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PARTIE 1

GROUPES
FONDAMENTAUX ET
REVETEMENTS



Dans ce premier chapitre certains résutats, seront admis. Les démontrer
demanderait trop de temps et nous éloignerait du sujet qui nous intéresse. Le
lecteur pourra trouver des démonstrations complémentaires dans 'ouvrage
de Claude Godbillon, [G], dont ce chapitre est inspiré.



Chapitre 1

Groupe fondamental

1.1 Définitions de base

Définition 1.1.1. On considére un espace topologique X . I désigne ['intervalle
[0, 1]

1. Un chemin dans X est une application continue ¢ : I — X. ¢(0) est
appelé origine de c et ¢(1) lextrémité. Six = ¢(0),y = ¢(1) on dit
que ¢ est un chemin joignant xr a vy.

2. Pour tout pointx € X on désigne par c, le chemin constant d’origine
et d’extrémité x défini par : Vt € I, ¢,(t) = .

3. Sic:I— X est un chemin joignant x ay, on désigne par ¢ le chemin
joignant y a x défini par ¢(t) = c(1 —1t), ¢ est appelé chemin inverse
de c.

4. Sic est un chemin joignant x a y et ¢ est un chemin joignant y a z
alors on note cc' le chemin joignant x a z le chemin défini par :

1
c(2t) st 0<t< <
cd(t) = 1 2
d2t—1) si §<t<1

cc est le chemin composé de c et .

Définition 1.1.2. Deux chemins ¢ et ¢ de X ayant méme origine et méme
extrémité sont dits homotopes s’il existe une application continue
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H:Ix1I— X telle que :

i)Vt eI, H(t,0) =c(t) et H(t,1) = ().

ii)Vsel, HO,s)=x et H(1,s) =y.

La relation “étre homotope a” entre les chemins est alors appelée relation
d’homotopze.

Plus visuelement, un chemin ¢’ est homotope a un chemin ¢ s’il peut étre
“déformé” contintiement en le chemin ¢ (voir dessin ci-dessous).

c c'(t)

© ¢ ) o

Figure 1.1: Le chemin ¢’ est homotope a c.

Proposition 1.1.1. La relation d’homotopie est une relation d’équivalence
dans ’ensemble des chemins joignant x a vy.

Nous allons par la suite considérer I’ensemble des classes d’homotopie des
chemins joignant x & y que nous noterons 11, ,(X).
Notons [c] les éléments de 11, ,(X), et

0X) = [J Mey(X)

z,yeX

Nous allons munir ce dernier ensemble d'une loi de composition interne
“” définie par [c][¢] = [ec] lorsque cela a un sens (i.e. lorsque ¢(1) = ¢(0))
L’étude des propriétés de la relation d’homotopie vont nous permettre de
déduire celles de la loi “.”.

Théoréme 1.1.2. Soient ¢, v deux chemins homotopes joignant x a vy et ¢,
~' deux chemins homotopes joignant y a z. On a alors :

i) Les chemins inverses ¢ et 7y sont homotopes.

ii) Les chemins composé cc’ et v sont homotopes.



Démonstration. Voir [G].Chapitre V.1.3.

Ce théoreme assure la définition de la loi “.” lorsque ¢(1) = ¢/(0).

Théoreme 1.1.3. Soient ¢; un chemin joignant x a vy, co joignant y a z et
c3 joignant z a u. Les chemins (cica)cs et ci(cacs) sont alors homotopes.

Démonstration. Voir [G].Chapitre V.1.4.

Par conséquent, on a ([c1][c2])[es] = [(cie2)cs] = [e1(eacs)] = [e1]([ea][es])-
La loi “.” est donc “associative”.

Théoréme 1.1.4. Soit ¢ un chemin joignant x a y. Les chemins cc, et cc
sont homotopes a c.

Démonstration. Voir [G].Chapitre V.1.6.

On en déduit : [c][c,] = [c] et [c,][c] = [c].
Les classes [c;] et [c,] sont donc les éléments neutres respectivement a droite
et a gauche pour la loi “.”.

Théoreme 1.1.5. Soit ¢ un chemin joignant x a y. cc et cc sont alors
homotopes respectivement a c, et c,.

Démonstration. Voir [G].Chapitre V.1.7.

On a alors [c][¢] = [c,] et [][c] = [¢,].
Ce théoreme se traduit donc par le fait que [¢] est I'inverse de [¢] pour la loi

W
On constate que la loi “.” présente toutes les caractéristique d’une loi de

groupe, mais qu’elle n’est pas définie sur I1(X) x TI(X) tout entier. Elle ne
permet donc pas de munir I1(X) d’une structure de groupe.



1.1.1 Groupe fondamental

Définition 1.1.3. Soit x € X. Un lacet de base x dans X est un chemin
d’origine et d’extrémité x dans X. On note m (X, z) Uensemble 11, ,(X) des
classes d’homotopies des lacets de base x dans X.

Théoreme 1.1.6. D’apres ce qui précéde, la composition des chemins induit
une structure de groupe sur l'ensemble m(X,x). ( L’élément neutre étant
alors [c,] et [¢] linverse de [c] )

Définition 1.1.4. Le groupe m (X, x) est appelé groupe fondamental de
X au point x.

Proposition 1.1.7. Soit ¢ un chemin d’origine x et d’extrémité y dans X.
L’application a. : [y] — [cye] est un isomorphisme de m(X,y) sur m (X, x)
qui ne dépend que de la classe d’homotopie de [c].

Si ' est un second chemin joignant x a vy, alors les isomorphismes a. et oy
sont conjugués dans m (X, x).

Démonstration. Voir [G].Chapitre V.2.3.

Corollaire 1.1.8. St x et y sont dans une méme composante connexe par
arcs de X, les groupes m (X, ) et m(X,y) sont alors isomorphes.

En particulier, si X est connexe par arc tous ses groupes fondamentauz sont
isomorphes et on parlera alors du groupe fondamental m (X) de X .

Ceci nous permet d’introduire la notion d’espace simplement connexe :

Définition 1.1.5. Un espace X est dit stmplement connexe s’il est con-
nexe par arcs et si tous ses groupes fondamentauz 7 (X, x) sont triviauz.
( Il suffit pour cela qu’un seul de ces groupes fondamentaux soit trivial. )

Un exemple d’espace topologique simplement connexe est le plan R?. En
effet, si 'on trace un lacet sur ce plan, on remarque que I’on peut le déformer
continiiment jusqu’a obtenir un lacet trivial. Nous verrons une démonstration
de ceci dans la partie 1.2.1.

Considérons a présent deux espaces topologiques X et Y.

Si f est une application continue de X dans Y et ¢ un chemin joignant x a y
dans X, alors foc est un chemin joignant f(z) a f(y) dans Y. On remarque
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alors que :

e La composition ¢ — f o ¢ est compatible avec 'homotopie des chemins
(ie. [=[d]=[foc|=][foc]|),ainsi quavec la composition des chemins

(Le. foled)=(foc)(fod)).

e f induit donc une application f, : TI(X) — II(Y) telle que :
felaB) = fo(a) fu(B) (lorsque af est bien défini ).

Proposition 1.1.9. Une application continue f : X — Y induit un mor-
phisme de groupe f, : m (X, z) — m (Y, f(x)).De plus :

o si f=1Idx, alors f, = Idz (xu)

e sig:Y — Z est une application continue, on a (g o f)y = gx © fi.

Démonstration. Voir [G].Chapitre V.3.1.

Corollaire 1.1.10. Si f est un homéomorphisme de X sur'Y, alors f, est
un isomorphisme de m (X, x) sur m (Y, f(x)), et on a alors (f,)™' = (f71),.

Dans le cas ou X et Y sont des espaces connexes par arcs, ce théoreme
se traduit par le fait que deux espaces connexes par arcs homéomorphes ont
des groupes fondamentaux isomorphes.

Le groupe fondamental constitue donc un invariant topologique des espaces
connexes par arcs.

Remarque 1.1.1. Si f est une application continue injective ( resp. surjec-
tive ), fr n'est pas nécessairement injective ( resp. surjective ). Nous verrons
un contre-exemple dans la conséquence 1.2.11, lorsque nous serons en mesure
de calculer le groupe fondamental de certains espace topologiques.

Nous avons cependant la proposition suivante :

Proposition 1.1.11. Soit C' la composante connexe par arcs de x dans X.
L’injection canonique i : C' — X induit un isomorphisme i, de m (C,z) sur
(B! (X, .CL’) .

Démonstration. Voir [G].Chapitre V.3.3.
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1.2 Calcul du groupe fondamental

Proposition 1.2.1. Soient X, Y des espaces topologiques.

On note py (resp. p2) la projection de X XY sur X (resp. Y) Si (x,y) €
X x Y, Uapplication (p1)« X (p2)« est un isomorphisme de m (X X Y, (z,y))
sur m (X, z) x m (Y, y).

Démonstration. Voir [G].Chapitre VI.1.1.

Remarque 1.2.1. L’somorphisme inverse de cette application est alors
Uapplication ¢ : ([c1], [ca]) — ((11)«[c1]) ((G2)«[c2]), ot iy : x — (z,y) (resp.
Qo y > (x,y)) poury (resp. x) fixé quelconque.

Corollaire 1.2.2. Si Y est simplement connexe, la projection p; : X XY —
X induit un isomorphisme (p1), de m (X X Y, (z,y)) sur m (X, z) .
Corollaire 1.2.3. 5i X etY sont simplement connexes leur produit X x 'Y
est aussi simplement connexe.

Définition 1.2.1. Un sous-espace Y d’un espace X est un rétracte par
déformation de X s’il existe une application continue r : X — Y telle que
rly = Idy et une application continue H : X x I — X ayant les propriétés
suivantes :

e H(z,0) =z pour tout x € X.
o H(z,1)=r(z) pour tout v € X.

o H(x,t) =z pour tout x € Y et toutt € I.
On dit alors que r est une rétraction par déformation de X surY .

Exemple 1.2.1. On note S™ ! la sphére unité dans R™, pour m > 1. S™!
est un rétracte par déformation de R™ \ {0}. En effet, on peut poser, pour
x € R™\ {0}, r(x) = Te- £n considérant H(z,t) = tam + (1 —t)x, on
vérifie que r est une rétraction par déformation de R™ \ {0} sur S™ 1.
Proposition 1.2.4. Soit Y un sous-espace d’un espace X, i l'injection de'Y
dans X etx € Y. Si Y est un rétracte par déformation de X, le morphisme
induit i, - m (Y, ) = m (X, x) est alors un isomorphisme.

Démonstration. Voir [G].Chapitre VI.1.6.

Nous allons a présent calculer le groupe fondamental de certains espaces
topologiques.
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1.2.1 Le groupe fondamental d’un espace numérique

On rappelle qu'un espace numérique est un espace topologique X tel qu’il
existe n € N tel que X soit homéomorphe a R™ (Un tel espace est alors
nécessairement connexe par arcs).

Un tel espace X a donc un groupe fondamental 7 (X) isomorphe a m;(R")
(cf. corollaire 1.1.10) qui est homéomorphe a (71 (R))™ (cf. Proposition 1.2.1).

On s’est donc ramené au calcul du groupe fondamental de R.

Proposition 1.2.5. L’espace topologique R est simplement connexe.

Démonstration. Soit ¢ : I — R un lacet (de base 0) dans R et soit
H : I x I — R l'application continue définie par H(t,s) = sc(t). Puisque
c(0) =¢(1) =0, ona H(0,s) = H(1,s) = 0 pour tout s € I. Par ailleurs
H(t,0) =0et H(t,1) = ¢(t) pour tout t € I. Par conséquent le chemin c est
homotope au chemin constant ¢y. R est donc simplement connexe.

O

Par conséquent tout espace numérique est simplement connexe.

1.2.2 Le groupe fondamental du cercle S!

On rappelle que le cercle S! est connexe par arcs. S! sera ici considéré comme
I’ensemble des nombres complexes de module 1.

Dans cette partie nous noterons p : R — S! la projection t — €™, et pour
n € Z, v, désignera le lacet de base 1 dans S', défini par v, (t) = p(nt) pour
tout t € .

2imt

Théoréme 1.2.6. Le groupe fondamental 71 (S, %) du cercle S* est isomor-
phe a 7Z.
Pluslprécisément, Uapplication n — [v,] est un isomorphisme de Z sur
™ (S 3 1)

(Puisque S* est connexe par arcs, pour tout z € S, 7 (S!, 2) = 7 (S, 1),
Il nous suffit donc de montrer que 71(S*, 1) ~ Z.)
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Pour démontrer ce résultat, nous avons besoin du lemme suivant :

Lemme 1.2.7. Sic: I — S' est un lacet de base 1 dans S', il existe un
unique chemin ¢ dans R ayant 0 pour origine et tel que po ¢ = c. ¢ est alors
appelé un reléevement de c

Démonstration. Pour tout a € R la projection p : R — S! est un
homéomorphisme de Ja — 1, a + £ sur I'ouvert S' \ {—p(a)}. Par conséquent
si 'on note p, ! ’homéomorphisme inverse de p, et si ¢; et ¢ sont deux appli-
cations vérifiant la propriété de 'énoncé, alors elles vérifient ¢; = ¢, = cop,!
pour tout t €la — %,a + %[ Donc ¢; et ¢ coincident sur tout intervalle
Ja — 1, a+ 5[, donc sur R. D’o‘u I'unicité de ¢.

Par ailleurs, ¢ étant continu sur le segment I, il existe n € N tel que, pour
tous ¢, ¢ tels que [t—¢'| < L, [|e(t) —c(t')]] < 1 (continuité uniforme), et donc

1 — Re (c(t)m) = w < %. On a donc ¢(t)c(t') # —1. Donc pour

t,t tels que [t — /| < 1, pgt (c(t)c(t’)) est bien défini. Par conséquent, on
peut définir une application ¢ de I dans R par :

-t (40 (2)) S («() (5))

i+1
<t<i.

n

pour

Cette application est continue et vérifie ¢(0) =0 et po ¢ = c.
[

Définition 1.2.2. Si ¢ est le chemin correspondant au lacet ¢ dans le lemme
précédent, le réel ¢(1) est alors un entier appelé le degré du lacet c, et on
le notera deg(c). En particulier, on vérifie que le degré du lacet ~y, est n.

