HIDDEN SIL,(Z)-SYMMETRY IN BC”

K. IOHARA AND Y. SAITO

ABsTRACT. A well-known I'g-action on the characters of integrable high-
est weight modules over the affine Lie algebra of type BCZ(2) at a positive
level is extended to an SL2(Z)-action at a positive even level by supple-
menting their twisted characters.
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INTRODUCTION

In 1972, I. G. Macdonald [9] classified the so-called (not necessarily re-
duced) affine root systems and obtained some identities on the Fourier ex-
pansions of products of the Dedekind n-function associated with each affine
root systems. The identities he obtained are named after him. Indepen-
dently, F. Bruhat and J. Tits [I] classified affine root systems, where some
of their results are explained in a survey article [13].

To obtain the Macdonald identities, he started from an identity, that looks
like a denominator identity up to some factor, called “missing factor”. Later,
it was shown by several authors (see, e.g., our expository note [3] for the
references), that the “missing factor” corresponds to the imaginary roots and
the identity Macdonald used is the denominator identity of an affine Lie
algebra. It would be a natural question to see what are the nature of the
characters of integrable highest weight modules over an affine Lie algebra.
Indeed, E. Looijenga [8] interpreted a character of an affine Lie algebra of
untwisted type as a section of a line bundle over an abelian variety, which
is a product of an elliptic curve. This fact inspired V. G. Kac and D. H.
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Peterson, indeed, in 1984, they [7] had studied “modular properties” of the
characters of affine Lie algebras. They showed the following:

(1) for an untwisted affine Lie algebra, the group SLa(Z) acts on the
C-span of the normalized characters of each fixed central charge and

(2) for a twisted affine Lie algebra, a congruence subgroup of SLy(Z)
acts on the C-span of the of the normalized characters of each fixed
central charge

via “modular transformation”. For BCI(Q) (or Ag)), this congruence subgroup

is the so-called #-subgroup I'y. Here, the characters have been regarded as
functions on a certain finite dimensional complex subdomain Y of the affine
Lie algebra of type BC’Z(Q).

In Macdonald’s paper [9], he considered several possible evaluations of

the denominator identities. Indeed, for BC’l(2), in its Appendix 1, Type
BC(Y, (6), he treated 4 different evaluations which concluded with 4 different
n-products. The case treated by V. Kac and D. Peterson corresponds to
the case (b) (cf. Remark . By computing the modular transformations
of these 4 n-products, we observed that there seems to be a bigger hidden
symmetry in BCZ(Q), which inspired us to work on the subject of this article.

In this article, we show that the group SLa(Z) acts on the vector space
spanned by the characters and twisted-characters of integrable highest weight

modules over the affine Lie algebra g of type BCl(Z), for each fixed even level.
Here, we should consider the characters and twisted-characters as functions
on a complex subdomain of the dual of the Cartan subalgebra of g and
introduce two coordinate systems dependent on the choice of special indices.
Moreover, we observe that the characters and twisted-characters of the affine
Lie algebra of type BCl(z) at even level can be identified with the characters
and super-characters of the affine Lie superalgebra of type B(l)(O, )!

This article is organized as follows. In Section 1, we recall some basic
notions and setting on BC’l(2)7 in particular, depending on the choice of a
special index (see Definition , we present two coordinate systems of a
complex domain in the dual of the Cartan subalgebra of the affine Lie algebra
of type BCl(z). In Section 2, we recall the definition of the (twisted-)character
of an object of the category O of Bernstein-Gelfand-Gelfand. In Sections 3,
we introduce theta-series and twisted invariants of the affine Weyl group of

type BC'I(Z) and express the normalized (twisted-)characters in terms these
(twisted-)invariants. In Section 4, we compute the modular transformations
of (twisted-)characters. Finally, in Section 5, we interpret the computational
results obtained in the previous sections. We conclude with an appendix
explaining some relevant basic facts about Lie superalgebras, for the sake of
reader’s convenience.
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1. KAc-MoODY LIE ALGEBRAS OF TYPE BC’Z(Q)

In this article, we deal with the affine root system of type BC’Z(2) (l=1)
in the sense of K. Saito [II]. Since there are many nomenclatures for affine
root systems, we give the correspondence between other nomenclatures.

Saito ([11]) || Kac ([4]) | Moody ([10]) | Macdonald ([9]) | Carter (|2])

2 2 Al,g =1 v ~
Bc® ap | &y | BG=BG c

1.1. Root datum. For a positive integer [, let A = (a; ;) be an ({+1)x (I+1)

generalized Cartan matrices (GCM for short) of type BCl(2)

In the following, we construct a realization (in the sense of Kac [6]) of A (see

(L) below).

Let Fy be an [-dimensional real vector space equipped with a positive
definite symmetric bilinear form Iy : Fy x Fy — R. Fix an orthonormal
basis €1, ...,& of Fy with respect to Iy. Consider a 2-dimensional extension

~

F = Ff@RI@ Ry equipped with a non-degenerate symmetric bilinear
form I on F' defined by

I’fopf =1Ip, I(e4,0) = I(g5,7) =0 (1 <i <),

~ ~ ~

1(6,0) = I(v,7) =0, I(4,7) =1
Since 7T is non-degenerate, there is an induced isomorphism &« : F 2 Fro=
Hompg (F,R) defined by

(k(u),v) = I(u,v) foru,veF,
where (-, -y : F* x F —> R is a canonical pairing. Set
(1.1.1) h=F*QC.

Then, its complex dual space h* := Homg(h, C) is naturally identified with
F ® C. The complexification of the isomorphism & : F' = F'* is denoted by
the same symbol & : hb* — b.

Remark 1.1. In Kac’s book [6], our k=! : h —> bh* is denoted by v.

Set
ag=0—2e1, ;=& — i1 (1<i<l), o = €,
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and define a linearly independent subset II of h* (called the set of simple
roots) by
II = {ag,...,qq}.

For a non-isotropic vector a € F', denote o = 2a/I(cv, @0). Set
IV ={ho...,ly} = b where h; := k(o) (0<i<I).
It is called the set of simple coroots. Hence, the triple (f), 11, HV) is a real-

ization of a GCM A. Its Dynkin diagram is given as follows.

