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Introduction

Ce texte s’inspire fortement des 3 supports de cours de licence suivants :
— T. Gallay, Théorie de la mesure et de I'intégration, Grenoble.

— N. Lerner, Intégration, Rennes.

— P. Mironescu, Mesure et intégration, Lyon.

Nous disposons de la théorie de l'intégrale de Riemann qui permet d’intégrer beaucoup de fonc-
tions dont notamment les fonctions continues. Cette théorie est-elle suffisante pour les besoins de
I'intégration ? Voici quelques problémes posées par 'intégrale de Riemann.

— L’intégrale de Riemann est essentiellement réservée aux fonctions continues, en tout cas il
faut au moins que les fonctions soient bornées. Un théoréme du & Lebesgue dit d’ailleurs
qu'une fonction bornée est intégrable Riemann si et seulement si I’ensemble de ses points de
discontinuité est négligeable. En utilisant les intégrales généralisées, on peut aussi traiter des
fonctions continues avec quelques singularités ou sur des intervalles non-bornés mais cela reste
trés limité et pas facile & manipuler.

— Une fonction relativement simple comme la fonction caractéristique de Q n’est pas intégrable
Riemann.

— Si f est continue et dérivable, dans quelle mesure 1'égalité fab f'(x)dx = f(b) — f(a) est-elle
vraie 7

— Trés important, dans quelle mesure la convergence simple de f,, vers f implique la convergence
de leurs intégrales 7 Le critére pour l'intégrale de Riemann nécessite la convergence uniforme
de la suite f,,, condition bien trop restrictive.

— Nous avons besoin d’intégrer par rapport a d’autres mesures, par exemple en théorie des
probabilités. C’est-a-dire qu’on pourrait convenir que la mesure d’un intervalle [a, b] n’est pas
forcément b — a. Que devient 'intégrale dans ce cas?

Pour répondre a ces questions, Lebesgue a construit une autre théorie de l'intégrale que 1’on
connait aujourd’hui sous le nom d’intégrale de Lebesgue. Son idée de départ a été trés simple;
voici un apergu (trés) simplifié pour donner une petite idée de son approche. Pour mesurer 'aire
du sous-graphe d’une fonction (qui est l'intégrale de la fonction), Riemann prenait I'intersection du
sous-graphe avec une droite verticale et mesurait la longueur du segment obtenu (puis “sommait”
toutes ces longueurs). Lebesgue fait la méme chose mais en prenant des droites horizontales au lieu
de droites verticales. Etonnamment, cette approche donne une notion d’intégrale bien plus robuste
et permet d’'intégrer bien plus de fonctions. Malheureusement, contrairement a l'intersection du sous-
graphe avec une droite verticale qui est simplement un segment, l’intersection du sous-graphe avec une
droite horizontale peut étre un ensemble trés compliqué. Ce n’est pas clair qu’on puisse le mesurer.
On ne peut pas mesurer tous les ensembles. Citons a cet effet le paradoxe de Banach-Tarski qui date
de 1923 : ces auteurs ont découpé la boule unité de R? en un nombre fini de morceaux qui peuvent
étre réarrangés pour faire deux boules unité complétes! Cela veut bien dire que I'on ne peut pas
mesurer de maniére raisonnable ces morceaux, sinon on aurait d’une part que la mesure de la boule
unité est la somme des mesures de ces morceaux, et cette méme somme fera aussi le double de la
mesure de la boule unité! Une bonne partie de ce cours sera d’ailleurs dédié a notion de mesurabilité.

1 Limites inférieures et supérieures. Dénombrement

1.1 Limites inférieures et supérieures

Rappelons d’abord que R, la droite réelle achevée, est définie par R = R U {£oc0}. On peut
additionner et multiplier les éléments de R, a 'exception des indéterminations (4o00) + (—o0) et
0 X (+00). Rappelons maintenant les définitions de sup et inf.



Définition 1.1 (inf, sup). Soit A C R non-vide. On définit sup A € RU{+oc0} comme le plus petit
magjorant de A et inf A € RU{—o00} comme le plus grand minorant de A.

Soit (), une suite de R et posons y, = sup xy. La suite y, € RU {400} est décroissante, elle
k>n
admet donc une limite qui est égale a son inf. Cela justifie la définition suivante.

Définition 1.2 (liminf, limsup). Soit (x,), une suite de R.
— On définit la limite supérieure de x,, comme

limsupx,, = lim sup z; = inf sup x;.
n—00 n—=00 >n n20 g>n

— On définit la limite inférieure de x,, comme

liminf z,, = lim inf x; = sup inf x;.
n—oo n—o0 k>n n>0 k>n

Rappelons enfin que la valeur d’adhérence d’une suite se définit comme la limite d’une sous-suite
de la suite en question. Nous travaillerons ici avec des valeurs d’adhérence dans R.
La proposition suivante regroupe plusieurs propriétés des limites inférieures et supérieures.

Proposition 1.3. Soit (z,,), une suite de R. Nous avons les affirmations suivantes.

a) limsup x,, est la plus grande valeur d’adhérence de x,, et liminfx, est la plus petite valeur
n—o0 n—oo

d’adhérence de x,,.

b) Nous avons que x, — | € R quand n — oo si et seulement si liminf x,, = limsup z, = .
n—0o0 n—00

c) Si (yn)n est une autre suite de R alors limsup(z, + y,) < limsup z,, + limsupy,, dés lors que
n—oo n—o0o n—oo
cette derniére somme est bien définie.

1.2 Dénombrement

Il existe deux définitions d’un ensemble dénombrable suivant que les ensembles finis sont consi-
dérés dénombrables ou pas. Nous adopterons ici la convention qu’ils ne le sont pas.

Définition 1.4 (dénombrabilité). — Un ensemble X est dit dénombrable s’il existe une bijec-
tion de X dans N.
— Un ensemble X est dit au plus dénombrable, abrégé en a.p.d., s’il est fini ou dénombrable.

Nous avons les deux propriétés suivantes.

Proposition 1.5. a) Une union a.p.d.d’ensembles a.p.d.est a.p.d..

b) Un produit fini d’ensembles a.p.d.est a.p.d..

Les exemples classiques sont Q qui est dénombrable et R qui ne I'est pas. Cela vient de 1’écriture
décimale et de la non dénombrabilité de Z(N). Nous avons en effet le théoréme de Cantor suivant.

Théoréme 1.6 (Cantor). Si E est un ensemble non-vide, il n’existe pas de bijection entre E et
P(E) (on a désigné par P (E) l'ensemble des parties de E).



2 Ensembles et fonctions mesurables. Tribus

2.1 Tribus. Espaces mesurables

Définition 2.1 (tribu, espace mesurable). Soit X un ensemble. Une famille 4 de parties de X
est une tribu sur X si :

a) A€ A implique A° € M ;
b) si A, € A pour tout n € N, alors |J A, € A ;

neN

c) 0,X €. 4.

Le couple (X, . #) est dit espace mesurable et les éléments de M sont dits ensembles mesurables.

En anglais, une tribu est une “o-algebra”, d’ou parfois la terminologie o-algébre en francais.

Il est facile de voir que les propriétés a) et b) impliquent c). Une tribu est donc une famille
non vide de sous-ensembles stable par union dénombrable et par passage au complémentaire. Le
complémentaire d’une union étant 'intersection des complémentaires, on en déduit qu'une tribu est
aussi stable par intersection dénombrable.

Exemples. Soit X un ensemble.
— M = {0, X} est une tribu.
— M = P(X) est une tribu. Cas particulier X = N : la tribu qui sera considérée sur N est
Z(N).
— Si Ay, ..., A, forment une partition de X (disjoints deux a deux et d’union X), alors toutes
les unions possibles de A; forment une tribu sur X.

Pour définir la tribu engendré par une famille de sous-ensembles, nous avons besoin d’un résultat
préliminaire.
Lemme 2.2. Soit X un ensemble et (M;)icr une famille arbitraire de tribus sur X. Alors () #; est

icl
une tribu sur X.

Cela justifie la définition suivante.

Définition 2.3 (tribu engendrée). Soit X un ensemble et . une famille de parties de X . On défi-
nit M (F), la tribu engendrée par F, comme l'intersection de toutes les tribus de X qui contiennent
F.

Nous avons la propriété suivante :

Proposition 2.4. La tribu engendrée par F est la plus petite tribu qui contient .

Fin du cours 1 (03/09/2024).
Définissons aussi la tribu trace.

Définition 2.5. Soit (X, .#) un espace mesurable et A C X un sous-ensemble arbitraire. La tribu
trace sur A est la tribu My = AN M ={ANB; Be . #}.