Lemme 1.2.8. 57 H est une application continue de I x I dans St telle que
H(0,0) = 1, alors il existe une unique application H de I x I dans R telle
que H(0,0) =0 etpo H=H.

La démonstration de ce lemme est identique a celle du lemme 1.2.7.
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Définition 1.2.3. L’application H est appelée un relévement de H.

Proposition 1.2.9. Deuz lacets ¢ ety de base 1 dans S* sont homotopes si
et seulement s’ils ont méme degré.

Démonstration. Si c et v ont méme degré, alors leurs relevements ¢ et
5 ont mémes extrémités. L’application continue H : I x I — R définie par
H(t,s) = (1—s)ét) +57(t) est alors une homotopie de ¢ & 7. Par conséquent
on vérifie que H = p o H est une homotopie de ¢ a ~.

Réciproquement, si H est une homotopie de ¢ a v, et si H est le relevement
de H, alors les applications ¢ : t H(t,0) et 7 : t — H(t,1) les relevements
de c et y et &(1) = H(1,0) = H(1,1) = #(1). c et v ont donc méme degré.

O

Proposition 1.2.10. Soient ¢ et v deux lacets de base 1 dans S*. On a alors
deg(cy) = deg(c) + deg(v)

Démonstration. Si ¢ et 4 sont des relevements de ¢ et v, alors 'application

&2t) si 0<t<

N —

a : I — R définie par a(t) = est un

<t<1

N | —

(2t —1)+ (1) si

relevement de c¢v.

Ces deux dernieres propositions nous permettent de conclure que

¢ : m(S',1) — Z définie par ¢([c]) = deg(c) est un morphisme ayant pour
inverse 'application n + [y,]. Cette derniere application est donc un iso-
morphisme de groupe et donc :

7T1(Sl, 1) ~7

Conséquence 1.2.11. e Nous avons alors un exemple d’application in-
jective d’un espace X dans un espace Y qui n’induit pas une injection
de m(X) dans m (Y). En effet, St s’injecte naturellement dans R?,
mais il n’existe pas d’injection de 7 (S') ~ Z dans 7 (R) ~ {1}.

e Le groupe fondamental de ’espace R*\ {0} est isomorphe a Z. En effet
nous avons déja établi que le cercle S' est un rétracte par déformation
de R*\{0}. Donc, d’apreés la proposition 1.2.4, m (R*\{0}) ~ m;(S") =~
Z.
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1.2.3 Le théoreme de Van Kampen

On considere X un espace connexe par arcs tel que X = X; U X5 ou X, et
X5 sont des ouverts non vides connexes par arcs tels que Xy = X7 N X5 soit
lui aussi non vide et connexe par arcs.

Notations. Si x € X, on pose :

m(Xa) est le groupe fondamental 7 (X,, z) pour a = 0,1, 2.

7T1(X) = 7T1(X,[L’).

Jo le morphisme de 71(Xy) dans m;(X,) induit par 'injection de X
dans X, pour a =1, 2.

ko le morphisme de m1(X,) dans 7 (X) induit par l'injection de X,
dans X pour a =0,1, 2.

On a alors le diagramme commutatif suivant :

7T1(X1) Lﬂ'l(X)

k
le 0 Tkz

m1(Xo) oM (X2)

Proposition 1.2.12. Le groupe m(X) est engendré par les images de ki, et
de ]{72*.

Démonstration. Voir [G].Chapitre VI.4.1.

Corollaire 1.2.13. 5i X, et Xy sont simplement connezes, alors X = X; U
Xy est simplement conneze.

Corollaire 1.2.14. Sim > 2 alors S™ est simplement connezxe.

Théoréme 1.2.15 (Van Kampen). Si h, est un morphisme m(X,) dans
un groupe G pour o« = 1;2, et st hy o j;1 = hy o Ja, alors il existe un unique
morphisme h de w1 (X) dans G tel que h o ko = hy pour a = 1;2.

Ce théoréeme siginifie donc que le diagramme ci-dessous est commutatif :
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m (X)) e (X)

e

7T1(X0) T 7T1(X2)

ha

Démonstration. Voir [G].Chapitre X.1.1.

Proposition 1.2.16. Soient Hy et Hy deux groupes. Il existe un groupe G et
des morphismes (injectifs) hy : Hy — G et hy : Hy — G ayant les propriétés
sutvantes :

1. G est engendré par Im(hy) et Im(hs),

2. st k; : Hi — K, pour i = 1,2, sont deux morphismes dans un groupe
K, alors il existe un unique morphisme k : G — K tel que k; = k o h;,
pourt=1,2.

G est alors unique a isomorphisme prés. On appelle G le produit libre de
H, et Hy, et on note G = Hy x Hy.

Remarque 1.2.2. Lorsque les H;, 1 = 1,2, sont des groupes libres engendrés
par A;, 1 = 1,2, alors Hy x Hy est isomorphe au groupe libre engendré par
A1 U A,.

Remarque 1.2.3 (important). Nous pouvons reformuler le théoréme de Van
Kampen de la facon suivante :

T (X1 U Xp) = m1(X1) iy (x0) T1(X2) 1= 1 (X0) * mi(Xa)/((k1 o ji(g)) (ke 0
J2(9)) g € m(X1 N X)) (La notation xx(x,) s 'appelle produit amal-
gamé.

On a alors une formule explicite pour le groupe fondamental de X : c’est
le produit libre des groupes fondamentauzr de X et de Xo quotienté par la
relation qui identifie les classes des lacets de X; N Xo.

Corollaire 1.2.17. Si Xo = X; N X, est simplement conneze, alors m (X)
est isomorphe au produit libre w1 (X7) * m (X32).
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Exemple 1.2.2. On pose X = R?\ {py, po} l'espace R? privé de deuz points.
On peut supposer py = (0,0) et p, = (1,0). Posons alors X, = {(z,y),z < 3}
et Xo = {(z,y),x > 1}, On aalors X1 N Xy = {(z,y),x = 2} qui est
homéomorphe a R, donc simplement connexe.

D’apres le corollaire 1.2.17, m(X) =~ m(X1) » m(Xa). Or X; et Xy sont
homéomorphes a R? \ {0} qui a pour groupe fondamental le groupe libre en-
gendré par un élément F,, ~ 7Z. Par conséquent, m(X) est le groupe libre
engendré par deuz €léments F,, ,,.

On peut généraliser ceci au cas de l'espace R? privé de n points pi, ..., pn,.
Le groupe fondamental de cet espace sera alors le groupe libre engendré par
n éléments Fy, . ..

Corollaire 1.2.18. 5i X5 est simplement conneze, et si Jy est le sous-groupe
distingué de m1(X1) engendré par l'image de j1, le groupe fondamental de X
est isomorphe au groupe quotient wi(X1)/J1.

Démonstration. Voir [G].Chapitre VI.4.8.

1.2.4 Le groupe fondamental des espaces projectifs

Nous allons a présent utiliser le théoreme de Van Kampen pour calculer le
groupe fondamental des espaces projectifs complexes.

Pour cela, il nous faut avant tout introduire la notion de décomposition cel-
lulaire :

Définition 1.2.4. On considére K un espace topologique séparé. Une par-
tition en cellules de K est une partition m de K dont chaque partie est
homéomorphe a R™, l’entier m est alors appelé la dimension de cette par-
tie. On désigne alors par K™ la réunion des éléments de m de dimension
inférieure ou égale a m.

Une décomposition cellulaire de K est une partition en cellules de K
telle que, pour chaque élément e de dimension m de cette partition, il existe
une application continue f de la boule fermée D™ dans K™ vérifiant :

1. f(S™1)y c K™ 1

2. flpmgm—1 est un homéomorphisme de D™ \ S™ ' sur e.
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Si K admet une décomposition cellulaire, on dit que :

e K est un complexe cellulaire

K™ est le squelette de dimension m de K
e ¢ est une cellule de dimension m de K
o f est une application d’attachement de la cellule e

On dit qu’un complexe cellulaire K est fint s’il admet un nombre fini de
cellules.

Une décomposition cellulaire de I’espace projectif complexe P™C est déterminée
par P"C = A"CUA™ 'CU...UA'CUA’C (ot APC désigne I'espace affine
complexe de dimension p).

La suite des squelettes de dimension 2p est alors P°C C P'C C ... ¢ P™C.

Théoreme 1.2.19. Soit K un complexe cellulaire fini connexe, et soit x un
point du squelette K?. L’injection i de K? dans K induit un isomorphisme

de m (K2, x) sur m (K, ).
Démonstration. Voir [G].Chapitre VI.5.3.

Corollaire 1.2.20. L’espace projectif complexe PC ou m > 0 est simple-
ment connexe.

Démonstration. Sim = 0, P"C est alors réduit a un point.
Si m > 0, le squelette de dimension 2 de P™C est alors P!C. Donc par le
theoreme précédent, on a 7 (P™C, z) ~ m (P'C, z).
Par ailleurs, P'C est homéomorphe a la sphere S? qui est simplement con-
nexe (cf. corollaire 1.2.14) Par conséquent, P!C est également simplement
connexe.

O

Nous pourrions déterminer de maniere analogue le groupe fondamental
de l'espace projectif réel PR, en considérant la décomposition cellulaire
P"R = A™R U ... UA'R U A°R, mais c’est plus compliqué, et nous verrons,
d’autre part, dans le chapitre 3 qu’il est possible de déterminer le groupe
fondamental de cet espace d'une autre maniere. Nous établierons alors que
7 (P'R) = Z et 7 (P™R) ~ Z /27 pour m > 2. Voir 3.1.2 pour les détails.
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1.2.5 Le groupe fondamental des groupes classiques

Nous allons a présent nous intéresser au groupe fondamental des groupes
topologiques classiques sous-groupes de G L, (C).

Lemme 1.2.21. Soit G un groupe classique admettant une décomposition po-
laire, c’est-a-dire un homéomorphisme G ~ K x A ou A est un espace affine
et K un sous-groupe compact mazimal de G. On a alors : m(G) ~ m (K).

Démonstration. Si G ~ K x A, alors d’apres la proposition 1.2.1, m (G) =~
m (K) xm(A). Or A est un espace numérique, donc simplement connexe, et
donc m(G) ~ m (K).

Pour plus de détails sur la décomposition polaire, voir, e.g. [M].

Nous allons donc exhiber les groupes fondamentaux des groupes (ou K = R
ou C)
SLn(K) = {M € M,(K),det(M) = 1},
On(K) = {M € M,(K),"MM = I},
SO,(K) ={M € O,(K),det(M) = 1},
N 0
Opg(R) ={M € My ((R),"MI, ;M = I,,} ot I, , = (60 _[q)a
Un(C) = {M € M, (C),!MM = I},
SUL(C) ={M € U,(C),det(M) = 1},
Up,q(C) ={M € Mp+q(©)vtMIp,qM = Ipq},
Spn(K) = {M € My, (K),"MJM = J} ot J = (0 _]"),

Sp(n) = Sp,(C) N Uy, (C).

Théoreme 1.2.22. On a les isomorphismes :
m(SO02(R),1) ~ Z,
T (SOn(R), 1) >~ Z/2Z pour m > 3.

Démonstration.
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e Le groupe SOy(R) est homéomorphe & S (via 'homéomorphisme
cosf —sind 0
<sin9 cosd | T E ) et donc, m (SO2(R),1) ~ Z.
La deuxieme partie de ce théoreme se démontre par récurrence sur
m = 3.

e On montre que le groupe SO3(R) est homéomorphe a 'espace projectif
P3R. Pour cela, on fait agir les quaternion de norme 1 sur I’ensemble des
quaternions H ~ R* (ici, on identifiera S* & I'ensemble des quaternions
de norme 1) : Vg € S?, v € H > quq .

Cette action laisse {zi + yj + zk € H} ~ R? invariant. Donc, a tout
élément ¢ € S?, on associe une isométrie h(q) de R?, donc un élément
de O3(R), et plus précisément, par connexité de S* un élément de
SO3(R).
Le noyau de g — h(q) est alors {—1,1}.
De plus l'application ¢ — h(q) est surjective (par exemple, si ¢ =
1 0 0
cos +isinf on a h(q) = | 0 cos26 —sin26 | ).
0 sin26 cos26
Par conséquent, SO3(R) ~ PR donc 71(SO3(R), 1) ~ Z/27Z.

e On suppose que 71 (SO,,—1(R)) >~ Z /27 avec m > 4.

Soit n = (0,...,0,1) € S*™ 1 et U =S\ {-n}, V =S\ {n}].
On note ¢ : SO,(R) S™ ! a + a(n). On peut alors mon-
trer (cf.[G].Chapitre VI1.6.1) que U x SO, 1(R) ~ ¢ *(U) et V x
SOm_1(R) ~ ¢ Y(V).

Or, puisque m > 4, les morphismes induits par les injections de ¢~ (UU
V) dans ¢ Y (U) et ¢ 1(V), 51 : m(¢gH (U UV)) = m (¢ U)) et
g2+ m(gH (U UV)) — m(¢ ' (V)) sont des isomorphismes. Donc,
d’apres le théoreme de Van Kampen on a le diagramme commutatif
suivant :

Mg (UUV)) —=—=m(¢(V))

Par conséquent, ki et ko sont aussi des isomorphismes (admettent h
comme “réciproque”)

19



Donc, on a finallement : 7;(¢7"(U)) ~ 7 (g7 (UNV)) = 11 (SO,(R)).
Or, on a vu que 71 (¢ (U)) = 71 (SO,,_1(R)) et 71(SO,,_1(R)) ~ Z /27
par hypothese de récurrence. Donc m(SO,,(R)) ~ Z/27Z.

Corollaire 1.2.23. m(02(R), 1) ~ Z,
T (Om(R), 1) ~ Z /27 pour m > 3.

Par ailleurs, en faisant agir 'espace SU,,(C) sur la sphere S?™~1, on démontre
de fagon analogue le théoréme suivant :

Théoréme 1.2.24. Le groupe SU,,(C) est simplement connexe pour m > 0.