4 2 2
o——o (I=1), O—>—0—0------- O0—0———0 (1=2),
(7)) a1 Qg a1 a1 o

The labels a; (0 < @ < [) and co-labels a (0 < i < I) of A are by
definition, relatively prime positive integers satisfying
A'a="'0 where a := (ag,...,q;), 0:=(0,...,0) and
a’"A=0 wherea” :=(qy,...,q),
respectively. Explicit forms of them are given by

1 i=0), L2 o<i<i-,
@ = TN =0,

2 (1<i<l),

It is known that the following formula holds:
l
(1.1.2) 5= ai.
=0

1.2. Kac-Moody Lie algebras and their roots.

1.2.1. Let g = g(A) be the Kac-Moody Lie algebra associated with the
generalized Cartan matrix A of type BCZ(2). It is a Lie algebra over C
generated by e;, fi (0 <1 <1[),h e b subject to the following relations:

(L1) [h,h'] =0 for h,h' € b,
(LQ) { [h7 ei] = <h7 az> €i,

[hv f’L] = —<h, Oéi> fi?

(L3) [62', fj] = 5i,jhz’ fOl" 0 < i,j < l,

(L4) { ad(en) (o) =,

ad(fi)" " (f;) = 0,

The abelian subalgebra b of g is called the Cartan subalgebra of g.

for he hand 0 < i <1,

for0<i#j<l.

In the rest of this article, we use standard notations in the theory of Kac-
Moody Lie algebras following Kac’s book [6]. Namely, let ny be the subal-
gebra of g generated by {e;}o<i<i (resp. {fi}o<i<i)- We have the triangular
decomposition of g:

(1.2.1) g=n;PboPn_.
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Let A be the set of roots, Ay the set of positive (resp. negative) roots and

A~

@ the root lattice. The Weyl group W is the subgroup of O(h*, I') generated
by simple reflections s, (« € II).

Let A" = W.II (resp. A = A\A") be the set of real (resp. imaginary)
roots. Their explicit forms are given by

(1.2.2) A€ = ATHATSIAIS and AP = 75
where
AT ={te; +rd|1<i<l, relZ},
A ={te;tej+rd|l<i<j<l rel},
AT = {+2e; + (2r + )5 |1 <i<l,reZ}.

1.2.2.

Definition 1.1. An index 0 < ig < I of the set Il of simple roots is called
spectal if there exist p € Z~o and o € Ay such that 0 — a; o, = po.

There are two special indices of II.
(i) Since § — apay = 2¢;1 and €1 € A, the index 0 is special.
(ii) Since § — ajoq = § — 2¢; € A, the index [ is special.

(1) We call the index iy = 0 the special index of type I. For later convenience,
we denote &V = ¢ (1 <i<l), agl) =a; (0<i<1)and F}I) = Fy. It

follows that
l l l
(n) M I : M _ pO
(123) F'=@Re;’ =@Re;’ and F:=PRa;’ = F;' PR

=1 i=1 1=0

(ii) We call the index i9 = [ the special index of type II. Replace the
numeration of simple roots with the following:

aZ(H) = (0<i<).

In this new numeration, the index 0 is special and the corresponding Dynkin
diagram is given by

4 2 2
o—~—o0 (I=1), O—~—O0—0------- O0—0—<0 ([=2).
o ol off af? oy off
Set
82(]1 = —g141-i + %6 (1<i<l) and F}H) = é‘)lREEH)
Since Z



6 K. IOHARA AND Y. SAITO

we have
!

(1.2.4) FIY = @Ra" and F=F" QR0
i=1

For ¢ € {I, 11}, let Aéﬁ) be the element of h* which satisfies
(1.2.5) (@), A =60 (0<i<i), T(AP AP =o.
(#)

These conditions determine Ay~ uniquely, and the explicit forms of them are
given by

o |2 if § =1,
(1.2.6) AP = 1 !

7+§q+~wwn—§Sﬁﬁ:H

Remark 1.2. By definition, one has

(1.2.7) fAp) =0 (=2 iti=1
a (=1) =1
Hence, we have the following decompositions of h*:
(1.2.8) h* = Fi. P (CoDCAY),
) i
where F}(): = F} ) ®C. Set
aom(A(()I)) = /@(A(I)) ifg=1,

(1.2.9) c=r(6) and dW¥ = {

ar(A) = 2x(AY) ifg =11

Then, we have decompositions of b:

(1210) b= (@@h ) Dca® - (@Chw ) DCePCad?.

1.2.3. For § € {I, 1}, set

#) _ Are (#)
(1.2.11) Af =A N Fpe.
In the following, we study the structure of A;ﬂ) in detail.

(i) Case of § =1.

By the explicit description of A" we have
(AWM, = {Fei]1<i<1),
(AWM = {Fe 51 <i<j <}
This is the finite root system of type B; with a simple system HSCI) =
(I)}.

I
{ag),...,al

AP = (AP (AY),,  where {

(ii) Case of § =11
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By definition, the description ([1.2.2)) of A" can be rewritten as
A ={+e 4 (r+Ds|1<i<l rez},
Arme:{isgﬂ)is( —i—ré‘l 1<j< l,reZ},
A;ez{i25§n)+2r5|1<z<l,reZ}.

Therefore, we have

(I0) (I , (I :
I I I (A ) i={ e e [1<i<j<l},
AW = (AW, (A, where {H) o
AP ={%2"|1<i<l}
This is the finite root system of type C; with a simple system HS}I) =
(.. (H)}.