2.2 Fonctions mesurables

Une fonction est dite mesurable si I'image réciproque d’un ensemble mesurable est mesurable :

Définition 2.6 (fonction mesurable). Soient (X, #1) et (Xo, #5) deux espaces mesurables et
[ X1 — Xy une application. La fonction f est dite mesurable (par rapport a ces deux tribus) si pour
tout Ay € Mo nous avons que f~1(As) € M.



La notion de mesurabilité d’une application f : X; — X, dépend des tribus considérées sur X, et
X5. On doit donc spécifier a chaque fois de quelles tribus il s’agit. Par abus de notation, lorsqu'une
seule tribu a été définie sur X; et Xs, ou que les tribus considérées sont sous-entendues, on peut
omettre de préciser les tribus et parler simplement d’application mesurable de X; dans Xo.

Voici quelques propriétés des applications mesurables.

Proposition 2.7. a) Soient (Xy, ML), (Xa, M) et (X3, #3) trois espaces mesurables et f :
X1 = Xo, g Xo = X3 deux applications mesurables (pour les tribus considérées). Alors
go f: X1 — X3 est mesurable (pour les tribus considérées).

b) Soit (X, #) un espace mesurable, Y un ensemble et f : X — Y wune application. Soit N =
{BCY; f~YB) e} Alors N est une tribu sur'Y qui rend f mesurable, et c’est la plus
grande tribu avec cette propriété.

c) Soient (Xy, #1) et (Xo, M) deux espaces mesurables et f : X, — Xy une application. On
suppose que Mo est engendrée par une famille F : Mo = M (F). Alors f est mesurable si et
seulement si pour tout Ay € F nous avons que f~1(Ay) € M.

On retiendra que la composition de deux fonctions mesurables est mesurable et qu’il suffit de
vérifier la mesurabilité d'une fonction sur une famille qui engendre la tribu de 'espace d’arrivée de
la fonction.

2.3 'Tribu de Borel
Un exemple fondamental de tribu est la tribu de Borel.

Définition 2.8 (tribu de Borel, borélien). Soit (X,d) un espace métrique. La tribu de Borel sur
X, notée par B(X), est la tribu engendrée par les ouverts de X (par rapport a la distance d). Les
éléments de la tribu de Borel sont dits ensembles boréliens, ou tout stmplement boréliens.

Attention, les ouverts ne forment pas une tribu car le complémentaire d’un ouvert n’est générale-
ment pas ouvert. Les boréliens forment une famille trés grande. Voici quelques exemples de boréliens :

— les fermés;

— toute union dénombrable d’ensembles fermés ;

— Q est borélien dans R ;

— les irrationnels forment un ensemble borélien dans R.

Les fonctions continues sont mesurables pour la tribu de Borel.

Proposition 2.9. Soient (X1,d;), (Xa,ds) deux espaces métriques et f : X; — Xo une fonction
continue. Alors [ est mesurable lorsqu’on munit X, et Xs de leurs tribus de Borel.

Définition 2.10 (pavé). Un pavé de RY est un produit d’intervalles fermés et bornées.

Proposition 2.11. Il existe une famille dénombrable de pavés de R? telle que tout ouvert de R?
est union dénombrable de ces pavés. En particulier, cette famille dénombrable de pavés engendre les
boréliens de R?. La méme chose est vraie pour une certaine famille dénombrable de boules ouvertes,
et ausst pour une certaine famille dénombrable de produits de boules ouvertes.

Dans le cas de R on peut restreindre encore plus la famille qui engendre les boréliens.

Proposition 2.12. La tribu Z(R) est engendrée par :
a) les intervalles |a, +oo[ quand a parcourt R ;
b) les intervalles [a,+oo] quand a parcourt R ;

[
c) les intervalles | — 0o, a| quand a parcourt R ;
]

d) les intervalles | — 00, a] quand a parcourt R.

6



2.4 Propriétés des applications mesurables & valeurs dans R

Une application immédiate de la caractérisation des boréliens sur R vue au-dessus et de la pro-
position 2.7 nous permet de montrer par exemple I’énoncé suivant :

Corollaire 2.13. Soit (X, . #) un espace mesurable et f : X — R. On munit R de la tribu de Borel.
Alors f est mesurable si et seulement si f~([a, +oo]) € A pour tout a € R.

Une autre application nous permet de montrer que toute application monotone est mesurable.

Proposition 2.14. Soit X C R et f: X — R monotone. Alors f est mesurable lorsqu’on munit X
de la tribu trace de B(R) et R de la tribu de Borel.

Nous munirons par défaut R, ou R, par la tribu de Borel. Si aucune mention n’est faite, il faut
supposer que la tribu considérée sur R, ou R?, est la tribu de Borel.
La fonction indicatrice d’un ensemble est mesurable si et seulement si I’ensemble est mesurable.

Proposition 2.15. Soit (X, .#) un espace mesurable, A C X. La fonction indicatrice de A, xa :
X — R, est mesurable si et seulement si A est mesurable.

Proposition 2.16. Soit (X, .#) et (Y, V') deuzr espaces mesurables, uy, ..., uqg : X — R des fonc-
tions mesurables et ¢ : RY — Y mesurable. Alors Uapplication x — ¢(uy(x), ... ug(x)) est mesurable
de X dansY .

Voici un corollaire immeédiat.

Corollaire 2.17. Soit (X, .#) un espace mesurable.

a) Une application f: X — C est mesurable si et seulement Re(f) et Im(f) sont mesurables de
X dans R. De plus, si f est mesurable alors |f| est mesurable aussi.

b) Si f,g: X — C sont mesurables, alors f + g et fg sont mesurables aussi.

Proposition 2.18. Soit (X, .#) un espace mesurable et f : X — C mesurable. Il existe une appli-
cation a : X — C mesurable telle que || =1 et f = a|f| partout.

Fin du cours 2 (10/09/2024).

2.5 Boréliens de R, fonctions a valeurs dans R

Sur R = RU {#0c} nous avons une structure d’espace métrique donnée par la distance d(z,y) =
|arctanz — arctany| ot on convient que arctan(doo) = £7. On peut donc parler de boréliens et
de mesurabilité sur R. On vérifie aisément que les boules ouvertes de R sont les intervalles (ot +00
peuvent étre des extrémités d’intervalles et appartenir a I'intervalle ou pas).

Sur R on peut faire des limites, pendre des sup, des inf, des limsup et des liminf. Ce qui a été
fait dans la partie 1.1 reste valable dans R & ceci prés que lorsqu’il y a une somme il faut imposer
la condition que la somme soit bien définie (c’est-a-dire qu’on ne se retrouve pas & sommer —oo et
+00).

La proposition 2.12 est vraie dans R aussi : la tribu Z(R) est engendrée par les intervalles ]a, +o0]
quand a parcourt R.

Nous avons le résultat suivant :

Proposition 2.19. Soit (X,.#) un espace mesurable et f, : X — R une suite de fonctions mesu-
rables. Alors

a) sup f, et inf f, sont des fonctions mesurables de X dans R ;

b) limsup f,, et liminf f, sont des fonctions mesurables de X dans R ;
n—00 n—o00

¢) Si f: X — R est limite simple de f,, alors f est mesurable.

Dans R nous utiliserons la convention 0 - oo = 0. L’addition (—o0) + (+00) reste interdite.

7



2.6 Fonctions étagées

Une fonction étagée est une fonction positive mesurable qui ne prend qu'un nombre fini de valeurs.

Définition 2.20 (fonction étagée). Soit (X, #) un espace mesurable. Une fonction f est dite
étagée sur X si :

— f est a valeurs dans Ry et mesurable de X dans R, ;

— f(X) est un ensemble fini.

Si f est étagée, en posant f(X) = {ay,...,a,} (valeurs distinctes) et A; = f~!(a;) nous avons
que
f=oaxa, +--- + anxa,

oll x4, désigne la fonction indicatrice de A;. Cette écriture est unique si les a; sont distincts 2 a 2
et si les A; forment une partition de X. On I"appelle écriture canonique de la fonction étagée f.

Théoréme 2.21. Soit (X,.#) un espace mesurable et f : X — R, mesurable. Alors il existe une
suite de fonctions €tagées positives f, telles que

— la suite f,, est croissante : 0 < f, < fou1 < f;

— la suite f, tend vers f simplement.
Si on a de plus que f est bornée, alors on peut supposer que la suite f, tend vers f uniformément
sur X.

3 Mesures positives

Définition 3.1 (mesure positive). Soit (X,.#) un espace mesurable. Une mesure positive sur
(X, ) est une application p : M — Ry telle que

— Si (A,), est une suite d’ensembles mesurables 2 a 2 disjoints, alors

(U An) =D nan)

neN neN
Le triplet (X, # , i) est dit espace mesuré.