Corollaire 1.2.25. Pour tout m > 1, m(U,,(C),1) ~ Z.

Démonstration. C’est immédiat, en considérant ’homéomorphisme : U,,(C) ~
{A\,|\" € U} x SU,,(C) ~ St x SU,,(C) (o1t U désigne I’ensemble des nom-
bres complexes de module 1).

Par la méme méthode que pour le calcul du groupe fondamental de SO,,(R)
et SU,,(C), on peut détrerminer le groupe fondamental de Sp(n) = Sp,(C)N
Uz, (C)

Théoréme 1.2.26. Pourn > 1, le groupe topologique Sp(n) est simplement
connexe.

En effet, on peut montrer que Sp(n) ~ O, (H) = {M € M, (H)[!MM =
1} ou H est le corps des quaternions, et pour ¢ = x + yi + zj + tk € H,
q =z —yi—2j —tk. En faisant alors agir cet espace sur S"~!, on démontre,
comme pour SU,,(C), que Sp(n) est simplement connexe. Nous sommes
a présent en mesure de déterminer les groupes fondamentaux des groupes
topologiques GL,(R) et GL,(C) en utilisant la décomposition polaire. Voici
un tableau donnant les résultats obtenus :
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Espace topologique Décomposition polaire
GLy(R) GL,(R) ~ O,(R) x R™%
GL,(C) GL,(C) ~ U,(C) x R
SLn(R) SL(R) =~ SO (R) x R 5
SL,(C) SL,(C) ~ SU,(C) x R"~2
Spn(R) Spn(R) ~ U, (C) x R*(+1)
Spa(C) Spa(C) =~ Sp(n) x R*™
0,(C) 0,(C) ~ O, (R) x R* 5
Op,4(R) Opq(R) =~ Op(R) x Oy(R) x R
Up,a(C) Upa(C) = Up(C) x Uy(C) x R(P+0)”

Alinsi, pour pouvoir déterminer les groupes fondamentaux de ces groupes nous
avons seulement besoin des groupes fondamentaux de O,,(R), SO, (R), U,(C),
SU,(C), Sp(n) que nous avons déja déterminé. Les voici regroupés dans un
tableau :

Espace topologique | Groupe fondamental

05(R) 7,

SO, (R) 7,
On(R),n >3 727
SO,(R),n >3 7]27
Un(C)yn>1 A
SUL(C),n>1 {1}

Sp(n) {1}

1.3 Quelques exemples illustratifs

Voici a présent quelques exemples plus visuels de calculs de groupes fonda-
mentaux.

1.3.1 Le tore

Nous savons que le tore T? est défini comme le produit S' xS*. Par conséquent,
d’apres la proposition 1.2.1, 71 (T?) ~ 7 (S') x m(S') ~ Z x Z.

Ce groupe fondamental admet donc deux générateurs. Les lacets ¢ et ¢ qui
engendrent le groupe fondamental sont assez simples a visualiser sur le dessin
ci-dessous :
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Figure 1.2: Les lacets ¢ et ¢ engendrent 7 (T?)

Ce groupe a pour présentation : {(a,b | aba='b1 = 1).
On peut retrouver ce résultat de la fagon suivante :

Le groupe de présentation (a,b | aba='b~! = 1) peut étre représenté par
le dessin ci-dessous :

b

Silon “recolle” les deux cotés du carré correspondant au générateur a (c’est
possible car les deux fleches se superposent), on obtient alors le cylindre
suivant :
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Enfin, si 'on “recolle” les deux cercles correspondant au générateur b (ici
encore les fleches se superposent), on retrouve alors le tore T2.

Voyons a présent un exemple ot le calcul du groupe fondamental peut paraitre
moins évident : le tore épointé.

Comme nous 'avons fait précédemment, nous pouvons visualiser sur une
figure que le tore privé d’un point p admet (au moins) 3 lacets distincts (de
base un point donné) que 'on nomme cl1, ¢2, ¢3 :

Ceci nous permet de supposer que le groupe fondamental du tore épionté est
engendré par 3 éléments. Quelle(s) relation(s) existe-t-il entre ces éléments?
Nous allons vérifier, par une méthode analogue a celle utiliser pour construire
le tore, que le groupe fondamental du tore épointé a pour présentation :
{a,b,c| [a,blc = 1) ou [a,b] = aba= b~ .

Ce groupe peut en effet étre représenté par le dessin suivant :

b
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On peut recoller les arétes a entre elles. Une telle manipulation a pour effet
de déformer I'une des arétes b en un cercle, et de superposer deux arétes b et
c. Puis on transforme ces deux arétes en des cercles en les “tordant dans le
méme sens”. On obtient successivement les figures suivantes :

c

Par la suite, on peut “réduire le cercle ¢ a un point” et “étirer 'aréte a”, de
fagon a obtenir une surface dont les contours sont indiqués en pointillés (ces
manipulations ne changeront pas le groupe fondamental de 'objet, car la
figure initiale est alors un rétracte par déformation de la figure finale) Enfin,
en joignant les deux cercles b, on retrouve bien le tore épointé.

le groupe fondamental de cet objet est donc 7 (X) ~ G ot G est le groupe de
présentation (a,b,c | [a,blc = 1) ol [a,b] = aba='b~! (qui est aussi le groupe
libre engendré par deux éléments : Fqp)).

On peut le visualiser d’'une autre maniere : Le tore épointé peut étre vu
comme un tore percé d'un trou. Ce trou peut étre agrandit et déformé (la
figure obtenu sera un rétracte par déformation de la figure initiale), sans que
cela ne modifie le groupe fondamental de la surface. Plus précisément on
agrandit le trou jusqu’a obtenir une réunion de deux anneaux, par le procédé
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suivant :

(=) (s
(2

Chaque anneau peut étre réduit a un cercle. Tout revient donc a calculer le
groupe fondamental de deux cercles ( de groupe fondamental Z) reliés entre
eux par un point (simplement connexe). Donc, d’apres le théoréme de Van
Kampen, le groupe fondamental du tore épointé est le produit libre Z x 7Z,
c’est-a-dire, le groupe libre engendré par deux éléments Fi, ).

Voici, une troisieme méthode pour retrouver le groupe fondamental du tore
épointé :
Considerons a et b et ¢ les lacets suivants :

On peut déformer le lacet ¢ en le faisant tourner autour du tore dans le sens
inverse de b :
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On le déforme ensuite en le faisant tourner dans le sens inverse de a, et on
obtient le lacet suivant :

On remarque alors que le lacet obtenu est engendré par les lacets a et b. Plus
précisément, c’est le lacet bab~ta~!. Mais c’est aussi le lacet ¢ déformé, donc
le méme lacet a homotopie pres.

On a donc la relation : ¢ = bab~'a™!, et donc on retrouve bien [a, blc = 1
Essayons de généraliser pour le tore privé de n points :

On peu “découper” une partie du tore contenant les n trous. Le tore privé
de n points est alors la réunion des deux espaces X; et X5 ci-dessous :
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L’espace X5 est un plan privé de n points. Son groupe fondamental est alors
le groupe libre engendré par n éléments cy, ..., ¢,.

L’espace X est le tore privé d’un point (ou l'on a “élargi” le trou). Son
groupe fondamental est donc engendré par a, b, ¢ avec pour relation [a, bjc =
1.

Le lacet ¢ est représenté ci-dessous :

Mais c’est aussi un lacet de X; N X5 , donc ce lacet est homotope au lacet
¢ sur X, qui est homotope au lacet cjcs...c,,. (d’apres le théoreme de Van
Kampen) Comme le montre le dessin ci-dessous :

Ainsi, par le théoreme de Van Kampen, on conclut que le groupe fondamen-
tal du tore privé de n points est :
(a,b,c1,c,...cn | [a,b]cicg..0, = 1)

Nous allons a présent analyser le cas d’une surface de genre 2, et nous com-
parerons alors les résultats obtenus avec ceux du tore.

1.3.2 Une surface de genre 2

Comme nous I’avons fait pour le tore, nous pouvons remarquer qu’une surface
de genre 2 admet (au moins) 4 type de lacets distincts c1, ¢2, €3, ¢4 représentés
en pointillés sur la figure ci-dessous :
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C’est pourquoi on peut supposer que le groupe fondamental d’une surface de
genre 2 admet 4 générateurs aq, by, as, bs.
On montre alors qu'une surface de genre 2 a un groupe fondamental de

présentation : (ay, by, as, by | a1, bi][az, bs] = 1) ot [a,b] = aba=1b7".
Un tel groupe peut étre représenté ainsi :

bl

b2 bl

b2

En supperposant les arétes a; et les arétes as, et en transformant les arétes
by et by en cercles (comme nous 'avons fait pour le tore épointé), on obtient
le dessin ci-dessous :
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bl

Et finalement, en recollant les cercles by et by entre eux, on retrouve bien une
surface de genre 2.

Une autre maniere de retrouver le groupe fondamental d’une surface de genre
2 est d’utiliser le théoreme de Van Kampen, en coupant la suface en deux
tores privés d’un point.

Nous allons développer cette méthode dans le cas un peu plus général d’une
surface de genre 2 privée de n points :

On commence par ramener tous les trous du méme c6té de la surface (c’est
possible par déformation). Puis, on coupe la suface en deux parties, comme
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sur le dessin ci-dessous :

On obtient alors a gauche un tore privé d’un point dont le groupe fondamen-
tal est engendré par les lacets ay, by et ¢, avec pour relation [aq, bi]c = 1.

A droite on obtient un tore privé de n+ 1 points dont le groupe fondamental
est engendré par les lacets as, by, le lacet ¢/, et par n autres lacets ¢y, ..., ¢,
(un lacet pour chaque point que 'on avait retiré initialement & la surface de
genre 2), avec pour relation [ag, by]c'cy...c, = 1, donc ¢ = [ag, by] "' t.cit =

[ba, aslcit...cpt

Par le théoreme de Van Kampen, le groupe fondamental de la surface de
genre 2 privée de n points est alors le produit libre des groupes (aq, by, ¢ |
[a1,bi]e = 1) et {ag, by, c,c1,co 0 | € = [ag, b e e ), quotienté par
la relation ¢ = ¢ (en effet, ¢ et ¢ sont les mémes lacets sur I'intersection des
deux surfaces, donc ce sont les mémes sur la surface de genre 2 d’apres le
théoreme de Van Kampen).

On obtient le groupe (ay, by, as, by, 1, Co, ...Cn | [ar, b1][bo, ag] 't ept = 1),

que I'on peut encore écrire, quitte a changer les notations : (aq, by, ag, ba, 1, ca, ...

‘ [CLl, bl][CLQ, bg]Cl...Cn = 1>

On calculerai de méme le groupe fondamental d’une surface de genre 3 privée
de n points :

Il suffit pour cela de ramener tous les trous au milieu, puis de découper la
figure comme ci-dessous, et il ne reste plus qu’a appliquer le théoreme de Van
Kampen.

30



On trouve alors pour groupe fondamental (ay, by, as, by, as, bs,cy,ca,...cp |
[al, bl][ag, bg] [0,3, bg]Cl...Cn = 1>

On peut généraliser tout ceci en montrant par récurrence sur g que le groupe
fondamental d’'une surface de genre g est (ay, by, az, ba, ..., ag, by | [a1, b1][az, ba]...[ay, by] =
1), et que le groupe fondamental d’une surface de genre g privée de n points a
pour groupe fondamental (ay, by, az, ba, ..., ag, by, c1, ..., ¢ | [a1, bi][ag, ba]...[ag, bylcs...c, =

1),

Voyons a présent un dernier exemple : la bouteille de Klein.

1.3.3 La bouteille de Klein

Le groupe fondamental de la bouteille de Klein est le groupe de présentation
: {a,b | aba™b=1).

Voici pour nous en convaincre :

Le groupe (a,b | aba™'b = 1) peut étre représenté par le dessin suivant :

b

Comme nous 'avions fait dans le cas du tore, nous pouvons recoller les arétes
a entre elles, pour obtenir le cylindre suivant :
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-

Par la suite, on peut déformer la figure de la fagon suivante :

Et finalement, en recollant les deux cercles b, on retrouve bien la bouteille de
Klein.
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Chapitre 2

Reveéetements

2.1 Définitions et constructions des revétements

Définition 2.1.1. Soit B un espace topologique. Un revétement de B est
la donnée d’un espace topologique E et d’une application continuep : E — B
tels que :

Pour tout b € B, il existe un voisinage V de b, un espace discret non vide F,
et un homéomorphisme ® : p~(V) — V x F tel que le diagramme ci-dessous
soit commutatif (ot py 1V X F — V est Uapplication : (y, f) —y) :

p (V) 2 V xF
A

On dit alors que :
e p: E — B (ou parfois E) est un revétement de B,
e B est la base du revétement,

e F est l’espace total,

p est la projection (c’est une application nécessairement surjective),

p~L(b) est la fibre au-dessus du point b de B,

o IV est un voisinage distingué de b,

® est une trivialisation de p au-dessus de V.
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Par ailleurs, on dit que le revétement p : E — B est connezxe (resp. com-
pact, simplement connexe,...) si l'espace total E est connexe (resp. compact,
simplement conneze,...).

Exemple 2.1.1. Un premier exemple tres simple de revéetement est application

R =R, x — Az ot A € R* (C’est un homéomorphisme ).

Un autre exemple est le revétement de C* donné par f : C — C*, z +— 2™,
qui induit méme un revétement de S* : flg : R — S,

Un troisieme exemple est la projection p : S™ — P™R, pour m > 2 qui est
un revétement de P"R ~ S™/{—1,+1}.

On dit qu'un revéetement p : £ — B est trivial lorsqu’il existe une trivi-
alisation de p au-dessus de B tout entier.

Définition 2.1.2. Soient E et B deux espaces topologiques. Soit p: E — B
une application continue. Une section de p au-dessus d’un sous espace A
de B est une application continue s : A — E telle que pos = 1Idy.