Let wzm € F]Eﬁ) (1 < i < 1) be fundamental weights of AS}) with respect
to the simple system HSP). They are characterized by IA(wZQi), (ozg-ﬂ))v) = 0 j-

Define l
_ Z )
i=1

Hence, one has
I(pgc) (a (ﬁ)) )=1 forevery 1 <j<l

Remark 1.3. The explicit forms of them are given as follows:

i (I

. 4 1<i<i-1),
=0 = {lzy—ll & o ( Z £ <i<l),
523‘:1 €5 (i :l)»

O _ i ALDHLD =,

Folsia-iv e irg=

1.3. The affine Weyl group W. In this subsection, we study the structure
of the affine Weyl group W.

1.3.1. Let € F and a non-isotropic 8 € F'. Define linear automorphisms
t, and sg of h* by
~ ~ 1~ ~
() =t B 0= { T ) + i) P 0)

sp(u) = u—I(u, )5,
for u € h*, respectively. The following lemma is easily verified.
Lemma 1.4. (1) Both t, and sz belong to O(b*,I).
(2) For every pi, 2 € F, one has ty tu, =ty +us-
(3) For every non-isotropic B € F', one has ss_gsg = tgv.
(4) Forwe W and p € F, one has wot, 0w ™ =ty
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1.3.2. For ¢ € {I, I}, let us give a semidirect product description of W
attached to the choice of the special index. Recall the finite root subsystem

ASP) of A" introduced in ([1.2.11f), and let W}ﬂ) be its Weyl group. Define a
lattice M@ of rank [ as follows.

(i) First, assume § = 1. Let oV = 5&1) be the highest short root of A;I).

. I I
Since a(()) =0 — 20§ ), we have
Sagl) Sagl) = 857299) Swgl) = t(%gl))v.

Therefore, the group W is generated by ¢ , and W}I). Set

(20"
MO = Z-span of WJEI) ((26§I))V)-

Since (20§I))V = 551) and W}I) is generated by s_m (1 <4 <), we have

MO = Pzel.
=1

(ii) Second, assume § = II. Let HZ(H) = 2591) be the highest (long) root of

ASCH). As 204((311) =0— Gl(]l), we have the group W is generated by ¢ and

(el(]D)v
W}H). Since (GI(H))V = 65]1) and WJEH) is generated by S (1 <i<l), we
have

MO .= Z-span of W}H) ((QZ(H))V) = (—B Zegﬂ).

By Lemma [1.4] we have the following lemma.

Lemma 1.5. Set t(M®) = {t,|p € M®W}. This is an abelian normal
subgroup of W, and we have a semidirect product description of W:

W =W w (M),
1.4. The complex domain ) and its coordinate systems.

1.4.1. Define a complex domain Y < h* by
(1.4.1) Y = {veh*|Rel(v,d) > 0}.

Let H be the Poinceré upper half plane. For # = {I, I}, define a map ¢® :

Y — Y :=HxC!xC as follows. Let ¢j, cpl(ﬁ) (1<i<), @%3 be functions
on ) defined by

~

~ T, 1 A
I(v,9) @, I(v,sgﬁ)) ) I(”’ (a{P)yv Ao )

S U Y= SO A sy S
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for v € ), where we set (a (ﬁ)) ay if § =T and (a[()ﬁ))V =q) if § = II. Set

V30— (p5(0), (¢ ), 0P (), () € V.

Since p® is an isomorphism of complex domains for each f = {I, 1}, we have
the following commutative diagram:

N
o0y N\ o™
Mo (pD)—1
Y ———Y.

D o(ipM)=1

Lemma 1.6. Denote (1,2,t) € Y where 7 € H,z := (21,...,24) € C,,t e C.
For every pair (8,b) such that §,b € {I,1I} and § # b, the explicit form of the
map ©® o (0P~ Y 5 Y is given by

1 1 o1y
(1.4.2) (7',2,t)»—><7'7 <—zl—27’,...,—21—27>,t+87'+22zi>.

Proof. First, we give the proof for the case that § = I and b = II. For
(1,2,t) €Y, we have

(@MY (7, 2,8) = 2m/—1 (—TA + Z z, ) 4 t5>

By definition, we have

the right hand side
!

!
1 I 1 ) l ) 1
= 2m/—1 l—r <2A0 +§¢;8i -0 Z el it 0]+t

1 1
LA LY. o 1
=21/ —1 l—QTAO + ; (—zl+1_i - 2T> e F|t+ gT + 3 i:lei o].

Thus, we have the formula (1.4.2)) in this case.
Second, by the above result, it follows immediately that

(0 (p™)71)* = idy.

Therefore, we have

_ 1\ —1 _
W o (M) = (0 o (pM)™) 7" = W o (pM)~!
as desired. O

1.4.2. Introduce an isometry ¢ € O(h*, IA) as follows. Define w(‘?l e O(h*, f)
by wél =s (s s ®) (s ® s @) Onehas
Qo apl g N—1 @1

wil(e) = erp1; for 1<i<l, wl() =6 and wi(A))=A{
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by direct computation. Introduce another isometry (p, € O(h*,I) by

Croler) = —&i for1<i<l, (p(8)=6 and (p(AS) =AY
Set
(1.4.3) G =ty ster)2 0 Wh 0 Cryp € O(0*, ).
The next lemma follows form direct computation.

Lemma 1.7. One has

(1) oM =™ (1 <i<i), ¢06) =05, ¢(A") =2A",

(3
(2) ¢ is an involution.

Recall the decomposition (T.2.8) of b*, and let 7 : h* — F}ﬁ()c < b* be
the canonical projection for f§ € {I,lI}. The next lemma is a direct conse-
quence of the previous lemma.

Lemma 1.8. (1) We have
¢o 7 = 706 ¢, ¢o 70 = 7@ o.
(2) There is the following commutative diagram.
®

y

¢ /
LN 0O om
Y
For later use, we set

™
1.5. Weight lattice. For 1 < j <[ and § € {I, I}, define the j-th (affine)

fundamental weight Ag-ﬁ) (of type (f)) by the condition that

y

IA((agﬁ))V,Agﬁ)) =0;; forevery 0 <i<l.
Note that this condition determines Agﬁ) modulo CJ.
Remark 1.9. By direct computation, we have explicit forms of them as

follows.

A(I) =

(1) (1) <
( {w] + Ay’ modCs (1 <j <), AD EA(Ijj mod CS.

@ + 1A modCs  (j =1), 7
Define subsets P and Py of h* by

= ( ]Q_lr)o ZAg.U) +C§ and P, — <§Z>OA§I)) + Co.

We call P the weight lattice, and P; the set of dominant weights, respec-
tively.
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Remark 1.10. As we already mentioned in Remark we have AE.]I) =
Al(gj mod Co. Therefore, we have

l l
P—(@DzA")+C and Py = (Y Z=0A") +Cs.
J=0 j=0
For A € P, the number k := I(5,)) is called the level of A. In the case

of type BC’l(2), the levels of fundamental weights are given in the following
table.