La deuxiéme propriété de la définition est dite o-additivité. Les mesures peuvent étre de plusieurs
types.

Définition 3.2. Soit (X, .#,u) un espace mesuré. On dit que :
— la mesure p est finie si p(X) < 00 ;
— la mesure p est une mesure de probabilités si u(X) =1;

— la mesure p est o-finie s’il existe une suite d’ensembles mesurables (Ay), tels que X = |J A,
neN
et u(Ay,) < oo pour tout n € N

— la mesure p est borélienne si la tribu A est la tribu de Borel;
— la mesure pu est de Radon si elle est borélienne et finie sur les compacts (la mesure de tout
compact est finie).

Exemples.
a) Si X est un ensemble fini et # = P (X), u(A) = card(A) pour tout A C X est une mesure
finie.
b) Si X est un ensemble fini et # = Z(X), u(A) = g;;g((;)) pour tout A C X est une mesure de
probabilités.



¢) Si X est un ensemble arbitraire et .#Z = £ (X), la mesure de comptage définie par

wA) =

+00 sinon

{card(A) si A est fini

est une mesure.

d) Soit (X,.#) un espace mesurable et a € X. L’application 4, définie par

5.(A) = 1 siac A
10 siag A

est une mesure appelée mesure de Dirac en a (ou masse de Dirac).

e) Sur (R, #(R)) il existe une unique mesure positive pu telle que u([a, b)) = p(]a, b)) = b—a pour
tout a < b finis. Cette mesure est dite mesure de Borel. L’existence de la mesure de Borel
n’est pas du tout évidente. Sa construction est difficile et fait I'objet d’un chapitre ultérieur.

f) Sur (R, #(R?)) il existe une unique mesure positive p telle que la mesure de tout pavé est le
produit des longueurs de ses cotés : u([[[aj, b;]) = [1(b; — a;). C’est la mesure de Borel sur

J J
R

g) Soit (X, .4, ;) un espace mesuré et f : X — Y une application. Soit 4/ = {B CY ; f1(B) €
M} la tribu image sur Y. L’application v(B) = u(f~*(B)) pour tout B € .4 est une mesure
sur .4 dite mesure image de p.

Avant de montrer quelques propriétés des mesures, nous avons besoin du résultat suivant sur les
séries a deux indices.

Lemme 3.3. On considére des nombres a,,,, € Ry, m,n € N. Nous avons que

> (D) = X (X ).

meN neN neN  meN

La valeur commune de ces deuxr sommes est notée plus simplement par

5 = X (L) = X (X))

m,neN meN  neN neN  meN
Voici quelques opérations sur les mesures.
Proposition 3.4 (opérations sur les mesures). a) Si p est mesure et o« € Ry alors au est

une mesure. Ici (ap)(A) = ap(A) avec la convention 0 - oo = 0.

b) St 1 et py sont deur mesures sur un méme espace, alors g + fio est une mesure. Ici on a
posé (p1 + p2)(A) = pi(A) + p2(A).
c) Si (ln)n est une suite de mesures sur un méme espace, alors >, |, est une mesure. Ici on a

posé (5 11)(A) = 3 pua(A).

neN neN

Ces opérations nous permettent d’avoir d’autres exemples de mesures.



Exemples.
a) Probabilité de Bernoulli de paramétre p € [0, 1] donnée par : p = pdy + (1 — p)d;.
b) Probabilité de Poisson de parameétre A >0 : p=e* > )‘k—?ék.

n=0
Nous pouvons maintenant énoncer quelques pl"OpI‘iétéS des mesures.

Proposition 3.5. Soit (X, ., p) un espace mesuré. Nous avons les propriétés suivantes :
a) St AC B et A, B mesurables, alors (A) < u(B).
b) Si A et B sont deux ensembles mesurables, alors p(AU B) < u(A) + u(B).

c) Si (Ap), est une suite croissante d’ensembles mesurables, A, C A1, et A = |J A, alors
neN

w(A) = lim pu(A,) dans R,
n—oo

d) Si (A,), est une suite décroissante d’ensembles mesurables, A, O Ani1, A = [ A, et en
neN
plus Ay est de mesure finie, alors u(A) = lim u(A,).
n—oo

e) Si (An)n est une suite d’ensembles mesurables, alors ,u( U An> < > u(Ay).

neN neN
f) La propriété du c) plus u(0) = 0 plus p(A U B) < p(A) + u(B) pour tous A, B mesurables
disjoints, forment un ensemble de propriétés équivalent a la définition de la mesure.

Fin du cours 3 (17/09/2024).

4 Intégration des fonctions positives

Nous allons construire 'intégrale d’une fonction positive en plusieurs étapes. D’abord pour les
fonctions étagées.

4.1 Intégration des fonctions étagées positives

Définition 4.1 (intégrale d’une fonction étagée). Soit (X, .# ,11) un espace mesuré et f étagée
positive. Si l’écriture canonique de f est donnée par f = ayxa, +- - +anxa, (ou f(X)={a1,...,a,}
et A;j = f~H(«y)), on définit lintégrale de f par

/ fdu="y" a;u(A)).
X o

Si A C X est mesurable, on définit l'intégrale de f sur A par

/Afdu=/XfXAdu-

Rappelons que nous utilisons la convention 0 - 0o = 0 ce qui fait que [ < 0du=0.

Exemple. Si A est mesurable nous avons que [, xa dpu = u(A).

Proposition 4.2. Soit (X, ., p) un espace mesuré, f, g deux fonctions étagées positives et A € R..
Nous avons :

a) [ Afdu=X[fdu;

b) [ (f+g)du= [y fdu+ [ygdu;

o) Jxldu= sap S dns

0<h<f
d) Lapplication M > A N(A) = [, f du € Ry est une mesure sur (X, #). La mesure X est
dite mesure de densité f par rapport a .

10



Remarque. La partie b) au dessus implique la propriété de monotonie suivante de l'intégrale : si
f, g étagées positives vérifient f < g alors fX fdu< fX g dpu.

4.2 Intégration des fonctions mesurables positives

Définition 4.3 (intégrale d’une fonction positive). Soit (X,.#, ;) un espace mesuré et f :
X — R, mesurable. On définit l'intégrale de f par

/fduz sup /fdu-
X h étagée J X

0<h<f

St A C X est mesurable, on définit l’intégrale de f sur A par

/AfdMZ/XfXAdN-

Remarque. Lorsque f est étagée positive, on peut calculer son intégrale soit en la regardant comme
fonction étagée avec la définition 4.1, soit comme fonction mesurable avec la définition 4.3 au-dessus.
La question c) de la proposition 4.2 nous assure que le résultat est le méme, il n’y a donc pas de
risque de confusion.

Proposition 4.4. Soit (X,.#, i) un espace mesuré, f,g: X — R, deuz fonctions mesurables. Nous
avons :

a) Si f<galors [ fdu< [ gdpu.

b) Si A C B sont mesurables, alors fAf dp < fB f du.

¢) Pour tout A >0, [ Afdu=X[, fdu

d) Si A est mesurable et i(A) =0 alors [, f du =0 (méme si f = +00).

Exemples.
a) Soit X = {z1,29,...,0,}, M = P(X) et p=card. Si f: X — R, nous avons

Ajduzf@ﬁ+f@ﬁ+-~+f@w-

b) Soit X = {x1,29,...,2,}, M = P(X) et = card / card(X). Si f: X — R, nous avons
/delu:f(951)+f(152>+"'+f(95n)

n

¢) Soit X = {z1,79,..., 2}, M = P (X),9: X — R, et i la mesure de densité g par rapport
a la mesure de comptage (card). Si f: X — R, nous avons

[ dn= (o)) + glanf ) + -+ glan)f )
X
d) Soit X = (;)sc; un ensemble arbitraire, .# = Z(X) et u = card. Si f: X — R, nous avons

/deuz sup > f(x;).

J finiCl Jed
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e) Soit N muni de . = £ (N) et de la mesure de comptage y = card. Si f : X — R, nous

o /N Fau=S" 1)

neN

f) Pour la mesure de Borel sur R, on note l'intégrale avec dz comme pour 'intégrale de Riemann :
fR f(z) dz. Nous verrons plus tard que cela est justifié car, au moins pour les fonctions
continues, l'intégrale de Riemann et 'intégrale de Lebesgue par rapport & la mesure de Borel
coincident.

5 Théorémes de convergence

Nous allons montrer dans ce gros chapitre plusieurs théoréme de convergence des intégrales et leurs
conséquences sur la construction de I'intégrale. Nous allons aussi montrer des critéres de convergence
ou de dérivabilité pour les intégrales & paramétre.

