UE : Algèbre 1 (MATHS)

Exercices

Vous devrez faire attention à rédiger correctement. Toute rédaction incomplète ou imprécise sera sanctionnée même si le raisonnement est correct. N'écrivez pas au crayon à papier.

Exercice 1 Racines n^{eme} Ici, on veut trouver tous les solutions de l'équation $(E): z^8 + 4z^4 + 16 = 0$ par deux méthodes :

- 1. Voir l'équation (E) comme une équation sur z^4 ;
 - (a) Trouver les valeurs de z^4 .
 - (b) Calculer les racines 4ème de ce que vous avez trouver dans la question précédente.
 - (c) Conclure.
- 2. À l'aide de $z^8 + 4z^4 + 16 = (z^8 + 8z^4 + 16) 4z^4$,
 - (a) Factoriser $z^8 + 4z^4 + 16$. On précisera les deux équations sur z^2 ainsi obtenues.
 - (b) Résoudre ces deux équation algébriques. Ensuite, calculer les racines carrées de ces solutions.
 - (c) Conclure.

Exercice 2 Calcul de $\sin(\pi/12)$ et $\cos(\pi/12)$ Calculons ces valeurs avec les deux manières suivantes :

- 1. Donner une forme algébrique de $\exp\left(\frac{\pi i}{6}\right)$ et calculer sa racine carrée.
- 2. À l'aide de $\frac{1}{3} \frac{1}{4} = \frac{1}{12}$, calculer la forme algébrique de $\exp\left(\frac{\pi i}{12}\right)$.

Exercice 3 Arithmétique Soit p un nombre premier supérieur à 2.

- 1. Pour tout entier k entre 1 et p-1, montrer que le coefficient binomial $\binom{p}{k}$ est divisible par p.
- 2. Montrer, par récurrence, que $p|a^p a$ pour tout entier naturel a.
- 3. En déduire que si a et p sont premier entre eux, $a^{p-1}-1$ est divisible par p. (Petit théorème de Fermat)

Exercice 4 Équation diophantienne

- 1. Déterminer PGCD(6188,4709).
- 2. En déduire une solution $(u, v) \in \mathbb{Z}^2$ de l'équation 6188u 4709v = 17.
- 3. Résoudre dans \mathbb{Z}^2 l'équation disophantienne 6188u 4709v = 34.