J O[1]--1—-1]1
level of Ag-l) 212 2 1
levelof A [[1]2]--- [ 2 |2

For k € Z~q, set

~

Pk = {)\EP|I(5,/\) = k} and Pk7+ = Pk (WP+.
For # € {I,1I}, define p®) € P, by

l
o0 = 3 AD,
j=0

Since fundamental weights can only be determined modulo C8, p® is deter-
@ _ 2@
A

o = pU mod C4.
That is, p(M coincides with p(I) as an affine weight.

Let p be any element of pM) + C§ = pID + C§. Note that, by definition,
we have the level of p is 21 + 1.

mined modulo C§ as well. Furthermore, as A mod CJ, we have

2. CHARACTERS

2.1. Algebra &, formal characters. Recall the triangular decomposition

(23 ofg: g=n, ®HhDn_.

Let V be a h-diagonalizable module, ie., V = (—D)\eh* V) where V) :=
{fveV|hv=<{h, v hebh}. Set P(V):={\ebh*|V) # {0}}. Let O be
the BGG category of g-modules, that is, it is the subcategory of g-modules
whose objects are h-diagonalizable g-modules V' = P Aeh VA satisfying

(i) dim V), < oo for any A € P(V),

(ii) there exists A1, A, -+, Ay € b* such that P(V) < | Ji_; (A — ZxoII).
A typical object of this category is a so-called highest weight module defined
as follows. We say that a g-module V is a highest weight module with highest
weight A € b* if

(i) dmVy =1
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(ii) ny. Vi = {0} and V = U(g).Va.
In particular, the last condition implies that V' = U(n_).Vj as a vector space,
hence
Such an example is given as follows. For A € h*, let Cp, = Cvp be the one
dimensional module over b, := h @ n, defined by

h.oop =<{h,Avy  (heb), ny.vp = 0.

The induced g-module M(A) := Indg+CA is called the Verma module with
highest weight A. It can be shown that for any highest weight g-module V'
with highest weight A € h*, there exists a surjective g-module map M(A) —
V. The smallest among such V' can be obtained by taking the quotient of
M(A) by its maximal proper submodule and the resulting g-module is the
irreducible highest weight g-module with highest weight A, denoted by L(A).

Let £ be the formal linear combination of e (A € h*) with the next
condition: )y exed € € = I\, N, -+, A € b* such that

{Aex # 0} < [ (N = Z=oTD).
i=1

We introduce the ring structure on £ by e - et := eMH,

The formal character of V € O is, by definition, the element chV € &
defined by
chV = ) (dimVy)e.
XeP(V)
ch(+) can be viewed as an additive function defined on O with values in &.
For example, The formal character of the Verma module M (A) is given by

ch M(A) = et T] (1—e )it

aeA

where A, is the set of positive roots of g and mult(a) = dimg, is the
multiplicity of the root a. Set e(w) = (—1)'(®) where I(w) is the length of
an element w € W. For A € Py, the character of L(A) is known as Weyl-Kac
character formula and is given by

w(A+p)—p
(2.1.1) ch L(A) = —2wew EW)e T
HaeA+ (1 _ e—a)mu a

where p € h* is a so-called Weyl vector, i.e., it satisfies (h;, p) = 1 for any
0 < i < [. In particular, for A = 0, as L(0) = C is the trivial representation,
one obtains the so-called denominator identity:

(2.1.2) D e(w)er®) = [T (1 —emymutie),

weW aeA
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This implies that the Weyl-Kac character formula can be rephrased as fol-
lows:

w(A+

(2.1.3) ch L(A) = Zwew EW)e o

ZweW 5(w)ew(l))
2.2. Nice functions on the Weyl group W and twisted character.
Let A" = | |;cg Ox be the orbit space decomposition of A™ with respect
to the W-action with the set S of parameters. Denote the index set of the
simple system IT by I = {0,1,...,{} and set I, = {i € I |a; € InOy}. Then,
we have a partition I = | |, _g Iy of the index set I of II.

For any map ¢ : S — {£1}, there exists a morphism of groups ¢ : W —
{+1} verifying ¢(sq,) = p(k) for any i € I,. This map is well-defined as the
Weyl group W is a Coxeter group. Let S,qq4 be the subset of S consisting of
those k such that for any i € Iy, I(c’, ;) € 2Z for any j € I. For a subset
S" < Sodd, set T = Jpeg Ir- Indeed, in our case, 7 can be either & or {i}.
The next two maps are typical examples of the above :

(1) &(Sa;) = —1 Viel,
(2) €'(8a;) =1 forie I\t and £'(s,,) = —1 otherwise, i.e., for i € 7.

V. Kac introduced the next notion in pp. 100 of [5]: a morphism of groups
¥ : W — {£1} is said to be nice if there exists a morphism of groups
Y 1 ZI1 — 7/27 satisfying ¥(sq) = (—1)¥(®). A necessary and sufficient
condition for 9 to be nice is that ¥ (sa,) = —1 for an ¢ € I only if i-th line
of the GCM A4, i.e., a;; is even for any j € I. Hence, ) = 1 or ¢ = ¢’ are
examples of nice morphisms.

Remark 2.1. Regard the GCM A as the GCM of the affine Lie superalgebra
of type B1(0,1). Then, for the latter case, i.e., ¢ = &' with T = {l}, the
map b coincides with the parity map | -| : Q(BM(0,1)) — Z/2Z.

In the rest of this article, we always consider the case when A = (a; ;) is
the GCM of type BC’I(2) and use the nice map 1 defined as follows:

1 0<i<l,

(2.2.1) v W — {il}; S 1 .
Q; -1 =1

Remark 2.2. By definition, we have ¢(s_m) = (—=1)%0 which implies that
W}H) c Kery whereas W}I) ¢ Keryp. Indeed, W}I) N Kery < W}I) s a
subgroup of index 2, which is isomorphic to W (D;). We denote the subgroup
W}I) N Kery, which is generated by the reflections with respect to the middle

length roots of A;I), by W}I)

For a highest weight g(A)-module V' with highest weight A, we define its
twisted character ch? (V) as follows:
ch’(V)= > (-1)PAN(dim Vy)et e &,
XeP (V)
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where V = P ASP(V) V), signifies its weight space decomposition. It has been
essentially shown by V. G. Kac [5] that, for an even level A € P, one has

S e €(w)(w)e A +0)
Dwew (W) (w)ew®)

(2.2.2) ch? L(A) =

3. THETA FUNCTIONS

For A\, p € b*, set eM(u) = e!(1) - In this way, one can regard the for-
mal (twisted-)characters as functions on a certain domain in h*. Here, we
introduce @-series and regard them as analytic functions.