5.1 Théoréme de convergence monotone et applications. Lemme de Fatou

Le premier résultat de convergence des intégrales est le théoréme de convergence monotone connu
aussi sous le nom de théoréme de Beppo Levi. Il s’agit d’un résultat fondamental.

Théoréme 5.1 (convergence monotone, Beppo Levi). Soit (X, .#, ) un espace mesuré et
fn + X — Ry une suite de fonctions mesurables positives. On suppose que la suite est monotone
croissante, f, < foi1, et qu’elle tend simplement vers une certaine fonction f : X — R,. Alors f

est mesurable et
[ fan=tim [ foan=suw [ f.an

Voici quelques applications de ce théoréme.

Corollaire 5.2. Soit (X, .#, 1) un espace mesuré et f,g : X — R, mesurables. Nous avons que

f+ g est mesurable et
/(f+9)du=/fdu+/gdu-
X X X

Corollaire 5.3. Soit (X,.#, ;1) un espace mesuré et f, : X — R, une suite de fonctions mesurables
positives. On pose f(x) = > fu(x). Alors f est mesurable et
neN

/X(%Zan) =3 [ fde

neN

Nous avons aussi un résultat de “convergence” des intégrales sans aucune hypothése sur les inté-
grandes! C’est le lemme de Fatou suivant.

Proposition 5.4 (Lemme de Fatou). Soit (X,.#, i) un espace mesuré et f, : X — R, une suite
de fonctions mesurables positives. Nous avons linégalité suivante :

/ liminf f,, du < lim inf/ fn du
X —0JX

n—o0 n

12



Exemple. Le théoréme de convergence monotone nous permet de donner la formule de l'intégrale
pour la mesure image. Plus précisément, soit (X,.#,u) un espace mesuré et f : X — Y une
application. Soit A4 = {B CY ; f~Y(B) € .4} la tribu image sur Y et v la mesure image sur .4’
(rappel : v(B) = u(f~*(B)). Si g: Y — R, est mesurable alors g o f est mesurable aussi et

/ng:/gofd/L.
Y X
Fin du cours 4 (24/09/2024).

On peut maintenant parler de mesure a densité dans le cadre général des fonctions positives.

Proposition 5.5 (mesures a densité). Soit (X,.#, ;) un espace mesuré et f : X — R, une
fonction mesurable positive. L’application M > A — MA) = fAf dpu € Ry est une mesure sur
(X, #). La mesure \ est dite mesure de densité f par rapport a ju. Si g : X — Ry est une fonction

mesurable positive, nous avons que
Joar=[ or
X X

ce qui justifie la notation d\ = fdu.
5.2 Intégration des fonctions mesurables complexes
Pour intégrer des fonctions complexes, on se raméne a des fonctions rélles en prenant la partie

réelle et la partie imaginaire, puis a des fonctions positives en prenant la partie positive et la partie
négative. Rappelons que pour a € R on pose

a; = max(a,0), a_ = max(—a,0).

Nous avons
a=a;—a_ et |a|=ay+a_.

Pour une fonction f a valeurs réelles, on définit ainsi ses parties positives et négatives par
fe@) = (f(x)), et f(x)=(f(x))_.

Pour une fonction f a valeurs complexes, on prend d’abord la partie réelle et la partie imaginaire,
puis la partie positive et la partie négative :

f=Re(f) +ilm(f) = (Re(f)), — (Re(f))_ +i(Im(f))  —i(Im(f))_.
On définit maintenant 'intégrale d’une fonction définie sur C.

Définition 5.6 (intégrale d’une fonction complexe, espace Z'(X,u)). Soit (X, .4, 1) un
espace mesuré et f : X — C une fonction mesurable. On dit que f est intégrable si fX |f] dp < oc.
L’espace des fonctions intégrables est noté par L1 (X, ). On définit Uintégrale de f par la formule

o rau= [ (Retp), au= [ (Re(r)_dpi [ (mmn), du=i [ (m(r)_

X

Remarque. La définition de I'intégrale au-dessus est justifiée. En effet, nous avons que ( Re(f )) L <
|Re(f)| < |f| dou [ (Re(f))+ dp < [ |f] dp < 0o. De méme pour les trois autres termes.

Proposition 5.7. Soit (X, .#, 1) un espace mesuré. Nous avons que L1 (X, i) est un espace vectoriel
et Uapplication L' (X, ) 3 f— [ [ du est linéaire. De plus, pour tout f € L' (X, ) nous avons

l"inégalité
\/fdu\é/lfldu.
b's b's
13



5.3 Théoréme de convergence dominée de Lebesgue

Le théoréme de cette partie est peut-étre le théoréme le plus utile de ce cours. Il permet de passer
a la limite dans des intégrales lorsque les intégrandes convergent simplement.

Théoréme 5.8 (convergence dominée de Lebesgue). Soit (X, .#, 1) un espace mesuré et f, :
X — C une suite d’applications mesurables. On suppose que

a) (convergence simple) f, — f simplement pour une certaine fonction f: X — C;
b) (domination) il existe g : X — Ry telle que [, g dpu < oo et |fo| < g pour tout n.
Alors f,, et f sont intégrables et

lim [ |f, — /| du=0.
X

n—oo

En particulier, nous avons que
lim fodu = / fdu.

L’hypothése de convergence simple est une hypothése “de bon sens”, c¢’est-a-dire une hypotheése
sans laquelle la convergence dans la conclusion ne peut raisonnablement avoir lieu. A premiére vue,
ce n’est pas clair pourquoi ’hypothése de domination devrait apparaitre. En fait, ce théoréme admet
aussi une réciproque a une sous suite prés. Toute suite qui vérifie la conclusion admet une sous-suite
qui vérifie les hypothéses a) et b) (cela sera vu au 2e semestre dans le cours d’éléments d’analyse
fonctionnelle). Le théoréme de convergence dominée de Lebesgue est donc optimal.

5.4 Presque partout.

Définition 5.9 (presque partout). Soit (X, .# i) un espace mesuré et f : X — C ou f : X - R
mesurable.
— On dit que f est nulle p presque partout, ou f =0 p p.p. (ou juste f =0 p.p. s’il n’y a pas
de risque de confusion quant au choiz de la mesure i) si u({$ 0 f(x) # 0}) =0.
— Plus généralement, on dit qu’une propriété a lieu p presque partout, ou p p.p., si elle a lieu
partout sauf sur un ensemble de mesure p nulle.

Cette définition est justifiée par les propriétés suivantes de I'intégrale.

Proposition 5.10. Soit (X, .#, 1) un espace mesuré.

a) Si f: X — R est mesurable, nous avons l’équivalence
/deu:() <~ f=0upp.
b) Sige LYX,u), nous avons ’équivalence
/X\g\ dp=0 <= g=0ppp.
c) ?oient f,9: X = Ry mesurables ou f,g € L1 (X, p) réelles. Si f < g p p.p. alors [ fdp <
9 dp.

d) Soient f,g: X — Ry mesurables ou f,g € LNX,p). Si f =g pp.p. alors [, fdu= [y gdp.
e) Si f:X — R est telle que [, |f] du < oo alors f est finie p p.p..

14



On pourrait définir la notion d’intégrabilité des fonctions a valeurs dans R en séparant la partie
positive et la partie négative et en raisonnant comme dans la définition 5.6. Le résultat au-dessus
montre qu’une telle définition ne serait pas tres utile en pratique. En effet, une fonction f intégrable
a valeurs dans R est nécessairement finie p.p. On pourrait alors définir une nouvelle fonction f qui
serait nulle la ou f = 400 et égale a f ailleurs. On a alors que f = f p.-p. et f est finie partout. Le
passage de f a f ne modifie ni la valeur de I'intégrale ni les propriétés de mesurabilité. Du point de
vue de l'intégrale, les deux fonctions sont indifférenciables et on peut parfaitement travailler avec f
au lieu de f pour les besoins de l'intégration. De méme, si on a une suite f, de fonctions intégrables
a valeurs dans R, on posant A, lensemble ot f, = +oo on peut rendre les f, nulles sur U,enA,
(qui est un ensemble de mesure nulle) et obtenir ainsi une nouvelle suite de fonctions intégrables
finies, égales p.p. a la suite de départ. Attention cependant au cas particulier des fonctions positives,
qui peuvent étre intégrées sans que la fonction soit finie p.p. On retiendra de cette discussion que
si on veut intégrer une fonction, soit elle est positive soit on peut la supposer finie (en la modifiant
éventuellement sur un ensemble de mesure nulle).