Voici a présent une proposition caractérisant les revetements d’un espace
B au moyen de sections au dessus des voisinages distingués :

Proposition 2.1.1. Soit B un espace topologique. Une application continue
p: E — B est un revéetement si et seulement si pour tout b € B, il existe un
voisinage V de b et une famille non vide s;(V') de sections de p au-dessus de
V' satisfaisant les propriétés suivantes :

1. pour tout i € I, s;(V') est un ouvert de p~1(V),
2. SZ(V) N Sj(V) = @,

3. p7 V) = Uier si(V)-

Démonstration. Voir [G].Chapitre VII.2.2.

Théoreme 2.1.2. Sip : E — B est un revétement, et si B est connexe,
alors toutes les fibres p~1(b) ont méme cardinal. Si ce cardinal est un entier
m, on dit que E est un revétement a m feuillets de B.
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Démonstration. Voir [G].Chapitre VII.2.3.

Nous allons a présent considérer le cas ou des groupes discrets agissent sur
des espaces topologiques. Nous verrons alors que ces actions nous permet-
tront d’exhiber des revétements d’espaces homogenes.

Définition 2.1.3. Soit G un groupe topologique discret opérant sur un espace
topologique X . On dit que [’action est :

e libre si pour tout x € X, G, = Stabg(x) = {e}.

e propre si pour tout compact K de X, l’ensemble Gx = {g € G|gK N
K # O} est relativement compact dans G (cette condition est toujours
satisfaite lorsque G est compact, ou lorsque G est discret et Gk fini
pour tout compact K de X.

Théoreme 2.1.3. Soit G un groupe discret opérant proprement et librement
sur un espace localement compact E, et soit p la projection de E sur l’espace
E/G des orbites de G. L’application p: E — E /G est alors un revétement.

Démonstration. Voir [G].Chapitre VIIL.3.1.

Ce théoreme nous permet de donner quelques exemples de revétements non
triviaux :

Exemple 2.1.2. e Si l’on considere l'action naturelle de Z™ sur R™, la
projection p : R™ — R™ /7™ est un revétement du tore T™ ~ R™ /Z™.

e Sil’on note U C S' le groupe des racines n-émes de l'unité agissant na-
turellement surS', la projection p : St — S'/U est alors un revétement.
Par ailleurs, Uapplication h : S'/U — S!, [2] + 2™ est bien définie et
c’est un homéomorphisme. L’application ¢, == hop:S' = S, 2+ 2"
est donc un revétement. Nous verrons a la fin de la section 3.1 que tous
les revétements connexes de S sont ou bien de cette forme, ou bien le
revétement p : R — R/Z ~ S défini précédemment.

e L’homéomorphisme P™(R) ~ S /{—1,+1} nous donne un revétement
p:S™ — P™(R) de l’espace projectif P"(R).
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Nous sommes donc en mesure d’exhiber des revétements connexes de

certains espaces topologiques, mais pouvons-nous les trouver tous? Com-
ment classifier les revétements connexes d’un espace topologique donné? La
réponse a cette question sera donnée par le théoreme 3.1.12.
Pour le cercle, il est assez naturel de penser que les seuls revétements sont
donnés par le cercle lui méme et par les droites du plan. Cela devient moins
évident en revanche si 'on demande de classifier les revétements connexes
d’un objet tel que la bouteille de Klein. Nous serons pourtant en mesure de
le faire grace au théoreme 3.1.12.

Voici a présent une proposition généralisant le théoreme 2.1.3 dans le cas
ou l'espace topologique E considéré est localement connexe et localement
compact :

Proposition 2.1.4. Soit G un groupe discret opérant proprement et libre-
ment sur un espace E localement connexe et localement compact, et soit H
un sous-groupe de G. La projection canonique q : E/H — E/G est alors un
revétement.

Démonstration. Voir [G].Chapitre VIL.3.4.

A présent que nous avons une idée de ce qu’est un revétement, nous al-
lons introduire la notion de morphisme de revétement :

Définition 2.1.4. Soit p : E — B et p' : E' — B deux revétements. Un
morphisme du revétement E dans le revétement E' est un couple (H,h)
d’applications continues H : E — E' et h: B — B’ telles que p’ o H = hop.
Autrement dit, le diagramme ci-dessous est commutatif :

E-

17

/

On dit aussi que H : E — E' est un morphisme au-dessus de h, et plus
simplement un morphisme lorsque B = B’ et h = Idp.

Voici un premier exemple de morphisme de revétement :
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Exemple 2.1.3. Considérons les revétements q, : S* — S', z — 2" vus
précédemment. Soient n,m,r,s € N* tels que nr = ms. Le couple (q,,qs)
est alors un morphisme du revétement q, : S' — S' dans le revétement
Gm = St — St On a en effet g, 0 q,(2) = 2" = 2™ = g, 0 q5(2).

Définition 2.1.5. Soitp : E — B et p' : E' — B deux revétements. Soit
(H, h) un morphisme de E dans F'.
On dit que (H, h) est un isomorphisme de revétements lorsque H et h sont

des homéomorphismes (le couple (H', h™') est alors un isomorphisme de E'
sur E).

Théoreme 2.1.5. Soitp' : E' — B’ un revétement, et soit h une application
continue d’un espace B dans B'. Il existe un revétement p : E — B et une
application continue H : E — E’ ayant les propriétés suivantes :

e (H,h) est un morphisme de revétements,

e siq: D — B est un revétement de B, et si K est un morphisme de
revétements de D dans E' au-dessus de h, il existe un unique mor-
phisme de revétements L : D — E tel que K = H o L.

De plus le revétement E est alors unique a isomorphisme prés. On appelle
le revétement image réciproque de E' par h, et on le note souvent h*FE’.

Ce théoreme signifie que le diagramme suivant est commutatif :

D
\L&\
q E%El
I
B—h>B,

Démonstration (de lexistence de E,p, H). On cherche a déterminer un es-
pace F et des applications continues p et H telles que le diagramme suivant
commute :

Oy

17

B—h>B,
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On construit alors £ a partir de B, E’, h et p' : On pose alors £ = {(b,2) €
B x E'lh(b) = p/(«’)}. Puis, on définit p : E — B comme la projection
(b,x') — b, et H : E — E’' comme la projection (b,2') — z/. On a alors
p o H(b,x') =p'(z') = h(b) = hop(b,).

On montre ensuite que p : F — B est un revétement : soit b € B, on
note ¥ = h(b) € B’. Puisque p’ : E' — B’ est un revétement, il existe un
voisinage distingué V’ de b, un espace discret F', et une trivialisation de p/
au-dessus de V', notée ® : p'~1(V') — V' x F. Notons py : V' x F — F la
projection sur F'.

Soit alors V :=h™ 1 (V') et ®: V C BxE' -V xF, (a,2') — (a, p2(®'(2')).
® est alors une trivialisation de p au-dessus de V. p: E — B est donc bien
un revéetement.

Enfin, si 'on considere ¢ : D — B un autre revétement de B. et K : D — £’
un morphisme de revtements, on vérifie que L : D — E, x — (q(z), K(x))
est le seul morphisme de revétements tel que K = H o L.

O

Voici quelques exemples de construction de revétement image réciproque :

Exemple 2.1.4. 1. Prenons B =R, E' =R, p' : © — Ax ou A € R*,
B=TR%*eth:(z,y)— .
Le revétement image réciproque est alors h*E' = {((z,y),z) € R? x
R|z = Az}. h*E’ est donc le plan de R® d’équation v = \z.

2. Un exemple moins trivial de revétement image réciproque est le cas ot
B’ est le tore T? = S' xS!, B le cylindre RxS!, et E' le cylindre S' xR,
avec p' : (x,0) — (x,e¥™) et b (0, y) — (2, y). Le revétement
image réciproque de E' est le plan R? :
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.

SRy

En effet, E = {((9/,];),(1’,9)) c (R 5¢ Sl) > (Sl X R)|x = €2i7r0”y =
62i7r0} — {((‘917 €2i7r9)’ (€2i7r6” 9))|9’ 9’ c R} ~ R2

3. Considérons le cas ot B'=S' ~R/Z et B=S' ~R/27Z, h : z — 2
et ou E' est la bande de Moebius, c’est-a-dire I’ensemble [0,1] x [0, 1]
ot l'on identifie les points (0,y) et (1,1 —y). Un revétement du cercle
est alors donné par p' : E' — S, [(z,y)] — €*™. Le revétement image
réciproque de E' est alors “la bande de Moebius tordue deux fois” :

Q.=
O__ O

h

Nous allons a présent introduire la notion d’automorphisme de revétements:

Définition 2.1.6. Soit p: E — B un revétement. Un automorphisme du
revétement E est un isomorphisme H de E dans lui-méme.

Dans ce qui va suivre, nous noterons Aut(FE) I’ensemble des automor-
phismes d’un revétement E.
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Cet ensemble est muni de la composition des applications continues est alors
un groupe.
Ce groupe Aut(FE) agit alors continiiment sur chaque fibre p~1(b) de E.

Voici un théoréme utile :

Théoréme 2.1.6. Soientp : E — B et p' : E' — B’ deux revétements et
h : B — B’ une application continue. Si E est connexe, deux morphismes de
E dans E' au-dessus de h qui coincident en un point sont égauz.

Démonstration. Voir [G].Chapitre VIL.6.4.

Ce théoreme permet en particulier d’établir le résultat suivant qui permet de
déterminer le groupe des automorphismes de certains revétements.

Corollaire 2.1.7. Soit G un groupe discret opérant librement et proprement
sur un espace topologique E conneze et locallement compact. Le groupe des
automorphismes du revétement p : E — E /G est alors isomorphe a G.

Démonstration. Voir [G] Chapitre VIL.6.6.

La définition de ce groupes des automorphismes va alors nous permettre
d’introduire les revétements galoisiens :

2.2 Revétements galoisiens

Définition 2.2.1. Un revétement p: E — B est dit galoisien si :
e F est conneze,
o Aut(FE) agit transitivement sur chaque fibre p~*(b), ou b € B.
On dit aussi que E est un revétement galoisien de groupe G = Aut(E).

Lorsque F est un revetement galoisien, on peut montrer que la projection
m: E — F/Aut(F) est un homéomorphisme.

Remarque 2.2.1. Lorsque G est un groupe discret opérant proprement et
librement sur un espace E connexe et localement compact, le revétement p :
E — E/G est un revétement galoisien de groupe G.

41



D’apres cette remarque, les revetement de I'exemple 2.1.2 sont alors tous
galoisiens.

Ce terme de revétements galoisien n’est pas sans rapport avec la notion
d’extensions galoisiennes dans la théorie de Galois. Nous verrons apparaitre
tout au long de ce chapitre certaines similitudes entre les résultats de la
théorie des revétments et ceux de la théorie de Galois. L’origine de ces simil-
itudes sera d’ailleurs explicitée dans la partie 2.

Rappelons-nous que la théorie de Galois permet d’établir une correspondance
entre les sous-extensions d'une extension galoisienne et les sous-groupes du
groupe de Galois de cette extension. Qu’en est-il pour les revétements ga-
loisien ?

Nous allons introduire la notion de revétement associé a un revétement ga-
loisien F,

Considerons un revéetement galoisien de groupe G, et soit F' un espace dis-
cret sur lequel G opere a gauche. On peut alors montrer que pour g € G,
g (z,f) — (gz,gf) est une action continue, libre et propre du groupe G
sur l'espace F x F'. Par conséquent, d’apres le théoreme 2.1.3, la projection
7 EXF — (EXF)/G est un revétement. Notons alors Er = (E X F)/G.

On construit une application pr : Er — B une application continue telle
que le diagramme suivant commute :

ExF2 o

e

Er =B

Cette application pr est alors bien définie et unique. En effet, si (z, f) €
ExF, (2, f) = (gz,g9f), et posons b = p(x). Puisque G agit sur la fibre
au-dessus de b, on a p(z') = p(gz) = b. On a alors po p(2/, f') = p(2) =
b=p(z) =popi(z, f). Dong, si [z, f] désigne I'orbite de (z, f), application
pr [z, f] = popi(x, f) est bien définie, et elle est unique par construction.

On peut méme démontrer que cette application est un revétement. Il suffit
pour cela de considérer un point b € B, x € p~(b), V un voisinage distingué
de b (pour le revétement p : E — B) et s une section de p au-dessus de V/
telle que s(b) = x. On peut alors vérifier que la famille des o7 : V' — Ep,
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y — mr(s(y), f), pour f € F, est une famille de sections vérifiant les hy-
potheses de la proposition 2.1.1.

Définition 2.2.2. Le revétement pr : Er — B est appelé le revétement
de fibre I’ associé au revétement galoisien p : E — B.

Remarque 2.2.2. Un exemple de revétement associé a un revétement ga-
loisien p : E — B de groupe G est donné par pg/n : Eq/p — B, ot H est
un sous-groupe de G.

De plus, ce revétement est isomorphe au revétement qy : E/H — B, [x] —
p(z) (qui est bien défini car G, donc H agit sur les fibres p~*({p(z)})), via
le morphisme h: E/H — Eq g, [x] = [(z, H)].

On commence ici a remarquer une correspondance entre les sous-groupes
de G et les revetements associés. La proposition suivante établit cette corre-
spondance :

Proposition 2.2.1. Si Er est un revétement connexe associé a un revétement
galoisien E, alors Er est isomorphe a un revétement du type qu : E/H — B,
ou H est le stabilisateur d’un point de F.

Démonstration. Voir [G].Chapitre VIII.3.3.

Plus précisément, on a le théoreme suivant :

Théoréme 2.2.2. Soit p: E — B un revétement galoisien de groupe G.

1. L’ensemble des classes d’isomorphismes de revétement connexes as-
sociés a E est en bijection avec ’ensemble des classes de sous-groupes
conjugués de G.

2. Un revéetement connexe associé a E est galoisien si et seulement s’il cor-
respond a un sous-groupe normal de H de G. Son groupe d’automorphisme
est alors isomorphe au groupe quotient G/H .

Signalons que la bijection donnée en 1) est I'application [E/H] — [H]
(de réciproque [H]| — [E/H]) ou [E/H] est la classe d’isomorphisme du
revétement £/ H (connexe) associé a E' (pour plus de détails, voir [G].Chapitre
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VIIL.4.7). La proposition 2.2.1 assure que tout revétement associé est bien
isomorphe a un tel groupe.