3.1. Theta functions. Let k € Z- be a positive integer. For A\ € P, ; and

4 € {I, I}, we define the formal theta series O, and its twisted form m@f\b
as follows:

I ~
(ﬁ)@)\ —e~ (Qk )5 Z etwo\) — Z e>‘+k7_il()‘+k%>\+k7)5’

~eM®) ~eM®)
_ION 5 £ (\ Mky— 2 TOky A rkv)d
DO =50 3 wltn)en ™ = 3] (ay)trmml ks,
HeM® HeM®)

where 1) : W — {+1} is the nice function on W defined in (2.2.1). They

can be viewed as complex analytic functions on the domain Y defined in
il
By direct computations, one has, for § € { LIl } and y = (7, 2,t) € Y,
((ﬁ)@)\ o (go(ﬂ))’l) (1,2, t)
:e2f(A,5)7r\/—71t Z e]A()\,B)W\/—ih'Hw+%7r(u)()x)“2+2f()\,5)7r\/—71f(w+%7r(u)(A),pr(u)(g))
f\/eM(ﬁ)
(96 o (6) ™) (7,2,
_ 2l my Tt Z W(t) ef(x,a)mﬁfnwéww(A)|\2+2f(x,5)wﬁf(y+%n<ﬁ>(A),pr(m(g))

)

)

'yeM(ﬁ)

where pr® is defined in (1.4.4). Fix k € Z~o9. Now, we introduce W-anti
invariants, or equivalently, e-twisted W-invariants: for A € Py, .,
Ay e~ TS 3 Ly e0tien)
weW

By Lemma and the fact that e(¢,) = 1 for any v € M®) it follows that

A>\+p: Z e(u)(ﬁ)@u()\-&-p)a
ueW;u)
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for any # € {I,Il}. Similarly, we introduce eiy-twisted W-invariants: for
A€ Pk,-‘ra

T(A\+p, /\+p)6

— Sl A
A;ﬁp = o 2(Rt2itD) 2 5(w)¢(w)ew( +p)
weW
By Remark [2.2] we can rewrite it as follows:

Afﬂ) Z 8(u)w(u)(ﬁ)@Z(A—&-p)

uew ¥
p Do¥ -
B Zuew;ffn e(u) (Vo u(Atp) T + ¢ )®usal(1> ()\-i-p)) =1
ZueW}“) e(w) )Qw(A+p) t=1

where the group W}I?n is defined in Remark

Remark 3.1. For A = 0, one has the following (twisted-)denominator:

2(p.p) 5 2
Ap=e" 2 [T —em) ] (- [[ (t-e)

n=1 ae(AD)f ae(AD)L
0
% 1_[ ( H (1 e n6)(1 _ 6—204—(277,—1)5) 1_[ (1 e~ n6)>,
=1 ae(al), ae(AD),n
e}
AY =P 200 H(1 —nd)l (1+e9) H (1—e®)
=t ac(Af); ac(AY)L
o0
H < a—n6)<1 - e—?a—(2n—l)6) H (1 o e—a—n6)>.
"=l ae(af >) ae(A)m

When we regard the twisted invariants Ay, , and A;{’ +p 88 functions on Y,
for y = (7,2,t) € Y, we have

(Arxipo (@) ™M) = D) e DO, 1),
ueW}u)

(Af+p (<P(ﬁ))_1)(y) = Z(m e(u)p(u )( )@w()\ﬂ))(y)
uve

Remark 3.2. An appropriate specialization of Apo(cp(ﬁ))_1 and A}fo(gp(ﬁ))—l
(ge{L,II}) gives n-product identities appeared in the Appendix 1, Type BC,

(6) in [9):

Twisted-invariant | A, o (M)~ | A4, 0 (pM)~! qup o (pM)=1 [ AY o (@)1
Table in [9)] (a) (b) (¢) (d)
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3.2. Normalized (twisted-)characters. For A € P, the rational number
IA+p,A+p)  I(p,p)
2I(A +p,6)  21(p,9)

is called the conformal anomaly. We define the normalized (twisted-

)character y, (resp. XK) as follows:

XA = e~ ch L(A), XK = e~ A0 chY L(A).

It follows from the Weyl-Kac character formula (2.1.3)) and its twisted version
(2.2.2)) that for an even level A € Py, one has

(4
Axsp v AA+p_

2.1 =
(3.2.1) XA A,

4. ACTIONS OF SLa(Z)
Recall the action of the group SL2(Z) on the complex domain Y:  for

((Z Z) € SLa(Z) and y = (7,2,t) € Y,

a b _(ar+b  z CI!pr(”(y)\f
<c d> '(T’é’t)_<67+d707—|—d’t_ 2(ct + d) )

In particular, in this section, we study how the (twisted) W-invariant 6-

functions behave under the action of S := <(1) _01> and T := <(1) 1)

4.1. Poisson’s resummation formula. Let E = R! be an affine space and
I be a positive definite symmetric bilinear form on E. For a full sublattice
M of E, denote by Vol(M) the discriminant of M, i.e., the volume of E/M.
For a rapidly decreasing function f : E — C and y € R, set

E

The so-called Poisson’s resummation formula is described as follows:

(4.1.1) > f(m > f(m

meM (M meMY

w\»—A

Here,
Vi={neE|[I(mn)eZ Yme M}

is the dual lattice of M. In particular, for a self-dual lattice M, a € C!, 7 € H
and f(z) := 6Wﬁ(7%)"£+gu2, one obtains

l\)\»—‘

(412) > € Dlm+al® _ (f) Z oV Trlml*+2my/ =1l (a,m)

meM

See, e.g., [12] for more information.
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4.2. Modular transformations on twisted-invariants.
As applications of , we compute the modular transformation of the
anti-invariants A o (¢®)~1 and A% o (¢®)~1). Since the concrete compu-
tations are entirely similar to the cases studied by V. G. Kac and D. H.
Peterson [7], we omit the detail and write only the results.