Une derniére remarque sur les fonctions a valeurs dans R. Pour f a valeurs dans R, en décomposant
f = fi — f_ on pourrait imaginer une situation ou par exemple f_ est d’intégrale finie et f, non.
Dans ce cas, on peut définir 'intégrale de f par [ fdu = [ fy du— [, f— dp qui a parfaitement
un sens et est égale a +oo. Dans un tel cas, f n’est pas intégrable au sens de la théorie que nous
avons introduite et les théorémes de ce cours ne s’y appliquent pas. En général, on évite de travailler
avec de telles fonctions.

Les théorémes de convergence des intégrales ont des versions “p.p.”. Voici la version “p.p.” du
théoréme de convergence dominée de Lebesgue.

Théoréme 5.11 (convergence dominée de Lebesgue, version p.p.). Soit (X, . #, 1) un espace
mesuré et f, : X — C une suite d’applications mesurables. On suppose que

a) (convergence simple) f, — f w1 p.p. au sens suivant : il existe f : X — C et A ensemble
mesurable de mesure nulle tel que f, — f simplement sur A et f =0 sur A ;

b) (domination) il existe g : X — Ry telle que [, g dpu < oo et |fu| < g p p.p. pour tout n.
Alors f,, et f sont intégrables et

im [ 14, - fldu =0
n—oo X
En particulier, nous avons que

lim [ f,du= / fdu.

La formulation “p.p.” du théoréme de convergence monotone de Beppo Levi est similaire : les
hypothéses 0 < f,, < for1 i p-p- et fr, = f p p.p. entrainent la méme conclusion. Les détails sont
laissés en exercice.

5.5 Tribu complétée. Mesure complétée. Tribu et mesure de Lebesgue

Nous montrons dans ce paragraphe qu’'une mesure peut étre “complétée” en ajoutant tous les
sous-ensembles des ensembles de mesure nulle. C’est une notion qui est pratique, mais non essentielle
dans la théorie de l'intégration.

Commengons par définir les ensembles négligeables.

Définition 5.12 (ensemble négligeable). Soit (X, .#, 1) un espace mesuré. Un sous-ensemble A
de X est dit négligeable s’il est inclus dans un ensemble de mesure nulle de la tribu : il existe B € .#
tel que u(B) =0 et A C B.

On définit maintenant la tribu complétée.
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Définition 5.13 (tribu complétée). Soit (X, . #, ) un espace mesuré.
— La tribu complétée par rapport & la mesure j, notée par # est la tribu engendrée par M et
par tous les ensembles négligeables. L
— La tribu est dite compléte par rapport a la mesure p si sa complétée est elle-méme : M = M .
Ou, de maniere équivalente, si tous les ensembles négligeables appartiennent a la tribu.

De toute évidence, les notions de tribu complétée et tribu complete ne dépendent pas uniquement
de la tribu mais aussi de la mesure considérée. De ce fait, la notation .# est abusive car laisse
entendre que cela dépend uniquement de .Z. En pratique, le choix de la mesure p est évident et le
plus souvent n’a pas besoin d’étre spécifié.

On peut facilement caractériser la tribu complétée.

Proposition 5.14. Soit (X, ., 1) un espace mesuré. La tribu complétée M est formé de toutes les
untons possibles d’ensembles de E et d’ensembles négligeables :

M ={EUA: Ec .M et A négligeable}.
La mesure p admet une unique extension a M .

Proposition 5.15. Soit (X, .#, 1) un espace mesuré. Il existe une unique mesure fi sur 4 telle que
|, = M

Définition 5.16 (mesure complétée). Soit (X, .#, 1) un espace mesuré. La mesure [i de la pro-
position précédente est dite la mesure complétée de pu.

Définition 5.17 (tribu et mesure de Lebesgue). — La tribu de Lebesque sur R™, notée par
%, est la tribu de Borel complétée par rapport a la mesure de Borel.
— La mesure de Lebesgue sur R™, notée par \,, est la mesure de Borel complétée.

Fin du cours 5 (01/10/2024).

En pratique, la mesure de Borel est quasiment la méme chose que la mesure de Lebesgue. Elles
difféerent uniquement par des ensembles négligeables, les intégrales associées sont donc les mémes.
Pour différencier la mesurabilité par rapport a la tribu de Lebesgue de celle par rapport a la tribu de
Borel, on utilise la terminologie de fonction Lebesgue mesurable pour les fonctions mesurables par
rapport a la tribu de Lebesgue et la terminologie de fonction borélienne pour les fonctions mesurables
par rapport a la tribu de Borel. o

La proposition suivante dit qu'une fonction est mesurable par rapport a la tribu complétée .# si
st seulement si elle est égale p.p. & une fonction mesurable pour la tribu .Z.

Proposition 5.18. Soit (X, ., ) un espace mesuré et f : X = R (ou f : X — C). La fonction
| est mesurable par rapport a la tribu complétée M si et seulement si il existe g : X — R (ou
g : X — C) mesurable par rapport a la tribu A telle que f =g @ p.p.

Proposition 5.19. Si u est une mesure compléte (c’est-a-dire égale a sa mesure complétée), alors
toute limite p p.p. de fonctions mesurables est mesurable.

Ce résultat nous permet de simplifier la condition a) de la version p.p. du théoréme de convergence
dominée de Lebesgue, théoréme 5.11. On peut simplement de se placer dans le cadre de la tribu et de
la mesure complétée et supposer dans la condition a) que les f, sont .# mesurables et convergent
p.p. La limite p.p. sera automatiquement mesurable pour la tribu complétée, peu importe la maniére
dont la fonction limite est définie sur I’ensemble ou la convergence simple n’a pas lieu. On peut
également reformuler cette méme condition a) dans le cadre de la tribu de départ (non complétée)
en supposant que les f,, convergent p p.p. vers une fonction .# mesurable (c’est-a-dire on rajoute
comme hypotheése que la limite f est mesurable).

16



5.6 Intégrales a paramétre

Nous nous intéressons maintenant aux intégrales a paramétre, c’est-a-dire les intégrales ou 'in-
tégrande dépend d’un paramétre. Comment dépend l'intégrale de ce parameétre, est-elle continue,
dérivable, etc.?

Le cadre est le suivant. On se donne une fonction f : X x A — C ou (X, .#, ;1) un espace mesuré
et A un espace métrique. On écrit f(z, A) ot z est la variable d’intégration et A le paramétre. On
définit la fonction

FO) = [ @) du= [ fa) do

ou du, veut dire qu’on intégre par rapport a la mesure y dans la variable x. Pour abréger et clarifier
I’écriture, on écrira dans cette partie dx au lieu de dy,.
Le théoréeme suivant porte sur la continuité des intégrales & paramétre.

Théoréme 5.20 (continuité des intégrales a paramétre). Soit (X, .#, p) un espace mesuré, A
un espace métrique et f: X x A — C. On suppose que

a) pour tout X € A, Uapplication X 3 x — f(x,\) € C est mesurable ;

b) Pour presque tout x € X, Uapplication A 5 X\ — f(z,\) € C est continue ;

c) il existe g € LY (X, ) positive telle que

VAeA |f(z,\)] < g(z) pour presque tout x ( u p.p.).

Alors lapplication
A= F(X) :/ flx, \) de
X

est continue de A dans C.

Remarques.

— Si on cherche & avoir la continuité de F' en un seul point \g, alors ils suffit de supposer dans
I'hypothése b) la continuité en Ay seulement.

— Etant donné que la continuité est une notion locale (i.e. dépend uniquement des valeurs de
la fonction dans un voisinage), la condition du ¢) peut étre supposée sur des boules de rayon
aussi petit qu'on veut. Si A est un ouvert de R™ alors la condition du c) peut étre supposée
sur les compacts de A seulement.

On s’intéresse maintenant a la dérivabilité des intégrales & parameétre. On doit donc supposer que
A est un intervalle de R.

Théoréme 5.21 (dérivabilité des intégrales & paramétre). Soit (X, .#, ) un espace mesureé,
A un intervalle de R et f: X x A — C. On suppose que

a) pour tout X € A, Uapplication X > x — f(x,\) € C est intégrable (appartient o L1 (X, pn));
b) Pour presque tout x € X, Uapplication A 5 X\ — f(z,\) € C est dérivable ;
c) il existe g € LY (X, p) positive telle que pour presque tout x ( ju p.p.) nous avons la majoration
0
‘a—i(a:, A)‘ < g(x) VAeA.
Alors lapplication

)\&—>F()\):/Xf(z,)\) dz

est dérivable sur A et on peut dériver sous l’intégrale :

of
F(A\)= [ =(z,)) dz.
M= [ Gy e
L’intégrande au-dessus %(1’, A) est définie p p.p. seulement. Sur ’ensemble de mesure nulle ou

cette intégrande n’est pas définie, on la pose nulle.
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Remarques.
— Dans le cas ol A est une extrémité de A, le résultat reste vrai en sous-entendant qu’on prend
la dérivée a gauche ou a droite.
— Contrairement a la continuité, si on veut avoir la dérivabilité en un seul point )\, il ne suffit
pas de supposer dans I'hypothése b) la dérivabilité en Ay seulement.
— Par contre, la dérivabilité étant aussi une notion locale, la condition du ¢) peut étre supposée
sur des boules de rayon aussi petit qu’on veut ou sur les compacts de A seulement.