Cette correspondance nous rappelle bien la correspondance de Galois en-
tre les sous-extensions d'une extension galoisienne et les sous-groupes de son
groupe de Galois.

Grace a ce théoreme , nous pouvons a présent déterminer les revétements as-
sociés a un revétement galoisien d'un espace B de groupe G, en déterminant
les sous-groupes de G.

Ajoutons a cela une proposition parfois bien utile :

Proposition 2.2.3. Sip: E — B est un revétement galoisien de B, alors
un revétement connexe q : D — B est isomorphe a un revétement associé a
E si et seulement s’il existe un morphisme de revétements de E sur D.

Démonstration. Voir [G].Chapitre VIIL.2.7.

Nous allons a présent introduire la définition d’'un revétement galoisien par-
ticulier : le revétement universel.

Définition 2.2.3. Un revétement universel d’'un espace B est un revétement
galoisien p : E — B tel que tout revétement de B soit isomorphe a un
revétement associé a F.

Les revetement universel sont particulierement intéressants a étudier,
étant donné que leurs revétements connexes sont tous isomorphes a des
revetements connexes associés que nous pourrons identifier grace au théoreme
2.2.2. En somme, les revétements universels d’un espace B sont des revétements
qui nous permettrons de déterminer tous les revétements connexes de B.

Cependant une question subsiste : comment déterminer le groupe d’un revétement
galoisien ?

La partie qui va suivre va répondre a ce probleme : elle nous permettra de
faire le lien entre le groupe d’un revétement galoisien et les groupes fondamentaux
des espaces topologiques considérés.
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Chapitre 3

Reveétements et groupes
fondamentaux

3.1 Groupes fondamentaux des revétements

Définition 3.1.1. Soient p : E — B et h : X — B deux applications
continues. Un reléevement de h est une application continue H : X — E
telle que po H = h, c’est-a-dire telle que le diagramme suivant commute :

|
p
Remarquons que cette définition correspond bien a la définition d’un

relevements des lacets dans S! donnée dans le lemme 1.2.7.

Lorsque p : E — B est un revetement, les relevements de h sont partic-
ulierement intéressants a étudier. En effet on a la proposition suivante :

Proposition 3.1.1. Soient p : E — B un revétement et h : X — B une
application continue. Si X est connexe, deux relevements de h qui coincident
en un point sont égaut.

Démonstration. Voir [G].Chapitre VIIL.6.3.

Proposition 3.1.2. 1. Pour tout chemin ¢ : I — B d’origine b € B, et
pour tout point x € p~1(b), il existe un unique relévement v : [ — E
tel que v(0) = .
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2. Soient ¢, ¢ deuxr chemins d’origine b € B ayant méme extrémité et
soient 7,7 leurs relévements d’origine x € p~*(b). Si c et ¢ sont
homotopes, v et v ont méme extrémité et sont homotopes.

Démonstration.

1. Sic¢: I — B est un chemin d’origine b, I'unicité du relevement -y
tel que v(0) = z est un corollaire immédiat de la proposition 3.1.1.
La démonstration de l'exitence d’'un tel relevement, utilise le lemme
suivant :

Lemme 3.1.3. Tout revétement du segment I = [0, 1] est trivial.

(Pour une démonstration de ce lemme, voir [G].Chapitre IX.2.1.)

Soit q : D — I le revéetement image réciproque de F par ¢ : I — B, et
soit C' le morphisme de D dans E au-dessus de c. Le revetement D est
trivial d’apres le lemme, donc il existe une section s de ¢ au-dessus de
I telle que s(0) = (0,z). Le chemin v = C o s est alors un relevement
de ¢ tel que v(0) = x.

2. La démonstration de la seconde assertion est analogue : voir [G].Chapitre
IX.2.2.

O

Dans le cas particulier ol les chemins ¢ et ¢ sont des lacets de base b, nous
pouvons reformuler cette proposition de la fagcon suivante :

La premiere assertion signifie que pour un lacet ¢ sur B de base b donné
on peut construire un unique chemin ~ sur £ d’origine x € p~!(b) fixée, tel

que c=pon.

La deuxieme assertion se traduit par le fait que si ¢ et ¢ sont deux lacets
ayant méme classe d’homotopie ([c] = [¢/], alors les chemins v et 4" construits
ont méme classe d’homotopie ([y] = [¥]). En particulier, si I'on se donne [7]
et [7/] deux classes d’homotopie de lacets sur E telles que p,([v]) = p([7])

alors [y] = [7].

On commence alors a entrevoir le lien entre le groupe fondamental de B
et celui de son revétement £ :

Théoreme 3.1.4. Soit p : E — B un revétement, et soient x € E et
b= p(x). Le morphisme p, : m(E,z) — m(B,b) est injectif.
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Voici un premier exemple simple pour illustrer ce théoreme :

Exemple 3.1.1. Nous savons qu’un revétement du cercle S' est donné par

p: R — S'. On remarque que m (R) ~ {1} s’injecte naturellement dans
™ (Sl) ~ 7.

On peut se demander pour quels revétements le morphisme p, est un
isomorphisme. La réponse est donnée par le lemme suivant (dans le cas ou
E est connexe par arcs) :

Lemme 3.1.5. Soit p : E — B un revétement connexe par arcs de B, et
soit v € E et b = p(x). Le morphisme p, : m(E,x) — m(B,b) est un
1somorphisme st et seulement si p est un homéomorphisme.

Démonstration. Voir [G].Chapitre IX.3.1.

Dans toute la suite de cette section nous allons supposer que B est un espace
connexe et localement connexe par arcs.

Proposition 3.1.6. Soient p : E — B et p : E' — B deux revétements
connezes de B, b € B, x € p~'(b), ' € p'~1(b). Il existe un morphisme h de
E dans E' tel que h(x) = 2’ si et seulement si pym (E,x) C pim (B, 2').

Ce morphisme est alors un isomorphisme si et seulement si p,m(E,z) =
pom(E 7).

Démonstration. Voir [G].Chapitre IX.3.5.

On comprend que si 'on considere le cas particulier ou £ = E’, on voit
apparaitre une condition sur les groupes p,m (F, ) et p.m(E’, z') pour qu’il
existe un automorphisme de E tel que z = 2/. Ceci constitue donc une
premiere approche du lien entre les groupes fondamentaux des revetements

et le groupe des automorphismes.

Théoréme 3.1.7. Soit p: E — B un revétement conneze, x € E, b = p(x),
et soit N le normalisateur de p,mi(E, x) dans (B, b). Il existe un (unique)
morphisme h de N sur le groupe Aut(FE) des automorphismes de E ayant la
propriété suivante :

si ¢ est un lacet de base b dans B tel que [c] € N, et siy est le relévement
de ¢, d’origine x dans E, alors h([c])(x) = v(1).
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Démonstration. (de existence de h) Posons y = (1) et soit [¢] € N.
D’apres la proposition 3.1.2, y ne dépend que de la classe d’homotopie de ¢,
et on a par ailleurs : p,mi(E,y) = [c| " (pm1(E, z))[c] (cf proposition 1.1.7)
Or, ¢ (psmi(E, 2))[c] = pmi(E,x) (car [c] € N) On a donc p,m(E,y) =
p«m1(E, x), et donc, d’apres la proposition 3.1.6, il existe un unique automor-
phisme h([c]) de E tel que h([c]) = y.

Nous avons donc construit lapplication h : N — Aut(FE), et c’est bien
un morphisme : en effet, si ¢,¢ sont deux lacets de base b dans B tels
que [c], [¢'] € N, et 7,7 leurs relevements d’origine z. On vérifie alors que
v(h([c])y') est le relevement de ¢’ d’origine x. On a alors h([d][])(z) =
h(led])(x) = h([c])'(1) = A A([])(2).

Par conséquent, (par unicité de I'automorphisme de E transformant z en
Y(h([e))y) (1)) on a h([c][c]) = h([c])h([<]).

h est donc bien un morphisme.
O

Remarque 3.1.1. On peut remarquer que le noyau du morphisme h est
pem(E,x). De plus, il est facile de voir que h est surjectif : en effet, si k est
un automorphisme de E, il existe un chemin v joignant x a k() dans E, et
on vérifie alors que k = h([po~]) et [poy| € N. (Pour plus de détails voir
[G].Chapitre IX.4.1.)

On comprend alors que si E est un revétement connexe de B, et si
p.m1(E, 1) est distingué dans 7 (B,b) pour tout b € B et z € p~1(b), alors
N = (B, b),et donc h induit un isomorphisme de groupes de 7 (B, b) /p,m1 (E, x)
sur Aut(E). Or pour tous z,y € p~*(b), on considere un lacet [c] dont le
relevement admet = et y pour extrémités, et on a dans ce cas : h([c])(z) = v,
donc Aut(E) agit transitivement sur chaque fibre p~1(b). Le revétement E
est donc galoisien.

Ainsi, si F est connexe et p,m (F,x) est distingué dans m(B,b), alors E
est galoisien. La réciproque est vraie et facile a vérifier (cf [G]. Chapitre
IX.4.3).

Le théoréme suivant résume tout ceci :

Théoreme 3.1.8. Soit p: E — B un revétement conneze.

E est un revétement galoisien si et seulement si pour tout b € B et tout
x € pt(b), pomi(E, ) est distingué dans 7 (B, D).

Si c’est le cas, on a alors l'isomorphisme Aut(E) ~ m(B,b)/p.m(E, ).
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Démonstration. Voir [G].Chapitre IX.4.3.

Ainsi d’'une part ce théreme nous donne une condition nécéssaire et suff-
isante pour qu'un revétement connexe soit galoisien (il existe d’ailleurs une
condition analogue pour qu’une sous-extension dune extension galoisienne
soit galoisienne, nous la rappellerons dans la section suivante), et d’autre
part, elle nous donne un moyen d’identifier le groupe d’'un revétement ga-
loisien en considérant les groupes fondamentaux des espaces F et B.

C’est plus simple encore dans le cas ou E est simplement connexe, car alors,
on a le corollaire immédiat suivant :

Corollaire 3.1.9. Si p : E — B est un revétement connexe, et si E est
simplement connexe, alors p : E — B est un revétement galoisien de groupe
G isomorphe a m (B, D).

En particulier, si G est un groupe discret agissant proprement et libre-
ment sur un espace F localement compact, localement connexe par arcs et
simplement connexe, alors on en déduit que le groupe fondamental de E/G
est isomorphe a GG. On peut alors se servir de cette propriété pour calculer le
groupe fondamental d'un espace topologique donné. Voici quelques exemples:

Exemple 3.1.2. 1. Le revétement du tore p : R™ — T™ ~ R™/Z™ nous
donne mp (T™) ~ Z™.

2. p:S™ = PR est un revétement simplement connexe pour m > 2. Par

conséquent on retrouve lisomorphisme annoncé a la fin de la section
1.2.4 a savoir m (P"R) ~ Z/27 pour m > 2.

3. Le groupe Z/nZ agit (proprement et librement) sur la sphére S*™ par
Sk(z1, e 2mer) = (CFze, o, CFapy), ot la sphére S+ est considérée
comme 'ensemble des éléments de C™ de norme 1, et ¢ est une racine
primitive n°™¢ de lunité. Si on note L™ .= §?™+1 /(Z/nZ) ’espace
lenticulaire de dimension 2m + 1 et de groupe Z/nZ le revétement p :
St [2mHL et simplement connexe, et donc m (LX) ~ Z/nZ.

Remarque 3.1.2. Lintérét de ceci est qu’a présent, nous sommes en mesure
de déterminer un espace topologique ayant pour groupe fondamental un groupe
abélien de type fini G donné. FEn effet, nous savons qu’un tel groupe peut
sécrire sous la forme G ~Z™ X Z/nZ X ... X L/n,Z.

On sait que le groupe fondamental du tore T™ de dimension m (produit
de m exemplaires du cercle S') m(T™) ~ Z™, et que pour tout entier m,
m (L2 ~ 7 /nZ.

L’espace T™ x (L2™H1) x ... x (L2"*1) admet donc G pour groupe fondamental.
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Ainsi, les revetements simplements connexes d’'un espaces B connexe et
localement connexe par arcs est un revetement galoisien dont on peut facile-
ment déterminer le groupe d’automorphismes.

Si nous revenons a présent a notre probleme de classification des revétements,
nous avions, a la fin de la section précédente que les revétements universels
permettent de retrouver tous les revétements connexes d’un espace B a partir
des sous-groupes du groupe d’automorphisme.

Le revétement “idéal” que nous aimerions avoir pour classifier les revétements
connexes d'un espace B connexe et localement connexe par arcs serait donc
un revetement universel simplement connexe. Mais c¢’est en réalité beaucoup
plus simple que cela car on a la proposition suivante :

Proposition 3.1.10. Tout revétement simplement connexe de B est un
revétement universel.

Démonstration. Si q : D — B est un revétement connexe de B, d’apres
la proposition 3.1.6, il existe un morphisme de F sur D, et ceci implique que
D est isomorphe a un revétement associé a F d’apres la proposition 2.2.3.

La réciproque de cette proposition est aussi vraie (voir [Sp]).

Les revetements universels de B sont donc exactement les revétements sim-
plements connexes de B. La question est donc a présent de savoir : dans
quels cas l'espace B admet-il un revétement universel?

Pour répondre a cette question, nous allons a présent introduire la notion
d’espace semi-localement simplement connexe.

Définition 3.1.2. Un espace B est semi-localement simplement conneze si
: pour tout b € B, il existe un voisinage Vi, de b tel que tout lacet de base b
dans Vj, soit homotope dans B au lacet constant cp.

On a alors le théoreme suivant :

Théoreme 3.1.11. Un espace B connexe et localement connexe par arcs
posséde un revétement universel si et seulement s’il est semi-localement sim-
plement connexe.

Voici une idée de la construction du revetement universel lorsque B est
connexe, localement connexe par arcs et semi-localement simplement con-
nexe.

On commence par recouvrir B par des ouverts V' dont tous les lacets sont
homotopes au lacet constant (c’est possible car B est semi-localement sim-
plement connexe).

On fixe b € B et on note E I'ensemble des classes d’homotopies des chemins
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d’origine b dans B.