For A\, € Py 4, set

a0 = Y eupp(uye T T (00 2w+

)

uew M
f

a1y = 3 e(u)em iR (OO +00) 7O +0)
UEW]EH)

a0 ) = Y e(uper i TN 00) A4
uEW}I)

W)= 3 e T a0 40)

ueW;H)

Remark 4.1. Let k € 2Z>.

(1) For any e Py one s a0, ) = aD (g, ).
(2) The definition of aD(\, 1) can be rewritten as follows:

Oy = Y () (e FHT IO w000 )

(1)
uve;m

)

— 2T I(usal(l) (ﬂ(1>(A)+pgp),ﬂ(1>(u)+p<fl>)>

where the group W}IZH is defined in Remark .

The first lemma concerns the W-anti invariants and the coordinate system
of type (I) :

Lemma 4.2. Let k € 2Z~g. For A€ P, andy = (1,2,t) €Y,

_ 1z pr(!
(A)\-&-po(so(l)) 1)<_7a77t_ ” 27_ H )

TN a0, ) (AL, 0 (™)) ().
puePy + mod C§

NE

(Arspo (M)~ 1)(7 +1,2,t) = ek+2l+1||7r (o)’ (Axipo (gp(l))_l)(y).

=(k + 20 + 1)*51(
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In particular,

(4po(e™) ) (—. 2

The second lemma concerns the ei-twisted W-invariants and the coordi-
nate of type (I) :

Lemma 4.3. Let k€ 2Z~¢. For A€ Py andy = (1,2,t) €Y,

z r@ ()]
(48, 0 (o)) (- 1 2 Iy

’7' 7'
l

1
_1 T 2 _
=(k+ 20+ 1) 3 (o) OO0 (45,0 (") ) W),
o pePy . mod Co
_ V=T | (D) 2 _
(AL, 0 (e™) Y(r +1,z2,t) = efrom[m0 0+ (AL, 0 (e™) ™) ().

In particular,

z I‘(I) ? T % 1
(A$O(90(D)_1)<—%,?,t— HP 2?)” ) _ (\/?1) l(_l)al(l—l)(Ago(so(l))—l)(y).

The third lemma concerns the W-anti invariants and the coordinate of
type (II) :

Lemma 4.4. Let k € 2Z~g. For A€ P, andy = (1,2,t) €Y,
§

(m

) 1z, ol

(A)‘er (¢ ( T’t 2T )
T

DY [ )

uEP + mod Cé

20 B
(A)\er o ((P(]I)) )(7- +1,z t) — ek+21+1” (A+p) H ( Aip© (SD(H)) 1)<y)‘

—

=(k+20+1)" (

}

In particular,

Z T]I) ? T % 2
(Apow(“))—l)(—l,,t—”p Qf’)” ) = () D (Aele™) ) ).

T

The fourth lemma concerns the ey-twisted W-invariants and the coordi-
nate of type (II) :
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Lemma 4.5. Let k € 2Z~g. For A€ P, andy = (1,2,t) €Y,

2 I ()2
(™)) (- Lz, Hp(y)“)

'’ 2T

(A;{}-&-p

. L -
(k217 (=)0 N OG0, H) (Ao (6 @),
pePy + mod Co

0 (p0) ) (r +1,2,8) = eSO (4, o (o)) ),

(A;{}-&-p

In particular,

V4 T(I[) 2 T % 2
(Ago(so(]l))*l) (—%,;,t— ”p 27§y)” ) _ (\/?1) l(\/_il)fl (Apo(ép(l))fl)(y)‘

We remark the one of the key formulas in the proof of the above 4 lemmas
for A = 0 are the next well-known formula: for N € Z1,

N

—_

4.3. Modular transformations on (twisted-)characters.
Let k € 2Z>¢ and A € P, ;. Thanks to (3.2.1)), the results stated in the
previous section imply the following results:

By Lemma [£.2] we have
Proposition 4.6. Let k € 2Z~¢. For A€ P, andy = (1,2,t) €Y,

z r 2
(v (o) (- 3,20 250

[J,EP]C,+ mod C§
(Dy—1
(o (@)™ (r+1,2,1)

(gl

M,
[ 2lJ(r1)|| )(X)\O(QO(I))_I)(y)'

Lemma [£.3] implies
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Proposition 4.7. Let k € 2Z~¢. For A€ P, andy = (7,2,t) €Y,

z r(y
(XfO(w(I))_l)(—l’:vt L0} )

T T 27’

1 _ _
=(k+20+ )72 (=)D a0 ) (3o (o)) (),
pneP . mod Co

(xy o (@)™ (7 +1,2,1)
“ADop|? Q|
7T\/_71( ” k+2z+p1 H - ” 2l+‘1 ” )

(% e (")) (»)-

=€

By Lemma we have (cf. the first identity had been obtained in [7])
Proposition 4.8. Let k € 2Z~¢. For A€ P, andy = (1,2,t) €Y,

(X/\O(SD(H))_I)<—1,§,2€ lor ¢ > H)

T T

l 2 —
=(k+20+1)72'V=D" > a®O ) (o (™)) ),
pePy . mod C
(exo (@) (r +1,2,8)
M g pM)|2 ]2 (o) ]|2
:ew —1<” HQTH ” *” 2zp+1 ” )

(3 o (™)™ -
Lemma implies
Proposition 4.9. Let k € 2Z~¢. For A\e P, andy = (1,2,t) €Y,

_ 1 z pr(l
(Xl)/jo(go(ﬂ)) 1)(_777’75 H 27— H )

T T
—(k + 2l +1)"2 (V1) a™ W (BN), 1) (xu © (™)) (»),
uePy 1 mod C§

(& e (@) )T+ 1,2,8)
Wm<HW(H)(HAH))”?_Hﬂ<11><p<n>)”2>

k+20+1

(a0 (™)) ().