5.7 Comparaison entre l’'intégrale de Riemann et I’intégrale de Lebesgue

Nous allons maintenant comparer l'intégrale de Lebesgue a l'intégrale de Riemann. D’abord sur
un intervalle compact.

Proposition 5.22. Soit f : [a,b] — R intégrable Riemann. Alors f est Lebesque intégrable (Lebesqgue
mesurable et intégrable) et

b
/ flz)dx = fdA;.
a [avb]
intégrale Riemann intégrale Lebesgue
Nous continuerons donc a noter par fab f(z) dx a la fois 'intégrale de Lebesgue et I'intégrale de
Riemann (si celle-ci existe).

Remarques.

a) La réciproque de cette proposition est fausse. En effet, une fonction Lebesgue intégrable peut
trés bien ne pas étre bornée tandis qu’une fonction intégrable Riemann est bornée par défini-
tion. On peut aussi construire des exemples de fonctions bornées Lebesgue intégrables mais
non Riemann intégrables. La fonction indicatrice de Q n’est pas intégrable Riemann sur [a, b]
mais elle intégrable Lebesgue car nulle presque partout.

b) On peut montrer qu'une fonction bornée est Riemann intégrable sur un intervalle fermé borné
si et seulement si elle est continue en dehors d’un ensemble négligeable (pour la mesure de
Lebesgue).

Dans le cas des intégrales généralisées, la situation est un peu différente.

Proposition 5.23. Soit I un intervalle non-compact et f: I — R continue.

a) Si f >0, alors f est intégrable Lebesque si et seulement si l'intégrale de Riemann généralisée
de f est convergente. De plus, en cas d’intégrabilité nous avons [’égalité des intégrales :

/If(ac) dr - /Ifd/\l.

intégrale généralisée intégrale Lebesgue

b) En général, nous avons que f est intégrable Lebesque si et seulement si l'intégrale de Riemann
généralisée de [ est absolument convergente (c’est-a-dire si l'intégrale de | f| est convergente).
Si f est intégrable Lebesgue, alors on a l’égalité des intégrales

/If(:c) dr = /Ifd/\l.

intégrale généralisée intégrale Lebesgue

Remarque. Il peut arriver qu'une intégrale généralisée existe sans que la fonction soit Lebesgue
intégrable. Par exemple, la fonction % admet une intégrale généralisée convergente sur [0, co[ mais
elle n’est pas Lebesgue intégrable car I'intégrale généralisée n’est pas absolument convergente. On
appelle ¢a une intégrale semi-convergente. Les intégrales semi-convergentes ne rentrent donc pas dans

le cadre de la théorie de Lebesgue.
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6 Intégration sur un espace produit

6.1 Tribu produit

Définition 6.1 (rectangle, tribu produit). Soient (X, #)) et (Xa, #5) deux espaces mesurables.
— Un rectangle est un un ensemble de la forme Ay X As, avec Ay € M et Ay € M5 ;
— La tribu produit M1 @ Mo sur X1 X Xo est la tribu engendré par tous les rectangles.

Dans la suite, la tribu considéré par défaut sur le produit cartésien X; x X5 sera la tribu produit.

Proposition 6.2. La tribu produit 4\ & My est la plus petite tribu qui rend les projections m
et o mesurables. On rappelle que m @ X5 X Xo — Xy, m(z1,22) = 71 et mo @ X1 X Xo — X,
7T2($1,1‘2) = T9.

Remarque. Si f;: X; — Cet fy : Xy — C sont mesurables, alors le produit tensoriel f; ® f5 est
mesurable. Ici, fi ® fo 1 X; x Xy — C est défini par f1 ® fo = fi(x1) X fo(22). La mesurabilité du
produit tensoriel résulte de la mesurabilité des projections et de 'écriture f1 ® fo = (f10m)(fo0m).

Proposition 6.3. Soient (X, #1), (Xo, M), (Y, N) trois espaces mesurables et f: X1 X Xo =Y
mesurable.

a) Pour x1 € X on définit la fonction partielle f(xq,-) : Xo = Y, 2o — f(x1,22). On définit

de méme pour x4 € Xo la fonction partielle f(-,x5) : X3 — Y. Nous avons que pour tout

x1 € Xy, la fonction partielle f(xy,-) est mesurable et pour tout xo € Xy la fonction partielle
f(-, x9) est mesurable.

b) Si A C Xy x Xy, on définit les coupes de A de la maniére suivante. Pour x; € X1 on pose
Az, ) ={x € Xy ; (x1,22) € A} et pour xs € Xy on pose A(-,x9) = {x1 € X1 ; (21,22) €
A}. Si A est mesurable dans X1 X Xy (i.e. A € M @ Ms), alors toutes ses coupes sont
mesurables : pour tout x1 € Xy on a A(xy,-) € Mo et pour tout x9 € Xy on a A(-,x2) € M.

Dans le cas de la tribu de Borel, nous avons que la tribu de Borel de ’espace produit est le produit
des tribus de Borel.

Proposition 6.4. Nous avons que B(R1 %) = B(R") @ B(R?%).

6.2 Produits tensoriels de mesures

La construction du produit de mesures est considérablement plus compliquée que celle de la tribu
produit. Commencons par définir les classes monotones.

Définition 6.5 (classe monotone). Une famille 9 d’ensembles est dite classe monotone si elle est
stable par limite monotone :

— Si (A,) est une suite croissante de 9, A, C Any1 pour tout n, alors |J A, € 2.
neN
— Si (B,,) est une suite décroissante de 9, B, D Byy1 pour tout n, alors (| B, € 2.
neN

Nous avons la proposition suivante sur les unions finies de rectangles.

Proposition 6.6. Soient (X, #,) et (Xa, #>) deux espaces mesurables.

a) Toute union finie de rectangles peut s’écrire comme union finie de rectangles disjoints deux a
deux.

b) L’ensemble des unions finies de rectangles est stable par intersection, réunion et différence.

Fin du cours 6 (15/10/2024).
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Lemme 6.7. Soient (Xy, .#1) et (Xa, #3) deux espaces mesurables. La tribu produit est la plus petite
classe monotone qui contient les unions finies de rectangles.

Définition 6.8. Un espace mesuré (X, # ,p) est dit o-fini s’il existe une suite d’ensembles X,, de
mesure finie et d'union X : pu(X,) < oo pour tout n € N et UpenX,, = X.

Proposition 6.9. Soient (X, 41, 1) et (Xo, Mo, j12) deuzx espaces mesurés o-finis. Soit A € My @

My. Nous avons que les applications

Ty > Xa(xy, xo) dug(za) et xg— Xa(x1, o) dpg (1)
X2 Xl

sont bien définies, mesurables et de méme intégrale :

/Xl (/X2 xa(z1,72) dMQ(m)) dpir (z1) = /X2 </X1 Xa(z1, x2) d,ul(gjl)> dpia(s).

Cette proposition motive la définition suivante de la mesure produit.

Définition 6.10 (mesure produit). Soient (Xy, #,pu1) et (Xo, Mo, p2) deux espaces mesurés
o-finis. Pour A € 4\ ® M5 on pose

(11 ® p2)(A) = /X1 </X2 Xa(z1,22) dM2(1’2)> dpn (71) = /X2 </X1 Xa(z1, 72) dM1($1)> dpz(2).

Proposition 6.11. Soient (X1, #1, 1) et (Xo, Mo, p2) deux espaces mesurés o-finis. Nous avons
que 11 ® g est une mesure o-finie sur la tribu produit M1 & Mo, qu’on appelle mesure produit. De
plus

(111 @ p2)(Ar X Az) = p1 (A1) pa(Az2)
pour tout Ay € M1, Ay € M>.

6.3 Théorémes de Fubini

Les théorémes de Fubini nous disent dans quelles conditions on peut permuter deux intégrales.
Le premier théoréme nous dit que c’est toujours possible pour les fonctions positives.

Théoréme 6.12 (Fub_ini—Tonelli). Soient (X1, M1, 1) et (Xo, Mo, p12) deux espaces mesurés o-
finis et f: Xy x Xy — Ry mesurable (pour la tribu produit). Nous avons que les applications

T — f(fl,’l,l'Q) d,UQ(IQ) et X9+ f(xl,a:Q) d,ul(xl)
X2 X1

sont bien définies, mesurables et de méme intégrale. De plus
[ ([ senm) dusten) it = [ ([ s dunen) duste)
X1 X2 Xo X1

- //le Flar, 2a) d(pr ® o).