Soit p : E'— B l'application définie par : p([c]) = ¢(1)

Pour tout V, on fixe by € V et on note Fy := p~'(by) (que I'on considere
comme un espace discret). p : £ — B est alors un revétement de B dont
les voisinages distingués sont les V', et les trivialisations sont donnée par
les applications @y : p~Y(V) — V x Fy, [¢] = (p([]),[7]) de réciproque
(x,[v]) = [yA] pour b € V fixé (ou v est un chemin joignant b a by et A un
chemin joignant by a ¢(1) tels que [¢] = [yA]).

On montre enfin que le revétement p : £ — B est simplement connexe, donc
universel (cf. [G].Chapitre 1X.5.3).

On peut alors donner le théoreme suivant :

Théoreme 3.1.12. Soit B un espace connexe, localement connexe par arcs
et semi-localement simplement connexe; et b € B fixé.

e L’espace B possede un revétement simplement connexe p : E — B.
Ce revétement est un revétement universel de B, et le groupe G =
Aut(E) des automorphismes de E est isomorphe au groupe fondamental

7T1(B,b).

e Si H est un sous-groupe de G, alors qu : E/H — B est un revétement

connexe de B, et il est galoisien si et seulement si H est distingué dans
G (et on a alors Aut(E/H) ~ G/H).

o Réciproquement, si q : D — B est un revétement connexe de B, alors
il est isomorphe a qg : E/H — B, (ou H est le stabilisateur d’un point
x de ¢~ 1(b), et c’est alors un sous-groupe de G).

e Deux revétements qg : F/H — B et qx : E/K — B sont isomorphes
si et seulement si H est K sont conjugués dans G.

Ce théoreme permet donc de classifier les revétements connexes de B a
isomorphisme pres.

Appliquons ce résultat au cas du cercle S' et de la bouteille de Klein :

Exemple 3.1.3. e Nous savons que : m(S') ~ Z.
Les sous-groupes de Z. sont les nZ oun € N.
Un revétement simplement connexe de S' est donné par la projection :
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p:R =S, 0 e Les revétements connezes de S' sont donc tous
isomorphes a un revétement ¢,z : R/nZ — S', [0] — €™ qui n’est
autre que le revétement ¢, : St — S, z > 2.

e Notons B la bouteille de Klein que l’on définit comme [’espace homogeéne
: R%/G ou G est le groupe (a,b | bab = a), ot a: (z,y) — (—z,y + 1)
etb: (z,y)— (x+1,y).

Les €léments de G s’écrivent alors de maniéere unique a™b

Z.

" avec m,n €

Déterminons les sous-groupes de G : on peut vérifier qu’ils sont tous
de la forme H,,, = (a™b") ou de la forme Ky, n, = (a™b",b°) avec
m # 0,p >0 et 0<n<p. Onvérifie alors que K, ., et Hy,, , sont
distingués dans G si et seulement si m et pair (les revétements corre-
spondants seront alors galoisiens).

L’espace Ey,,, = R*/H,, , est homéomorphe au cylindre S' x R pour m
pair, et a la bande de Moebius pour m impair .

Lespace Eppp = R?/ K0, est homéomorphe au tore T? pour m pair,
et a la bouteille de Klein pour m impair.

Les seuls revétements de B a isomorphisme prés sont donc le cylin-
dre S' x R, le tore T?, la bande de Moebius, et la bouteille de Klein
B.

3.2 Quelques rappels de théorie de (zalois

Dans ce qui suit K désigne un corps isomorphe a un sous-corps de C.

Définition 3.2.1. Une extension de K de degré fini n est une K-algébre
L, qui soit un K -espace vectoriel de dimension finie n. On note [L : K| =n
la dimension de L sur K, aussi appelée degré de L sur K.

Proposition 3.2.1. Soit L une extension de K.

Soit x € L.

On note alors K[z] :== {P(x)|P € K[X]|} et K(x):={F(X)|F € K(X)}.
On est dans l'un des cas suivant.

e Qu bien l'une des conditions équivalentes suivantes est vérifiée :
1. [K(z): K] < 400
2. Il existe un polynome unitaire P € K[X] tel que P(x) = 0.
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3. 1l existe un polynome irréductible unitaire de degré fini noté P, i €
K[X] tel que P, x(x) = 0. Le polynome P,k est alors unique
et est appelé le polynome mainimal de x sur K et on a alors
[K(z) : K] = deg(Py k)

4. Klz] = K()
x est alors dit algébrique sur K.

e Ou bien [K(x) : K] = +o00, et on dit alors que x est transcendant
sur K.

Remarque 3.2.1. Tout comme nous avons défini K (x), on peut définir, pour
z,y € L, Klz,y] = {P(z,y)|P € K[X,Y]|} = Klz][y]. Plus généralement en-

CoTe, POUT X1, Ty .oy Ty : K[T1, Lo, .y 1] = {P(x1, 22, ..., )| P € K[X1, Xo, ...

Définition 3.2.2. Soit P un polynome unitaire de degré n de K|[X] et soient
X1, X2, ..., Ty S€S racines dans une cloture algébrique de K (comptées avec
multiplicité).

Un corps de décomposition de P est une extension L de K de degré fini
telle que L = K|xy, xa, ..., xy).

Proposition 3.2.2. Soit L/ K une extension de K de degré fini et Gk son
groupe de Galois. Les assertions suivantes sont équivalentes :

1. L9k = K,

2. Pour tout x € L, toute les racines de P, i sont dans L,

3. L est un corps de décomposition d’un polynome P de K[X],
4 [L: K] =|al.

Si l'une de ces propositions est vérifiée on dit alors que L/ K est une exten-
ston galoisienne de K.

Lemme 3.2.3 (Artin). Soit L/K une extension galoisienne de K (de degré
fini). Soit H un sous-groupe fini de G x. On note L := {z € L|o(z) =
x,Vo € H}.

L’extension L)L est alors une extension galoisienne de groupe de Galois H
et on a donc [L : L¥] = |H]|.

Théoréme 3.2.4 (Correspondance de Galois). Soit L/K une extension ga-
loisienne de K de groupe de Galois G k.
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o Si H est un sous-groupe de G, alors L* /K est une sous-extension
de L/K et elle est galoisienne si et seulement si H est distingué dans
G/ (et on a alors Gpu e ~ G /H).

e Réciproquement, si E/K est une sous-extension de L/K, alors E =
L7, (o0 H = G/, qui est un sous-groupe de G).

Remarque 3.2.2. On peut reformuler la correspondance de Galois de la
fagcon suivante : On a la correspondance biunivoque entre l’ensemble £ des
sous-extensions E/K de L (i.e. les extensions de K incluses dans L) et
I’ensemble G des sous-groupes de Gk donnée par l'application :

L] ¢5—>Q,E>—>GL/E
e Sa réciproque est ) : G — €, H — L7,

De plus, si l'on considére l'action de Grjx sur £ donnée par Gk X &,
(0,FE) = o(F), ainsi que laction de Gk sur G : Grx x G, (0,H) —
oHo™!, les bijections ¢ et 1) sont alors compatibles avec ces actions.
C’est-a-dire, si £ € £, 0 € Gk, alors G oz = O’GL/EO'_I, et st H € G,
o(L1) = Lot

3.3 Revétements/extensions de corps

Lors des sections précédentes, nous avons mis l'accent sur les similitudes que
nous avons pu rencontrer entre les résultats de la théorie des revétements et
de la théorie de Galois.

Ces similitudes ont ici été regroupées dans le tableau suivant : on y voit ap-
paraitre a gauche les objets et théorémes de la théorie de Galois (cf. section
précedente), et a droite les objets et théoremes correspondants de la théorie
des revétements.
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Théorie de Galois

Revétements

Extension L d’un sous-corps K de C

Revéetement p: E — B

Extension galoisienne L de K

Revétement galoisien p: F — B de B

Sous-extensions E de L/K

Revétements associés pr : Er — B

Groupe de galois d'une extension
galoisienne L : G x = Autg(L)

Groupe des automorphismes d'un
revétement galoisien £ : G = Aut(FE)

Correspondance de Galois :
H C GL/K — LY

Correspondance :
HcGw~ (qy: E/H — B)

Si H C Gk, alors

(L" /K est galoisienne) < (H <1 Gp k)

et Gpu g~ GL/K/H

Si H C G, alors
(qg : E/H — B est galoisien) < (H < G)
et Aut(F/H) ~G/H

Cette comparaison peut paraitre pour le moins surprenante, et nous seri-
ons en droit de nous demander s’il n’existe pas un lien direct entre ces deux

théories.

En fait, c’est bien le cas, et ce lien sera détaillé dans la partie suivante, dans
le cas des revetements des surfaces de Riemann.
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PARTIE I1
SURFACES DE RIEMANN
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Mise en bouche

Le but de cette partie est d’utiliser les résultats obtenus dans la partie
précédente pour répondre au probleme inverse de Galois. Dans son arti-
cle Groupe de Galois sur Q, Jean-Pierre Serre expose le probleme suivant
(cf. [S]):

étant donné un groupe G de type fini, existe-t-il une extension galoisienne
finie £’ de Q dont le groupe de Galois Gal(E/Q) soit isomorphe a G

Dans le cas ou GG est un groupe abélien fini, le probleme admet bien des
solutions :

On suppose que G est un groupe abélien fini. On sait alors que G ¢
éerit sous la forme [[;_, Z/n;Z. Or d’apres le théoreme de la progression
arithmétique de Dirichlet, il existe une infinité de nombres premiers p; con-
grus a 1 modulo n; (pour tout 7). Par conséquent, il existe une famille (p;)
de nombres premiers distincts tels que (Z/p;Z)* contienne un sous-groupe
isomorphe & Z/n;Z. On a alors un morphisme surjectif ¢ de (Z/pZ)* dans
I[;-, Z/nZ = G o p désigne le produit p = []/_, p;. Soit L le corps cyclo-
tomique sur Q engendré par les racines p™¢ de I'unité. Son groupe de Galois
est alors isomorphe a (Z/pZ)*. Or, (Z/pZ)*/Ker(¢) ~ G. Mais par la cor-
respondance de Galois, ceci est le groupe de Galois de l'extension LX¢(9),
D’ou le résultat.

Dans le cas ol GG est un groupe non abélien, c’est beaucoup plus difficile.
Une méthode efficace consiste a se ramener a I’étude des extensions de Q(7")
(corps des fractions rationnelles sur Q).

Si Er est une extension galoisienne finie de Q(7"), de groupe de Galois G
d’ordre n. FErp est alors un corps de décomposition d'un certain polynome
Pr(X)=X"+a, 1(T)X" '+ ...+ ao(T) € Q(T)[X] irréductible sur Q(T").
Le théoreme d’irréductibilité de Hilbert assure l'existence d'une infinité de
rationnels ¢ € Q tels que P(X) = X"+ a,_1(£) X"+ ...+ ao(t) € Q[X] soit
irréductible. Choisissons un tel rationnel ¢.
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L’algebre E;[X] := Q[X]/(FP,[X]) est alors une extension galoisienne de degré
n sur Q et de groupe de Galois G.

Ainsi lorsqu’on a une extension galoisienne de Q(7") de groupe de Galois
G fini, on peut en déduire 'existence d’une extension galoisienne de Q de
groupe de Galois G.

Pour faire le lien avec la théorie des revétements, nous devrions identifier
Q(T) a l'ensemble des fractions rationnelles sur P'Q. Mais cet ensemble
a une géométrie compliquée, voila pourquoi, pour simplifier, nous allons
plonger P!Q dans P!C, et nous nous intéresserons alors exclusivement au
cas des extensions finies de C(T).

Le probleme devient alors : pour un groupe fini G fixé, existe-t-il des ex-
tensions galoisiennes de C(7") de groupe de Galois G?

Une solution a ce probleme consiste a utiliser la correspondance entre la
théorie des revetement des surfaces de Riemann et la théorie de Galois. Plus
précisément, nous allons voir dans le chapitre 6 que si I'on a revétement ga-
loisien de la sphere de Riemann P! (voir 4.1.1) de groupe d’automorphisme
G, on peut en déduire l'existence d'une extension galoisienne de C(T') de
groupe de Galois G.

Nous ramenerons donc le probleme a : pour un groupe de type fini G donné
existe-t-il un revétement galoisien de P* dont le groupe de Galois est G?

Pour construire un tel revétement commencons par donner une présentation
de G : Supposons que G admette n générateurs et posons F' := Fi, a0
le groupe libre engendré par n éléments. On construit alors un morphisme
surjectif f: F' — G de noyau H := ker(f). On a alors G ~ F/H.

Posons & présent X := P!\ {z1,..., 2,41} la sphere de Riemann privée de
n + 1 points. Le groupe fondamental de cette surface est alors 7 (X) ~ F
(signalons au passage que dans son exposé, Jean-Pierre Serre identifie plutot
m(X) au groupe engendré par n + 1 éléments cq, ..., c,41 avec la relation
€1...Cny1 = 1, ce qui finalement revient bien a notre groupe libre F' engendré
par n éléments). D’apres la partie I, on sait qu'il existe un revétement uni-
versel X de X, et on a alors Aut(X) ~ F.

Par ailleurs, H = ker(f) est distingué dans F. 1l suffit donc de prendre
'espace homogene X /H pour obtenir un revétement galoisien p : X/H — X
de groupe Aut(X/H)~ F/H ~G.
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Nous déterminéns donc ainsi un revétement galoisien de P\ {21, ..., 2,41} de
groupe G. Nous aimerions alors pouvoir le prolonger en un revétement ga-
loisien de P* de groupe G. Nous verrons dans le chapitre 5 que c’est possible
(dans un cadre plus général).

Le chapitre 6 nous permettra alors d’établir une correspondance entre les

revétements galoisiens de P! et les extensions galoisiennes de M (P!) I'algebre
des fonctions méromorphes sur P! (voir chapitre 4).
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Chapitre 4

Revétements des surfaces de
Riemann

4.1 Surfaces de Riemann

Pour définir les surfaces de Riemann, nous devons avant tout introduire les
notions suivantes :

Définition 4.1.1. Une variété de dimension n est un espace topologique
séparé X tel que tout point v € X admet un voisinage homéomorphe a un
ouvert de R".