5. CONCLUSION AND OBSERVATION

=€

In 1984, V. Kac and D. Peterson [7] showed that there exists an action of
the subgroup I'y of SLy(Z), generated by S and T2, on the vector space

Vk(H) = @ (C(X/\ o (cp(H))_l).
AePy  mod Cé

As Ty is a subgroup of SLy(Z) of index 3, the dimension of the SLy(Z)-module
Vi := Indp 2@y
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is 3dim kaﬂ). Let Vk(l) and V,j}’(]l) be the vector spaces generated by x) o

(4,0(1))*1 (A€ P+ mod C) and Xf o (go(]l))*l (A e P+ mod Co), respec-
@

tively. From the previous section, we see that two vector spaces V.

and

are subspaces of V;, and that

Vi = v avW e v m.

Indeed, by Propositions and the SLo(Z)-action on Vi, more
precisely, the elements S and T" map

S :Vk(n) o Vk(ll)7 Vk(l) N ka,(]l)? thb,(ﬂ) N k(I)
T :Vk(I) o V(I), Vk(H) N ka,(ﬂ)7 ka,([[) N k(ﬂ)_
Therefore, we have

Theorem 5.1. Fiz k € 2Z=¢. Then, SLa(Z) acts on the C-vector space
spanned by { xx 0 (™)™, a0 (™) XX o (M) ea s

Set

I _
kav() _ @ fo ° (SO(I)> 1
AePy, 4+ mod Cé

Surprisingly, by Proposition 1.7, we have the following theorem:

Theorem 5.2. Fiz k € 2Z=¢. Then, SLa(Z) acts on the C-vector space
spanned by { th o (et ‘ A€ P, mod Cé }

For an odd k, the authors are not aware of any such interpretation.

There is an interesting connection between this theorem and the affine
Lie superalgebra g of type B! (0,1). This is a Lie superalgebra whose set
of real roots, forgetting the Z/2Z-structure, is the non-reduced affine root
system of type BCC;. By V. Kac [5], it appears that both y, o (o®)~?
(A€ Py4) and x» 0 (9M)™1 (X € Py 1) can be also viewed as the character
of integrable highest weight modules of level k over g, since the non-negative
integer k is supposed to be even. With this identification, the twisted charac-
ters Xi\p o(eM)~1 and Xf o (™M)~ can be viewed as the super-character of
integrable highest weight modules of level k over g (cf. . There is 4 type
of affine Lie superalgebras whose universal enveloping algebras are integral
domain. In addition, the set of real roots of such affine Lie superalgebras,
forgetting their Z/2Z-graded structure, are non-reduced affine root systems:

Non-reduced type BCC; CY B(C BB’ cY G
Affine super BW(0,1) | A®(0,20) | AP (0,21 —1) | CP (1 +1)

This article deals with BCZ(Q) which is connected with BM(0,1). For 3 other
cases, there might be something similar, as can be seen from the appendix of
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[9]. The SLy(Z)-symmetry, we have shown in this article, is quite mysterious
and its « raison d’étre » are to be revealed.

APPENDIX A. LIE SUPERALGEBRA

Here, we recall some relevant basic facts about Lie superalgebras. The
basic reference here is [5].

A.1l. Lie superalgebra osp(1]2) and its irreducible representations.
The Lie superalgebra osp(1|2) is the superspace

g=0p Do, g5 :=CE®CH @®CF, g7 :=Ce®Cf

equipped with the Lie super-bracket [ -, -] satisfying

[H,E| =4E, [H,F|=—4F,  [E,F]=2H,

[H,e] =2¢,  [H, f]=-2f

le, f] = H, [e,e] = 2F, [f, f] = —2F.
Let a € (CH)* such that a(H) = 2. Then, it is clear that {+a} U {£2a} is
the set of roots of g with respect to h = CH. Set b = CH ® Ce@® CE. For
A € b*, let Cuy be the even b-module defined by

H.wy = \H)vy, e.vy = 0.

It is clear that this implies E.vy = 0. The g-module M(X) := IndgCuy is the
Verma module with highest weight \. For ¢ € Z~, set w; = %fﬁ ® vy. By

direct computation, one sees

—W; 1 i1=0 mod 2,

How; = (MH) — 2i)w;, wp =1 . .
w; = (AMH) — 2i)w e.w {Z(/\(H)—Z—Fl)’wz‘—l i=1 mod 2,

fow; = (Z + 1)wi+1.

Hence, the g-module M ()) is reducible if and only if A(H) € 2Zx, in
which case the subspace N(A) := ®i>)\(H) Cw; gives the maximal proper
g-submodule. Denote by L()) its irreducible quotient. The next lemma is
important:

Lemma A.1. Let V be an irreducible finite dimensional g-module. Then,
there exists N € Zsqo such that V. = L(Na). In particular, V is of odd
dimension.

A.2. Lie superalgebra of type B(1)(0,1). Fix a finite set I. Recall that
a Kac Moody Lie algebra is a Lie algebra associated with a GCM A =
(@i )ijer, i-e., a square matrix with a;; € Z such that i) a;; = 2 for any
i€l,ii) a;; <O forany i # j and iii) a; ; = 0 implies a;; = 0. Its building
blocks are isomorphic to s[(2). Similarly, a class of Lie superalgebras had
been considered in the article [5] associated with a pair (A4,7) of a GCM A
and the subset 7 < I satisfying the additional condition iv) a;; € 27Z for
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any ¢ € 7 and j € I. Its building blocks are isomorphic either to sl(2) or to
osp(1)2).