On note le plus souvent

//XlxX2 f(x1,22) d(pn @ p2) = //XIXX2 [y, 2) dpa (1) dpg(s) = //)<1xX2 [z, x9) dug dps.

Dans le cas des fonctions mesurables sans signe, le méme résultat est vrai a condition d’ajouter
I’hypothése que f € LX) x Xo, 11 @ p12).
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Théoréme 6.13 (Fubini). Soient (Xy, #1, 1) et (Xo, Mo, p2) deur espaces mesurés o-finis et
feLYX1 x Xo, 11 @ o). Nous avons que les applications

T, f(x1, z2) dus(za) et o +— f(x1, z2) dpg(xq)
X2 Xl

sont bien définies presque partout, définissent des fonctions de L1 (aprés leur avoir attribué des
valeurs nulles sur l’ensemble de mesure nulle ow elle ne sont pas définies) et ont la méme intégrale.
De plus,

/X1 ( . [z, 22) dMQ(xz)) dpg (z1) = /X2 ( . f(ay,22) dm(:m)) dpia(z2)
= /X - [z, 22) d(p1 ® pa).

Remarque. Si f; € ZY (X, 1) et fo € LM Xy, p2) ousi fi : X1 — Ry et fo : Xy — R, sont
mesurables, alors f; ® fy est soit intégrable sur X; x X5 soit positive, et dans les deux cas

/ fi® fod(p ® pg) = J1dp Jo dps.
X1><X2

X1 X2

Remarque. En pratique, lorsqu’on veut permuter deux intégrales on procéde de la maniére sui-
vante :
— soit 'intégrande est positive et & ce moment-la on peut permuter les intégrales sans se poser
des questions;
— soit l'intégrande f(z1,25) n’a pas de signe, et dans ce cas il faut d’abord vérifier que I'intégrale
avec valeur absolue sur I'intégrande est finie, peut importe le sens des intégrations :

soit / (/ | f(z1, 29)] dx2> dzy < 00
X1 M X

soit / (/ | f(z1, 29)] dm1> dzy < 0.
X2 VX

Il n’est pas utile de calculer les valeurs des intégrales avec la valeur absolue, il faut seulement
les majorer pour montrer qu’elles sont finies. En effet, si I'une des intégrales au-dessus est
finie, le théoréme de Fubini-Tonelli implique f € £1(X; x X5) et ensuite on peut appliquer
le théoréme de Fubini.

Remarque. Nous avons vu dans la proposition 6.4 que le produit des tribus de Borel est la tribu
de Borel sur I'espace produit. Cela est aussi vrai pour les mesures de Borel. En effet, si on désigne

d1+d3
par p, la mesure de Borel dans R? et si P = [] [; est un pavé de R %% alors P est aussi un
j=1
d1 d2
rectangle P = Py x Pou Py = [[ [ et P, = [] I;. Par conséquent
j=1 j=di+1

2
(Hay @ p1a,)(P) = (pay @ pra,)(Pr X Po) = pa (Pr)pa(F) Hlong x ] long(1))
j=d1+1
di+d2

= H long(1) = ptay+d, (P)-
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Par unicité de la mesure de Borel, il s’ensuit que g, ® fta, = fld,+ds,-

Attention, la situation est un peu différente pour la tribu de Lebesgue .Z;. Nous avons que
Ly L, # L, +a,- Plus précisément, si A; est un ensemble de R% qui n’est pas mesurable Lebesgue
(de tels ensembles existent), alors pour tout b € R% nous avons que A; x {b} € Ly, va, \ Lo, @ L,
En effet, A; x {b} est négligeable car inclus dans R% x {b} et Ay, 1q, (R x {b}) = Ay, (R¥) Ny, ({0}) =
00-0=0, donc Ay x {b} € Ly, 1a,. Par contre A; x {b} & Ly, ® Ly, car A, & Zy,.

Fin du cours 7 (05/11/2024).

7 Mesure de Lebesgue

7.1 Existence

Voici le théoreme d’existence de la mesure de Lebesgue.

Théoréme 7.1 (existence de la mesure de Lebesgue). Il existe une tribu £, sur R? stable par
translation et contenant les boréliens et une mesure (positive) \q sur £y telle que

— A\g est compléete ;

— M\g est réguliere au sens que :

VE € Ly, M(F) = " inft E)\d(U) (régularité extérieure)
ouvert D
VE €%y, M(E)= sup  M\N(K) (régularité intérieure)
K compact CE
d d
— XNa(I1 Z;) = T1(b; — a;) quels que soient I; intervalles bornés de R d’extrémités a; et b; ;
j=1 j=1

— M\g est invariante par translation : \g(E + a) = X\g(E) pour tout E € £ et a € R%.

Remarque. Nous verrons dans le chapitre suivant que A\; est aussi homogéne et invariante par
rotation.

Par manque de temps, nous admettrons ce théoréme. Mentionnons cependant qu’il y a deux
maniéres classiques de montrer cette existence.

La premiére fait appel a la notion de mesure extérieure et consiste a poser, pour tout A C R,

A (A) =inf { Zmes(Pj) ; AC U P;, P; pavé de R?}.
jeN jeN
d d
Au-dessus, mes(P;) désigne la mesure attendue d'un pavé : mes([[ Z;) = [[(b; —a;) quels que soient

J=1 J=1
I; intervalles bornés de R d’extrémités a; et b;. Puis on montre que la restriction de A\* aux boréliens

a toutes les propriétés voulues et donne la mesure de Lebesgue.
La deuxiéme possibilité de construction de la mesure de Lebesgue est de montrer et d’utiliser le
théoréme de représentation de Riesz suivant qui a son propre intérét.

Théoréme 7.2 (représentation de Riesz). Soit (X, d) un espace métrique, localement compact
(tout point admet un voisinage compact) et séparable. Soit J une forme linéaire et positive sur C°(X).
Alors il existe une unique mesure borélienne 1, finie sur les compacts, telle que

J(f) = /X fdu Ve ChX).

Nous avons de plus que :
— o est réguliere ;
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— Pour tout owvert U
p(U) =sup{J(f) : f € CI(X;[0,1]), supp f C U};
— Pour tout compact K
p(K) =inf{J(f); feCAX;[0,1]), f| =1}

L’existence de la mesure de Lebesgue suit du théoréme de Riesz appliqué & X = R? et a la forme
J donnée par l'intégrale de Riemann.

7.2 Unicité

Le théoreme d’unicité de la mesure de Lebesgue peut s’énoncer de deux maniéres.

Théoréme 7.3 (unicité de la mesure de Lebesgue). a) Toute mesure mesure positive j sur
By, invariante par translation et finie sur les compacts est un multiple de la mesure de Le-
besque. En particulier, si ,u([O, 1]d) =1, alors p = A\g

By’
d d
b) Si p est une mesure positive sur By telle que p( []la;,b;]) = T1(b; — a;) pour tout les a; et

J=1 J=1

bj, alors jp= Aa|, -

Si nous avons manqué de temps pour montrer I'existence de la mesure de Lebesgue, nous pouvons
en revanche montrer I'unicité de la mesure de Lebesgue.

Remarquons d’abord que b) implique a). En effet, soit x4 mesure positive sur %, invariante par
translation et telle que ,u([O, 1]d) = 1. En utilisant 'invariance par translation et en mettant plusieurs

d
cubes identiques I'un & coté de l'autre on montre 'égalité pu( [][a;,b5]) = [](b; — a;) lorsque les
=1 =1
sommets sont de coordonnées entiéres, puis de coordonnées ratijonnelles, puisf par densité de Q dans
R, de coordonnées quelconques.

Nous allons maintenant montrer la partie b) de ce théoréme d’unicité. En se rappelant que les
pavés engendrent la tribu de Borel et que 1 = Ay sur les pavés, on peut se poser la question si ’égalité
de deux mesures sur un ensemble qui engendre la tribu implique 1’égalité des mesures.

— La réponse est négative comme on peut le voir sur I’exemple de la mesure de Dirac dg qui
s’annule sur tout les intervalles de R* sans étre la mesure nulle. Or les intervalles de R*
engendrent la tribu de Borel #(R).

— La réponse est positive si on ajoute une condition supplémentaire : il faut que la famille qui
engendre la tribu soit stable par intersection (finie) et qu’elle contienne une suite croissante
d’ensembles de mesure finie qui tend vers ’espace entier.

Plus précisément, nous avons le résultat suivant d’unicité des mesures.