Définition 4.1.2. Soit X une variété de dimension 2.

e Une carte complexe sur X est un homéomorphisme ¢ : U — V d’un
ouvert U de X sur un ouvert V de C.

e Deux cartes complexes ¢ : Uy — Vi et ¢ : Uy — Vo sont dites holo-
morphiquement compatibles si [’application : ¢ o gbl_l o1 (U N
Us) — ¢2(Uy NUs) est biholomorphe.

e Un atlas complexe sur X est un ensemble A = {¢; : U; — V;,i € I}
de cartes complexes holomorphiquement compatibles et dont les ouverts
recouvrent X : |J,.,; Ui = X.

el 7t

e Deux atlas complexes A et A sont analytiquement équivalents
si toute carte de 2 est holomorphiquement compatible avec n’importe
quelle carte de . La relation “étre analytiquement équivalent a” est
une relation déquivalence sur l’ensemble des atlas complexes sur X .
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Figure 4.1: cartes complexes

e Une structure complexe sur X est une classe d’équivalence d’atlas
complexes sur X analytiguement équivalents.

Nous avons a présent tous les éléments nécessaires pour définir les surfaces
de Riemann :

Définition 4.1.3. Une surface de Riemann est un couple (X,%), ou X
est une variété de dimension 2 connexe et 3 une structure complexe sur X.

Par la suite nous utiliserons la notation X pour désigner une surface de
Riemann, lorsque la structure complexe dont elle est munie est claire.
Voici quelques exemples simples de surfaces de Riemann :

Exemple 4.1.1. e Le plan complexe est clairement une surface de Rie-
mann (dont la seule carte compleze est l'identité sur C).

e La sphére de Riemann P! := CU {oo} est une surface de Riemann.

En effet on munit P* de la topologie suivante : les ouverts de P*
sont les ouverts de C et les ensembles du type V U {oc} ou V est le
complémentaire d’un compact dans C (La sphére de Riemann munie
de cette topologie est alors compacte). On peut recouvrir P par les
ouverts Uy := C et Uy := C* U {0}, et on définit les cartes complezes

l .
¢1:U1—>(C,z1—>zetq52:U2—>C,z»—>{6 Z zi(o:o . De plus

U, et Uy sont connexes, donc P! est bien conneze.

Remarquons bien que cette définition de la sphére de Riemann n’est pas
la méme que celle donnée par la projection stéréographique : en effet,
si la projection d’un point sur la sphére S* a partir du pole nord N nous
donne un point z, la projection de ce méme point a partir du pole sud
S donne le point 1/Z (et non le point 1/z).
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Figure 4.2: projection stéréographique

o Les tores : Soient wy,ws € C. On définit I' := Zwy, + Zwsy. Un tel
ensemble est appelé un réseau (voir dessin ci-dessous). L’espace ho-
mogene C/T" muni de la topologie quotient est une surface de Riemann.

En effet si l’on considere un ouvert V. de C qui ne contient pas de
paire de points équivalents (par exemple les voisinages Vi, Vs, Vs sur le
dessin) alors U := w(V) (oum: C — C/T" est la projection canonique)
est un ouvert de C/T', et on peut recouvrir cet espace par de tels ou-
verts. Puisque les V n’admettent pas de paire de points équivalents, on
peut définir les cartes ¢ : U — V (réciproques de wl|y ), et on munit
ainsi l'espace C/T' d’une structure complexe. De plus, puisque C est
conneze, C/T" est connexe.

L’espace C/T" est appelé tore car on a un homéomorphisme f : C/I" —
St x St défini par f(Awy + pws) = (X ™) pour tous A, € R.

Nous allons a présent définir les fonctions holomorphes sur une surface
de Riemann donnée a valeurs dans C .

Définition 4.1.4. Soit X une surface de Riemann etY un ouvert de X.
Une fonction f 1Y — C est dite holomorphe si, pour toute carte complexe
¢:U =V sur X, la fonction fogp™ : p(UNY) C C — C est holomorphe
(au sens usuel). On notera O(Y') l'ensemble des fonctions holomorphes sur
Y.

Remarquons qu’en particulier, les cartes complexes sur X sont holomor-
phes sur leur ensemble de définition. On définit ensuite les fonctions holo-
morphes d’une surface de Riemann dans une autre :
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Figure 4.3: exemple de réseau

Définition 4.1.5. Soient X etY deux surfaces de Riemann.

Une application continue f : X — Y est dite holomorphe si pour tout
couple de cartes ¢y : Uy — Vi sur X et ¢o : Uy — Vo sur'Y, avec f(Uy) C Us
Uapplication ¢yo fody' : Vi € C — Vy C C est holomorphe (au sens usuel).
Une application f : X — Y est btholomorphe si elle est bijective et si f,
f~1 sont holomorphes.

On dit que deuzx surfaces de Riemann X et'Y sont isomorphes s’il existe
une application biholomorphe de X dans 'Y .

Exemple 4.1.2. Soient I' := Zwy + Zwsy et I := Zw| + Zw) deux réseau.
Soit a € C* tel que al’ C T".

L’application C — C, z — az induit une application holomorphe f : C/T" —
C/T7, [2] = [az].

En effet, si ¢ : U =V et ¢/ : U — V' sont des cartes telles que f(U) C U’
respectivement sur C/T et C/T’, on a alors ¢=' = 7|y donc : ¥z € V
¢ ofogp(z) = o f([z]) = ¢ ([az]) = az + kyw] + kow)y, ot ky et ko sont
des entiers fizés indépendants de z € V. On remarque que cette application
est bien holomorphe, donc f est holomorphe.

Voici un premier résultat sur les fonctions holomorphes d’une surface de
Riemann dans une autre surface de Riemann

Théoréme 4.1.1. Soient X etY deuz surfaces de Riemann et fi, fo : X —
Y sont deux applications holomorphes qui coicident sur un ensemble A C X
qui admet un point limite a € X.

Alors, f1 et fy coicident sur X.

Nous pouvons également définir les fonctions méromorphes sur une sur-
face de Riemann :

63



Définition 4.1.6. Soit X une surface de Riemann etY un ouvert de X.
Une fonction méromorphe sur'Y est une fonction holomorphe f :Y' — C
sur un ouvert Y' C Y tel que :

1. Y \'Y' ne contient que des points isolés.

2. Pour tout point p € Y \'Y' on a lim,_,|f(x)] = 0o

Les points de Y \'Y’ sont les pdles de f.
L’ensembles des fonctions méromorphes sur'Y sera noté M(Y').

Remarque 4.1.1. Pour une surface de Riemann X donnée, [’ensemble
M(X) des fonctions méromorphes sur X forme un corps.

o 1 s 2zeC
Exemple 4.1.3. L’application f : z — 6 G > — oo est holomorphe sur

Pouvert C* U {oo} de PL. (immédiat car c’est une carte sur P*). On peut la
prolonger en une fonction méromorphe sur P*. En effet, lim._o|%| = oo.

Plus généralement, les homographies z ZZZIS, avec ad — be # 0, sont holo-
morphes (au sens usuel) sur {z € Clcz +d # 0}. Ces fonctions peuvent étre

prolongées en des fonctions méromorphes sur P*.

Un autre exemple de fonction méromorphe est la fonction o de Weier-
strass:

Exemple 4.1.4. Soit I' = wiZ+wyZ un réseau. La fonction de Weierstrass
est la fonction définie par

gar(Z)ZéﬂL ) (@577)2_%)

ver\{0}

. Elle est méromorphe sur C, et ses poles sont les points de T'.

En effet, on remarque que la série converge absolument et normalement sur
chaque compact de C\T (les termes de la séries étant majorés par |y|™3). La
fonction est alors holomorphe sur C\ I'. Il est clair que lim,_,,|f(2)] = oo
pour tout v € I'. o est donc méromorphe sur C.

Nous allons a présent étudier les propriétés des fonctions holomorphes sur
des surfaces de Riemann. Nous verrons que l'on retrouve sensiblement les
mémes résultats que pour les fonctions holomorphes au sens usuel.

Théoréme 4.1.2 (des singularités de Riemann). Soit U un ouvert d’une
surface de Riemann et soit a € U et f € O(U \ {a}) bornée sur un voisinage
de a. f peut alors étre prolongée en une fonction f € O(U). On dit alors
que a est une singularité apparente.
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Démonstration. Voir [F].Chapitrel.1.8.

Théoréme 4.1.3. Soit X une surface de Riemann et f € M(X). Pour
chaque péle p on définit f(p) := co. f: X — P est alors une application
holomorphe.

Réciproquement, si f : X — P! est une application holomorphe, alors ou bien
[ est identiquement égale o oo, ou bien f~(oco) est un ensemble de points
isolés et f: X \ f~1(o0) est une fonction holomorphe sur X.

Démonstration. Voir [F].Chapitrel.1.15.

Exemple 4.1.5. L’exemple 4.1.3 illustre parfaitement cette situation : f :
IP’l\{O},zw—){ si z€C

est une fonction méromorphe sur P. Si

o =

st oz =
I'on pose f(0) = oo, alors f : P* — P! est bien une fonction holomorphe
(elle est méme biholomorphe : on a fo f = Idp )

Théoréme 4.1.4. Soient X etY deux surfaces de Riemann et soit f : X —
Y une application holomorphe non constante. Soit a € X et b:= f(a).
Alors, il existe k € N* et des cartes ¢ : U =V sur X, et : U — V' surY
telles que :

1. acU, ¢la)=0,be U, (b)) =0,
2. fU) c U,

3. L’application F := 1o fo g™t : V — V' est donnée par F(z) = 2*
pour tout z € V. On appelle k la multiplicité au point a. On peut
caractériser cet entier ainsi : c’est l'entier k tel que pour tout voisinage
Uy de a, il existe un voisinage U C Uy de a et un voisinage V' de b tel
que pour tout y € V, f~1(y) NU contient k éléments.

Démonstration. Voir [F].Chapitrel.2.1.

Exemple 4.1.6. Dans l'ezemple 4.1.5, tous les points de P* ont pour multi-
plicité 1. En effet, si nous reprenons les ouverts Uy et Uy ainsi que les cartes
@1 et oo de l'exemple 4.1.1 on a :

e SizeC, alorsz €U, et g0 foo;'(z) =z

65



e Siz=o00,alors z €Uy et ¢10 fopy'(2) = z.

Un autre exemple est le cas d’une fonction polynome f : z — zf‘—i—an_lz"_l +
...+ ay de C dans C prolongée en une fonction holomorphe f : P — P! en
posant f(o0) = 00. 0o a pour multiplicité k.

Voici a présent quelques corollaires de ce théoreme :

Corollaire 4.1.5. Soient X etY deux surfaces de Riemann et soit f: X —
Y une application holomorphe non constante. f est alors ouverte, c¢’est-a-
dire, l'image par f de tout ouvert de X est un ouvert de'Y .

Démonstration. Voir [F].Chapitrel.2.4.

Corollaire 4.1.6. Soient X etY deux surfaces de Riemann et soit f: X —

Y wune application holomorphe injective. f est alors une application biholo-
morphe de X sur f(X).

Démonstration. Voir [F].Chapitrel.2.5.

Corollaire 4.1.7 (Principe du maximum). Soit X une surface de Riemann
et f: X — C une application holomorphe non constante. Le module de f
n’atteint pas sa borne supérieure.

Démonstration. Voir [F].Chapitrel.2.6.

Théoreme 4.1.8. Soient X etY deux surfaces de Riemann. On suppose que
X est compact. soit f: X — Y une application holomorphe non constante.
Y est alors compact et f est surjective

Démonstration. Voir [F].Chapitrel.2.7.

Dans le cas particulier ou Y = C, puisque C n’est pas compact, on en déduit
le corollaire suivant :

Corollaire 4.1.9. Soit X une surface de Riemann compacte. Toute appli-
cation holomorphe f : X — C est constante.

Démonstration. Voir [F].Chapitrel.2.8.
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4.2 Revétements des surfaces de Riemann

Définition 4.2.1. Soient X et Y deux surfaces de Riemann, etp:Y — X
une application holomorphe non constante.

Un point y € Y est appelé point de ramification de p s’il n’existe aucun
voisinage V' de y tel que ply soit injective .

On dira que l'application p est non ramifiée si elle n’admet pas de point de
ramification.

On a une caractérisation des applications non ramifiées donnée par le
théoreme suivant :

Théoreme 4.2.1. Soient, X etY deux surfaces de Riemann.
Une application holomorphe non constante p : Y — X est non ramifiée si et
seulement si c’est un homéomorphisme local.

Démonstration. Voir [F].Chapitrel.4.4.

Voici quelques exemples :

Exemple 4.2.1. o Soitk =2 et soitp, : C— C, 2+ zF. Le point 0

est alors un point de ramification de py (et c’est le seul). L’application
plc- est alors non ramifiée.

o L’application exp : C — C* est holomorphe et non ramifiée.

Remarque 4.2.1. D’apreés le théoreme 4.1.4, le résultat du premier exemple
nous permet d’affirmer que, X etY sont des surfaces de Riemann, etp:Y —
X une application holomorphe non constante, un point y € Y est un point
de ramification si et seulement si f prend la valeur x := f(y) en y avec
multiplicité k > 2.

Nous allons a présent reprendre les notions étudiée dans la partie précédente,
et voir quels résultats nous obtenons dans le cadre des Surfaces de Riemann.
Nous verrons entre autre que nous nous intéresserons plus particulierement
aux revétements holomorphes de surfaces de Riemann par des surfaces de
Riemann (donc des revétements connexes) .

Avant tout, nous allons donner un résultat qui généralise la proposition 3.1.2:

Théoreme 4.2.2. Soient X etY deux espaces topologiques séparés, p: Y —
X un revéetement de Y.

Si Z un espace conneze, localement connexe par arcs et simplement conneze,
et [ Z — X une application continue, alors pour tout z € Z ety € Y
tels que f(z) = p(y), il eviste un unique relevement f : Z —'Y de f tel que

f(z)=y
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Démonstration. Voir [F].Chapitrel.4.17.

