les mesures p localement finies sur © définissent une distribution par (u, ) = fQ pdpu.

— La masse de Dirac 0, définie par (d,, ) = ¢(a). Si a = 0 on note § = d.

— Toute distribution tempérée dans .#/(R"™) définit une distribution dans 2'(R™). C’est une

conséquence immédiate de I'inclusion continue de Z(R") dans . (R").

6.2 Opérations sur les distributions

Voici les opérations usuelles sur les distributions :

— Addition et multiplication par un scalaire.

— Multiplication par une fonction f € C*(2). Siu € 2'(Q) et f € C*°(Q2) on définit fu € Z'()
par (fu, o) = (u, fp) Vo € Z(1).

— Dérivation. Pour u € 2'(Q) et a € N on définit 90%u € 2'(Q2) par (0%u, ) = (—1)1*N{u, 0%y).

Si u est une fonction réguliére, alors la dérivation au sens des fonctions correspond a la
dérivation au sens des distributions.

La formule usuelle pour la dérivée d’un produit reste vraie pour les distributions. Si f €
C>(2) et u € Z2'(2), nous avons que 9;(fu) = 9, fu+ fo;u.

— Convolution. On peut faire la convolution entre u € 2'(Q) et f € Z(Q) en posant (ux* f, @) =
(u, fxp) ot f(z) = f(—2). On peut montrer que dans ce cas la convolution est une distribution
de type fonction ux f(x) = (u(y), f(x—y)) et que cette fonction est C*°. Les régles usuelles sur
la dérivation s’appliquent : pour tout & € N™ nous avons que 0%(ux* f) = (0%u) * f = u*(0*f).

Sur un intervalle de R, une distribution de dérivée nulle est nécessairement constante :

Proposition 6.4. Soit I un intervalle ouvert de R et uw € 2'(I). Nous avons l’équivalence entre
uw' =0 dans Z'(I) et u= C pour une certaine constante C'.

Fin du cours 11 (24/11/2023).

Enfin, nous avons la formule des sauts qui dit que si f est une fonction C! par morceaux sur un
intervalle de R, alors sa dérivée au sens des distributions est donnée par f’ (c’est-a-dire qu’on dérive
chaque morceau) plus la somme des masses de Dirac en chaque point de discontinuité multipliées par
le saut de la fonction au point respectif.

Proposition 6.5 (formule des sauts). Soit I =|a, b[ un intervalle ouvert (pas nécessairement borné)
de R et f une fonction C' par morceauz sur I avec un nombre fini de discontinuités {xq, 1, ..., Ty} -
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fest C' sur I\ {wo,21,...,2,}, admet un saut et des dérivées a gauche et a droite dans chaque
xj. Soit ug la distribution associée a f et up la distribution associée a f' (fonction définie p.p., plus
précisément partout sauf en o, x1,...,x,). Nous avons la formule des sauts suivante :

(uy) —uf/+z (zj4) — f(z;—))0s, dans Z'(I).

6.3 Suites convergentes de distributions
Définition 6.6. On dit que u; — u dans 2'(Q) si (u;, ) = (u, ) pour tout p € Z(1).

Nous avons que :

— Siu; = u dans 2'(12) et a est un multi-indice, alors 0%u; — 0%u dans Z'(Q2).

— Siu; — udans 2'(Q) et f e C°(Q) alors fu; — fu dans Z'(2).

— 2'(Q)) est complet au sens suivant : si la suite u; € Z'(Q2) est telle que la suite (u;, ) est de
Cauchy pour tout ¢ € (), alors la suite u; converge dans 2'(§2).

6.4 Support d’une distribution

Définition 6.7. — Soit u € 2'(0) et w un ouvert inclus dans Q2. On définit la restriction de u
a w comme la distribution u‘we 7' (w) suivante : (u|w,g0> = (u, ) pour tout p € D(w). Ici
© € 2(Q2) désigne Uextension de ¢ a §2 par des valeurs nulles en dehors de w.
— On dit que u s’annule sur w si u‘w: 0 dans 7' (w).
— Soit u € 2'(Q2). On définit supp(u) le support de u comme le complémentaire du plus grand
ouvert ot u s’annule.

Par manque de temps, nous admettrons les deux énoncés qui suivent. Le premier nous permet de
justifier I'existence du plus grand ouvert ol une distribution s’annule.

Proposition 6.8. Soit u € 2'(Q)) une distribution. Si w;, 1 € I, forment une famille d’ouverts de

tels que uw =0 sur w; pour tout i € I, alors u =0 sur |J w;.
iel

Le deuxiéme énoncé affirme que les distributions a support ponctuel sont des combinaisons
linéaires de dérivées de la masse de Dirac.

Proposition 6.9. Soit u € 2'(2) et a € Q. Nous avons que supp(u) C {a} si et seulement si u est
combinaison linéaire de 0“0,, o € N™.

6.5 Espaces de Sobolev H(Q) et H}(Q)
Définition 6.10. Soit 2 un ouvert de R™. On définit

H'(R") ={u € L*(Q); djuc L*(Q) Vje{l,...,n}}
muni de la norme

ey = (Il +Z||au||L2 )

Au-dessus, la dérivée O;u doit étre comprise au sens des distributions et son appartenance a L*(2)
signifie que cette distribution est associée a une fonction de L?(Q). L’espace HL(Q) est défini comme
Uadhérence de 2(Q) dans H*(Q).