Théoréme 7.4 (unicité des mesures). Soit (X, . #) un espace mesurable, une famille d’ensembles
F C M et pu,v deux mesures positives sur M . On suppose que :

a) la famille F engendre la tribu A : M (F) = M ;

b) la famille F est stable par intersection (finie) ;

c) les mesures j et v sont égales sur .F ;

d) soit u(X) = v(X) < oo (cas des mesures finies) soit il existe X,, € F, X, / X (suite
croissante d’ensembles d’union X ) tels que u(X,) = v(X,) < oo pour tout n € N (cas des
mesures o-finies).

Alors p=v.

Les pavés vérifient les hypothéses de la proposition précédente (cas o-fini en prenant X, =
[—n,n]?), donc I'unicité de la mesure de Lebesgue s’ensuit.
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8 Changement de variables

Le but de cette derniére partie est de montrer une formule de changement de variables dans R¢.

8.1 Cas linéaire

Nous commencons par le cas d’'un changement de variables linéaires. Voici un résultat préliminaire.

Proposition 8.1. Soit T : RY — R? linéaire et bijective. Alors :
a) E est borélien si et seulement si T(E) est borélien.
b) MN(T(E)) = Xa(E)Xa(T([0, 1)) pour tout borélien E.

Le résultat suivant nous donne la valeur de Aq(7'([0,1]%)). On identifie une application linéaire T
a sa matrice dans la base canonique.

Proposition 8.2. 5i T : R? — R? est linéaire et bijective, alors A\q(T'([0,1]%)) = | det T7.
Nous pouvons maintenant énoncer le théoréme de changement de variables dans le cas linéaire.
Théoréme 8.3 (changement de variables linéaire). Soit T : R? — R? linéaire et bijective et

fe LY RY. Alors foT € LYRY) et

/Rd fly) dy = /Rd f(Tz)|det T| dz.

La relation au dessus reste vraie si [ est positive et mesurable.

Par analogie au changement de variables sur R, on pourrait penser que dans la formule au-dessus
il devrait y avoir det 7" au lieu de | det T'|. La formule au-dessus est bien juste avec |det T'| et elle est

valable dans R aussi. En effet, les intervalles dans R ont une orientation : fab n’est pas égale a fba
alors que dans l'intégrale de Lebesgue on écrit simplement f[a y €t il n’y a pas d’orientation possible.

8.2 Cas général

Rappelons la définition d’un C* difféomorphisme.

Définition 8.4 (C! difféomorphisme). Soient U et V deux ouverts de R? et 1) : U — V.
— On dit que ¢ est C' si toutes ses dérivées partielles existent et sont continues.
— On dit que v est un C' difféomorphisme si 1 est bijective et si et =1 sont C*.
— Siyp est C' on définit My la matrice jacobienne de 1» comme étant la matrice de ses dérivées

partielles :
My = (95i)1<ij<a-

Le jacobien Jy est le déterminant de la matrice jacobienne :
Jw = det Mw.
Voici le théoreme général de changement de variables.

Théoréme 8.5 (changement de variables dans R?). Soit v : U — V un Ct difféomorphisme et
feLYV). Alors foip|Jy| € LHU) et

[ strar= [ rovw ) o

La relation au dessus reste vraie si [ est positive et mesurable.
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L’idée de la preuve est simple. Il suffit de montrer I'affirmation pour les fonctions indicatrices (puis,
par linéarité, on 1’a pour les fonctions étagées, puis, par Beppo Levi pour les fonctions positives et
enfin dans le cas général). Par le théoréme d’unicité des mesures, il suffit de faire pour les indicatrices
d’un pavé. Puis on décompose le pavé en des tout petits cubes, on envoie chaque cube par f, puis on
somme. Sur chaque petit cube, par la définition de la différentiabilité (qui n’est rien d’autre qu’'une
formule de Taylor a l'ordre 1) on peut approcher ¢ par une fonction linéaire plus un petit reste. Le
reste va étre négligeable, et pour la partie linéaire on applique la formule du changement de variables
linéaire ce qui nous fait apparaitre une discrétisation du Jacobien. Lorsque la taille des petits cubes
va tendre vers 0, cette discrétisation du Jacobien va tendre vers le Jacobien. Le temps manquant
pour les détails de cet argument, nous admettrons la preuve de ce théoreme.

8.3 Applications
8.3.1 Coordonnées polaires dans le plan R?
Onpose U={(r,0); r>0, —m < <7}etV=R?\R_. Alors 'application
(r,0) = (rcosf,rsinf)

est un C'! difféomorphisme de U dans V, de jacobien .J;, = r. Remarquons de plus que V est R? privé
d’un ensemble de mesure de Lebesgue Ay nulle. Le théoréme de changement de variables 8.5 donne
alors le résultat suivant.

Corollaire 8.6 (changement de variables polaires). Soit f une fonction mesurable définie sur
R? qui est soit positive soit dans L' (R?). Nous avons que

f(z) da:z/f(rcosﬁ,rsin@)rdrd@z/ / f(rcos@,rsind) r dr dé.
R? U 0o Jorx

Remarques.

a) Si f est radiale, par abus de notation f = f(r), alors
f(x) dz = / f(r) 2mr dr.
R? 0

b) Nous avons que, dans R?,
— la fonction |z|* est intégrable au voisinage de 0, |z|* € Z1(Jz| < 1), si et seulement si
a > —2.
— la fonction |z|* est intégrable a linfini, |z|* € £ (|z| > 1), si et seulement si o < —2.

8.3.2 Coordonnées sphériques dans I’espace R3

Onpose U= {(r,0,0); r>0,0<0<7, —t<p<n}et V=R {(x,0,23); 2, <0, 23 €
R}. Alors I'application
W(r,0,¢) = (rsinf cos @, rsinfsin , r cos 0)

est un C! diffeomorphisme de U dans V, de jacobien .J;, = 7?sinf. Remarquons de plus que V est
R3 privé d’un ensemble de mesure de Lebesgue A3 nulle. Le théoréme de changement de variables 8.5
donne alors le résultat suivant.

Corollaire 8.7 (changement de variables sphériques). Soit f une fonction mesurable définie
sur R3 qui est soit positive soit dans L1 (R3). Nous avons que

f(z) dz = / f(rsinf cos o, rsinfsin,rcosf) r*sinf dr df dep
RS U
:/ / / f(rsinfcos o, rsinfsin g, rcosd) r*sinf dr df de.
0 0 —T

25



Remarques.

a) Si f est radiale, par abus de notation f = f(r), alors
f(z) dz = / f(r) 4mr? dr.
R3 0

b) Nous avons que, dans R3,
— la fonction |z|* est intégrable au voisinage de 0, |z|* € Z'(|z] < 1), si et seulement si
o> —3.
— la fonction |z|* est intégrable a l'infini, |z|* € £ (|z| > 1), si et seulement si @ < —3.

8.3.3 Cas de R¢

On peut trouver un changement de variables, dit coordonnées sphériques généralisées, qui convient
dans le cas de R?%. 1l y a cependant une facon plus élégante de procéder. Commencons par définir la
mesure de surface sur la sphére unité S de R

Définition 8.8. Si A C S est mesurable, on définit la mesure de surface o de A par la formule
o(A) = Aa(v(4))
ot y(A) est le secteur de la boule unité engendré par A :

Y(A) ={rw; we A, rel0,1]}.

Remarque. 1l est trés facile de vérifier que la mesure de surface o est une mesure définie sur les
boréliens de la sphére unité S¢1.

En notant r = |z| (norme euclidienne de R?) et w = £

m7

étre écrite dans les variables (r,w) € R% x S9! par la formule f(z) = g(r,w) = g(|z], |§—|) ou encore

toute fonction f de la variable x peut

g(r,w) = f(rw). La formule de changement de variables s’écrit alors dans R? sous la forme suivante.

Proposition 8.9. Soit f une fonction mesurable définie sur R? qui est soit positive soit dans £*(R?).
Nous avons la formule suivante

T)dr = h rw) rit dr do(w).
[rwde= [ [ ) drdoe

Remarques. Comme dans les cas d = 2 et d = 3 on a les deux remarques suivantes pour les
fonctions radiales.

a) Si f est radiale, par abus de notation f = f(r), alors
f(x) dz = O’(Sd_l)/ f(r) rt dr.
R 0

Ici, o0(S971) désigne l'aire de la sphére unité de RY.

b) Nous avons que, dans R,
— la fonction |z|* est intégrable au voisinage de 0, |z|* € Z1(Jz| < 1), si et seulement si
a > —d.
— la fonction |z|* est intégrable a l'infini, |z|* € £Z1(Jz| > 1), si et seulement si a < —d.
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