Recall the definition of the Lie superalgebra g(A, 7). Let (h,II,IIV) be a
realization of the GCM A so that IT = {a;}ier < b* and 1Y = {h;};es are
sets of linearly independent vectors satisfying {(c;, h;) = a;; for any i,j € 1.
g(A, 7) is the Lie superalgebra generated by e;, f; (¢ € I) and h with the
parity

lei| = |fil = {(1) PN =0 ke,
1€ T,
equipped with the Lie superbracket [-, -] satisfying
(S1) [h,h'] =0 for h,h' € b,
(82) { [ha 61] = <h, az> €,
[h, fi] = —Chy i) fi
(83) [ei, f]] = 5i,jhi for 0 <i,5 <,

ad(e;) " (e;) = 0,
(84) { ( )laij(])
ad(fi) 7 (f;) =0,
A non-zero element « € h* is called a root if
go :={z€g(A,7)|[h 2] =a(h)zVheb} # {0}

We denote the set of all roots by A. We have the so-called root space
decomposition with respect to h: g(A,7) = h@® P cp Fa- A ro0ot @ € A 'is
called even (resp. odd) if any non-zero element of g, is even (resp. odd). It
is clear that a root a = ) .., m;a; € A is even iff so is Y}, m;. Denote by
Aj and A7 the set of even and odd roots, respectively. By definition, one
has the following parity decomposition:

Q(A, T) = g(A7 T)() D g(Aa 7')1,
where g(4,7)5 = b @ Dpen, 9o and 9(A4,7) = Doep, a- For i € I, Let sq,
be the reflection in h* defined by s,,(z) = x — z(h;)a; and W(A) be the
subgroup of GL(h*) generated by s,, (i € I). An element of A" := W.II
(resp. A" := A\A") is called a real (resp. an imaginary) root.

for hehand 0 < i<,

or0<i#j<l.

The finite Lie superalgebra gy of type B(0,1) is, by definition, the Lie su-
peralgebra g(Ay, It 04q) associated with the Cartan matrix Ay = (a;)1<i j<i
of type By, i.e.,

2 -1 0 - 0
-1 2 -1 .
Ar=1o0o . . "~ 0| Ipoaa = {1} < Iy ={1,2,--- ,1}.
: -1 2 -1
0 0 -2 2

This Lie superalgebra is also called osp(1]2]).
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Remark A.2. The root system Ay of the Lie superalgebra gy is of type BC,
Be., Ap = (Ap)s U (Af)m U (Ag); where
(Ap)si={Fei1<i<l},  (Ap):i={%2e]1<i<I},
(Af)m = {i&ii€j|1 <Z<]<l}
Its parity decomposition is given as follows: Ay = (Af)gl (Af)7 where
(Ap)o = (Ap)m U (Ap),  (Ap)1 = (Af)s.

The affine Lie superalgebra of type B(1)(0,1) is, by definition, the Lie
superalgebra g(A, I,qq4) associated with the same GCM A = (a;;)o<i j<i a5
for type BCZ(Q) introduced in and the subset I,qq := {l} of the index set
I:={0,1,---,l}. Thus, its Dynkin diagram is

4 2 2

o—e (=1, O>0—0------- o—o0——=e (1=2).
(%) aq (7)) a1 a1

Here, the black nodes signify that the corresponding simple root «; is non-
isotropic and odd. The Weyl group W is isomorphic to the Weyl group of
type BCl(z), and the set of real roots A" is of type BCCY, i.e., A™ = Ar+74,
where ¢ := ag +2(a1 + ag + - - - + ) is the even positive isotropic root such
that A" = Z4. The parity decomposition A = Ag 11 A is given by

Ag = ((Af)m + Z0) 1 ((Ap) + ZE) LA™, Aj = (Ap)s + Z0.

We remark that the node «; is the only node verifying a;; € 2Z for any
0 < j <. In particular, the map 1 defined in ([2.2.1) is nice.

Remark A.3. [t is known that the the derived subalgebra of g(A, Loqq) can
be realized as the universal central extension of the loop algebra over gy. In
particular, it follows that mult(nd) =1 for any n € Z\{0}.

For later use, let ny be the Lie sub superalgebras of g(A, I,qq) generated
by e; (i € I) and f; (i € I), respectively. One can define the category O of
9(A, I,qq)-modules as in the Kac-Moody case. Set Ay := A n Zxoll.

A.3. Integrability highest weight modules. A highest weight g(A, I,44)-
module is defined similarly. For A € h*, let C4 = Cvp be the one dimensional
even module over b, := h @ n, defined by

howp = <(hyAMvy  (heb), ny.wp =0.
The induced g(A, lgq)-module M (A) := Indg(A’I"dd)(CA is called the Verma

+

module with highest weight A. The Verma module M (A) possesses the maxi-
mal proper submodule, say N(A). Denote its irreducible quotient M (A)/N(A)
by L(A). The next lemma can be shown, with the aide of Lemma

Lemma A.4. The highest weight g(A, I,qq)-module L(A) is integrable if and
only if A(hi) € Zso for 0 < i <1 and A(h;) € 2Z>¢, i.e., A € Py and the
level of A is even.
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Note that the level of i-th fundamental weight A; € h* is the co-label a;’.

As any highest weight module is h-diagonalisable, we can speak of its
formal (super-)character which is an element of £. For an object V of the
cartegory O, let V = ®A6P(V) V) be its weight space decomposition. Its

character ch(V') and super-character sch(V') are the elements of £ defined by
ch(V)= > (dimVi)e*,  sch(V)= > (sdimVy)e?,
AeP(V) AeP(V)
where for a Z/2Z-graded vector space E = Eg® E7, we set
sdim(FE) = dim Ej — dim Fj.
Let p := Zﬁ:o € A; be a Weyl vector of g(A, I,4q4). For a A € P, with even

level, the formal character of the irreducible highest weight module L(A) is
given by the Weyl-Kac character formula:

w ew(A-‘:— )
hL(A) = ), e(w)ch M{w(A+p) —p) = ZZMEW;(e(L)ew(p)p '
weW we

This is exactly the same as for the affine Lie algebra g(A) (cf. (2.1.3)).
Hence, the super-character of L(A) can be given by

sch L(A) = ) e(w)ip(w) sch M (w(A + p) — p),
weW

where the map ¢ : W — {+1} is defined in (2.2.1). By the Poincaré-
Birkhoff-Witt theorem, it follows that

\ HaeA+r\Ai (1 _ e—a)mult(a)

schM(\) =e
HaeA+mA6 (1 — e—a)mult(a)

which implies the super-denominator identity:

_ ,—a\mult(a)
(A.3.1) 3 e(wyp(w)e = oo Hecainagl < ) et
wety [oea na (T —ememite
As a corollary, one sees that
sch 1) = S SV

Dwew (W) (w)e(?)
Thus, it is exactly the twisted-character (2.2.2)) !
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