Proposition 6.11. Les espaces H' () et H}(Q) sont des espaces de Hilbert avec le produit scalaire

(u, U>H1(Q) = (u, U)LQ(Q) + Z@ju, ajU>L2(Q)

j=1

21



7 Applications aux EDP

La notion de distribution est un outil trés important et trés pratique dans l’étude des EDP.
Cela introduit une notion « globale » de solution d’'une EDP. En effet, considérons P(z,0) =
> jaj<m @a(2)0% un opérateur différentiel & coefficients a, € C*°(£2). On peut alors considérer que
I'équation P(z,0)u = f alieu dans 2(€2), ou encore au sens des distributions. En effet, par la théorie
des distributions on voit immédiatement que P(x, d)u définit une distribution. L’égalité P(x,0)u = f
énonce alors simplement ’égalité de deux distributions. De plus, lorsque u est réguliére, u € C™(£2),
on sait que P(z,d)u au sens des distributions correspond a P(z,d)u au sens classique. Pour un tel
u, 'équation P(z,0)u = f au sens des distributions est la méme chose qu’au sens classique. Dire que
I’équation P(x,0)u = f est satisfaite au sens des distributions permet de donner un sens trés général
a cette égalité sans pour autant perdre des informations. On gagne sur tous les plans.

Regardons maintenant plus en détail que veut dire I’égalité P(x,0)u = f au sens des distributions.
Avec les définitions du cours, nous avons 1’équivalence suivante :

P(xz,0)u = f dans 2'(Q) < Z (=) u, 0%(aap)) = (f,p) Yo € 2(Q).
o <rm

Lorsque u, f € L}, (), cela peut s’écrire sous la forme

P(x,0)u = f dans 2'(Q) & Z (_1)|a|/

Q

w0 (aap) :/wa Vo € 2(Q).

laj<m

Cette formulation est parfois dite la formulation faible de I’équation P(x,d)u = f. Elle a 'avantage
de demander moins de régularité sur les coefficients a,. On voit en effet que la formulation au-dessus
a un sens lorsque a, € C™(€2) seulement. En fait, méme la régularité C™ pour a, peut étre superflue.
Voici un exemple :

Proposition 7.1. Soit Q un ouvert de R™, f € L*(), b € L*(Q) et a;; € L>*(Q) pour tout
i,j € {1,...,n}. Supposons de plus qu’il existe € > 0 tel que b > € p.p. et 3, a;;(x)&E; > el€|?
pour tout £ € R™ et p.p. en x. Alors le probléme suivant

— Z 0i(a; j0;u) +bu =f dans 2'(Q)
2%
] 4o=0

admet une unique solution (dans un sens a préciser).

Au-dessus, la condition au bord u| 20— 0 s’exprime par le fait que u € H (). En effet, on peut
montrer que les fonctions de H'(Q) admettent une restriction au bord (on dit qu’elles admettent
une trace au bord) et qu'une fonction de H'(€) est nulle au bord si et seulement si elle appartient
a H}(Q). La proposition au-dessus est une application du théoréme de Lax-Milgram dans H} ().

Cette proposition s’applique par exemple a 'opérateur I —A. Cet opérateur peut aussi étre étudié
dans R™ a l'aide de la transformation de Fourier qui nous donne en plus la formule de la solution. On
montre ainsi qu’il y a une unique solution u € ./(R™) de I’équation u — Au = f avec f € ' (R");
cette solution est donnée par .

—1 ~
w=F"(13 \g|2f)'

Si on note £ = F~! (ﬁ), cela s’écrit sous la forme u = E * f lorsque la convolution a un sens.

On voit aussi que £ — AE = §. Cela nous améne a définir la notion de solution élémentaire d’un
opérateur différentiel.
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Définition 7.2. Soit P(0) = >, <., 40 un opérateur différentiel a coefficients constants a, € C.
On dit que E € 2'(R™) est une solution élémentaire de l'opérateur P(0) si P(0)E =6 dans 2'(R™).

Comme pour l'opérateur I — A, on vérifie aisément qu’une solution de ’équation P(0)u = f
est donnée, au moins formellement, par la convolution avec une solution élémentaire £ de P(0) :
u=FExf.

De maniére générale, la transformation de Fourier est un outil formidable pour étudier les EDP
a coefficients constants (mais pas seulement) dans R™ tout entier. On peut exemplifier cela avec
I’équation de la chaleur suivante

{@u—Au =f, t>0,zeR"
U}tZOZUO.

En appliquant la transformée de Fourier dans la variable x, I’équation de la chaleur se raméne a

une ODE en temps qui peut se résoudre explicitement en termes de gaussiennes. Comme on connait

la transformée de Fourier des gaussiennes, on peut appliquer la transformée de Fourier inverse a la

solution trouvée en Fourier pour en déduire une formule pour la solution du probléme au-dessus. Si

f =0 on trouve ainsi la formule suivante :

1 o|? 1 |z—y?
u(t,xr) = —e At sk Ug = = T} dy.
0 = )t ’ (47rt)2/ olu) dy
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