Voici a présent un premier résultat concernant les relevements d’applications
holomorphes non ramifiées.

Théoreme 4.2.3. Soient X, Y et Z des surfaces de Riemann.

Sip: Y — X est une application holomorphe non ramifiée et f : Z —
X wune application holomorphe, alors tout relevement g : Z — Y de f est
holomorphe.

Démonstration. Voir [F].Chapitrel.4.9.

Un exemple simple qui illustre cette situation est le logarithme d’une fonction

Exemple 4.2.2. On considre une surface de Riemann simplement conneze
X. FEtant donnée une application holomorphe f : X — C*, on cherche a
déterminer un logarithme de f, c’est-a-dire une fonction F' : X — C holo-
morphe telle que f = exp(F'), donc telle que le diagramme suivant commute:

C

e
erp
x Lo

Par conséquent chercher F' revient a chercher un reléevement holomorphe de

f.

Or, exp : C — C* est un revéetement de C*, donc d’apres le théoreme 4.2.2,
un unique relevement F' : X — C tel que F(x) = z pour tout choiz de (z, z)
tels que f(x) = €”.

Mais d’autre part, exp : C — C* est holomorphe et non ramifiée, donc
d’apres le théoreme 4.2.3, chacun de ces relévements est holomorphe.

Ainsi, toute application f holomorphe sur une surface de Riemann simple-
ment connexe a valeurs dans C* admet localement un logarithme.

Nous allons a présent introduire les applications propres entre espaces
topologiques.

Définition 4.2.2. Soient X et Y deux espaces localement compacts.
Une application f : X — Y est propre si, pour tout K C X compact,
fYK) est compact.
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Remarque 4.2.2. Une application propre est nécessairement fermée.

Lemme 4.2.4. Soient X et Y deux espaces localement compacts et p une
application propre et discréte. Alors pour tout point x € X 'ensemble p~'(x)
est fini.

Démonstration. Voir [F].Chapitrel.4.21.

Théoreme 4.2.5. Soient X etV deux espaces localement compact.
Sip:Y — X est homéomorphisme local propre, alors p :' Y — X est un
revétement.

Démonstration. Voir [F].Chapitrel.4.22.

Appliquons ce théoreme aux surfaces de Riemann (qui sont des espaces lo-
calement compacts) Considérons deux surfaces de Riemann X et Y, et soit
f X — Y une application propre holomorphe non constante.

L’ensemble A des points de ramifications de f est fermé et discret (cf. théoréme
4.1.4). Puisque f est propre, B := f(A) est également fermé et discret. On
appelle B I'’ensemble des valeurs critiques de f.

Silonnote Y:=Y\Bet X':=X\ f71(B)C X\ A

L’application f|x : X’ — Y’ est alors une application propre holomorphe
non ramifiée, et le théoreme précédent nous permet de conclure que c’est un
revétement non ramifié de Y.

Avant d’aller plus loin, donnons quelques exemples de revétements non ram-
ifiés :

Exemple 4.2.3. o cxp : C — C* est un revétement holomorphe de C*,
et ¢’est méme son revétement universel (C étant simplement connexe).

o Soit I' = wiZ + weZ un réseau dans C. La projection canonique p :
C — C/T nous donne alors le revétement universel du tore complexe
C/T'. Son groupe d’automorphisme est alors Aut(C/T') ~T' ~ Z x Z
(on retrouve bien le groupe fondamental du tore).

Dans la section qui va suivre nous allons développer I’exemple des revétements
non ramifié du disque unité privé d’un point et nous verrons alors qu’il est
possible de prolonger ce revétement en un revétement ramifié du disque unité.
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4.3 Revetements du disque unité

Dans cette section on notera D le dique unité (i.e. D ={z € C||z| < 1}

Avant de parler de revétements de D, nous allons nous intéresser aux revétements
holomorphes non ramifiés du disque épointé D* := D\ {0}.

Ces revetements sont classifiés par le théoreme suivant :

Théoréme 4.3.1. Soit X une surface de Riemann et f : X — D* un

revétement holomorphe non ramifié de D*.
Deux cas se présentent:

1. Si le revétement admet un nombre infini de feuillets, alors il existe une
application biholomorphe ¢ : X — H sur le demi plan H = {z €
C|Re(z) < 0} tel que le diagramme suivant commute :

¢ H
N S
D*

2. Si le revétement admet un nombre fini k de feuillets, alors il existe une
application biholomorphe ¢ : X — D* telle que le diagramme suivant
commute (ot py : D* — D* est définie par z s 2*).

X

X ¢ D*

A

Remarquons que les applications exp : H — D* et pp : D* — D* sont
deux types de revetements du disque épointé. Le revétement exp : H — D*
est d’ailleurs le revétement universel de D* (étant donné que H est simple-
ment connexe).

Puisque Iapplication ¢ est biholomorphe (donc bijective), ce théoréme im-
plique que tout revétement du disque épointé est ou bien isomorphe au
revetement exp : H — D*, ou bien au revétement py : D* — D*.

Démonstration. exp : H — D* étant un revetement universel , puisque
f + X — D* est un revétement connexe de D*, il est isomorphe a un
revétement associé du type qg : H/G — D* ou G est un sous-groupe de

Aut(H).
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1. Si G = {Id}, alors X est isomorphe au revétement exp : H — D*.
D’ou 'existence d’un homéomorphisme ¢ tel que expogp = f. Mais ¢
est alors un relevement de X au-dessus de f qui est une application
holomorphe non ramifiée, donc d’apres le théoreme 4.2.3, ¢ est bien
holomorphe (et de méme on conclut que f~! est holomorphe). ¢ est
donc bien biholomorphe.

2. Supposons a présent que G est non trivial. On sait que Aut(H) ~
m(D*) ~ Z. On peut voir Aut(H) comme le groupe des translations
Tn @ 2 — 2+ 2imn ou n € Z. Puisque G est non trivial, il existe k € N*
tel que G = {mu : 2z — z + 2imnk,n € Z}. Soit g : H — D* le
revétement défini par g(z) = exp(z/k). De plus, H étant simplement
connexe, et puisque f : X — D* est un revétement, le théoreme 4.2.2
nous affirme 'exitence d’un relevement h : H — D* de H au-dessus de
exp : H € D* et ce relevement est de plus holomorphe.

D’autre part, g(z) = g(z') si et seulement s’il existe 7, € G tel que
2 = 7u(2). 1l existe donc une bijection ¢ telle que le diagramme
suivant commute :

A

Puisque h et g sont localement biholomorphe, ¢ est biholomorphe. Il
est alors immédiat que expo ¢ = f.

X Dr

O

Nous avons donc déterminé les revetements holomorphes non ramifiés du
disque épointé par des surfaces de Riemann. Nous allons en déduire le
théoreme suivant :

Théoreme 4.3.2. Soit X une surface de Riemann, D le disque unité et
f X = D une application propre holomorphe non constante et dont 0 est
la seule valeur critique. Il existe alors un entier k > 1 et une application
biholomorphe ¢ : X — D tel que le diagramme ci-dessous commute (o0
peizrs 2F)

N

D
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Démonstration. Notons X* := f~Y(D*). flx- : X* — D* est alors
un revétement propre holomorphe et non ramifié de D*. D’apres le lemme
424, f|x- admet un nombre fini de feuillets. Donc, d’apres le théoreme
précédent, il existe une application biholomorphe ¢ tels que le diagramme
suivant commute :

Montrons & présent par I'absurde que f~*(0) est un singleton (ce qui nous
permettra de prolonger l'application f)

Supposons f~1(0) contient n points by, ..., b, avec n > 1. Il existe alors n voisi-
nages ouverts V; des points b; disjoints et un disque D(r) = {z € C||z| < r}
avec 0 < r < 1, tels que f~1(D(r)) C Vi U...UV,.

Posons D*(r) := D(r)\{0}. Puisque f~!(D*(r)) est connexe car homéomorphe
a p; {(D*(r)) = D*(¥/r) (f. diagramme ci-dessus).

Tout point b; étant un point d’accumulation de f~'(D*(r)), f~(D(r)) est
également connexe. Ce qui contredit : f~H(D(r)) C V; U...UV,,.

On peut donc poser {b} := f~(0). On prolonge alors ¢ en b en posant
¢(b) := 0. On a ainsi prolongé ¢ en une application biholomorphe ¢ : X — D

telle que pr o ¢ = f.
O

Remarquons bien que dans cette démonstration nous avons prolongé le revétement
holomorphe non ramifié f|x« : X* — D* en un revétement holomorphe non
ramifié.

Nous aimerions savoir si un tel prolongement est toujours possible. C’est-
a-dire, si I'on se donne deux surfaces de Riemann X et Y’, A un ensemble
fermé discret et p : Y/ — X'\ A un revétement propre holomorphe non ramifié

de X \ A, peut-on prolonger p en un revétement holomorphe ramifié de X :
p:Y > X7

Le chapitre qui suit va nous permettre de répondre a cette question.
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Chapitre 5

Prolongements des revéetements
non ramifiés

Théoreme 5.0.3. Soit X une surface de Riemann, A C X un sous-ensemble
discret fermé, et soit X' := X \ A. Soit Y’ une surface de Riemann et
p Y — X" un revétement propre holomorphe non ramifié.

On peut alors prolonger p' en un revétement ramifié de X. C’est-a-dire
qu’il existe une surface de Riemann Y, une application propre holomorphe
p:Y — X et une application biholomorphe ¢ : Y \ p~1(A) — Y telle que le
diagramme ci-dessous commute :

Y\ pi(4)

P
Ply\p=1(a)

X/

Y/

p

Démonstration. Pou tout a € A on choisit un voisinage ouvert U, de a tel
que U, NUy = O pour a # a' et ¢, : U, — D une carte complexe a valeurs
dans le disque unité du plan complexe telle que v, (a) = 0
Soit U* := U, \ {a}. Puisque p’ : Y' — X' est propre, p'~}(U) admet un
nombre fini de composantes connexes que 'on note V;* pour i = 1,...,n(a).
Pour tout 4, 'application p’ ve o Vi — U est un revetement ramifié et
puisque 1, est une carte complexe (donc un homéomorphisme), ¢, o p’ :
V. — D* constitue un revetement ramifié de D*. Soit k4, son nombre de
feuillets (nécessairement fini puisque p’ est propre). D’apres le théoreme
4.3.1, il existe une application biholomorphe ¢,, : V — D" telle que le
diagramme suivant commute (ot p,, (2) = 2Fe)
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Pa,;
Vi ——=D~

|
Ya

Ur . D+

On choisit a présent des points z,,, pour a € A, i = 1...n(a) d'un ensemble
ZtelqueY'NZ=0Q.

On pose alors Y := Y' U {z,]a € A,i = 1..n(a)}. On peut munir cet en-
semble d’une topologie : Si (W;);c; est une base de voisinages de a, alors
{2za,} U (p""1(W;) NV) est une base de voisinage de z,,. On construit ainsi
une topologie telle que Y soit un espace séparé.

Par la suite, on définit application p : Y — X en posant p(y) = p'(y)
pour tout y € Y’ et p(z,,) = a. L’application p est alors propre.

Nous voudrions maintenant munir Y d’une structure de surface de Riemann.
Pour cela, nous définissons des cartes complexes en prolongeant les cartes
Vo : Vi — D* sur V,, := VU {2, } en posant ¢,(2*) := 0. Ces nouvelles
cartes ¢, : Vo, — D sont holomorphiquement compatibles avec les cartes de
Y’

Le dessin ci-dessous résume les différents prolongements effectués :

L’application p : ¥ — X est alors holomorphe. De plus, puisque Y \
p~Y(A) = Y’ il suffit de poser ¢ := Idys pour avoir 'application biholo-
morphe souhaitée.
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La proposition suivante vient compléter ce théoreme :

Proposition 5.0.4. Soient X, Y, Z trois surfaces de Riemann et p:Y —
X, q: Z — X deux revétements propres holomorphes. Soit A C X un sous-
ensemble fermé discret, et soit X' := X\ A, Y :=p Y X') et Z' := ¢ 1(X).
Alors toute application biholomorphe o' :Y' — Z' telle que q|z o o' = p|x
peut étre prolongée en une application biholomorphe o 'Y — Z telle que
qoo =p.

En particulier, tout élément de Aut(Y') peut étre prolongé en un élément de
Aut(Y).

Démonstration. Voir [F].Chapitrel.8.5.

Cette proposition assure donc l'unicité du prolongement du revétement p’ :
Y’ — X’ vu dans le théoreme 5.0.3, & isomorphisme pres.

Définition 5.0.1. Soient X et Y deux surfaces de Riemann, et p :Y —
X wun revétement holomorphe ramifié. Soit A C X [’ensemble des valeurs
critiques de p, et soit X' := X\ A et Y':=p~1(X).
On dit que le revétement p : Y — X est galoisien de groupe G si le
revétement ply. : Y — X' est galoisien de groupe G.

Remarquons a présent I'intérét du théoreme 5.0.3 pour notre probleme :
Rappelons que I'on souhaite construire un revétement de P! de groupe de
galois G fixé engendré par n éléments.

La sphere de Riemann privée de n + 1 points, X := P\ {p1, ..., pns1} est
homéomorphe au plan complexe privé de n points C \ {z1, ..., z,} (il suffit
d’identifier 'un des points p; & 00).

X a donc pour groupe fondamental le groupe libre a n éléments F =
F{a17---7an}'

On choisit alors un revétement universel propre holomorphe de X, p: X — X
qui admettra donc F' pour groupe d’automorphismes.

Par ailleurs si 'on se donne un morphisme surjectif ¢ : F' — G (un tel mor-
phisme existe, il suffit d’envoyer les générateurs de F sur les générateurs de
G), on a alors G ~ F/H ou H := ker ¢.

Si l'on considére le revétement associé qy : Y — X, ou Y/ = X/H,
ce revétement est alors propre holomorphe non ramifié et galoisien (car
H = ker ¢ est distingué dans F') de groupe F/H ~ G.

Mais D’apres le théoreme 5.0.3, on peut prolonger q : ¥ — X en un
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revétement ramifié de P!, g : Y — P!, qui sera alors galoisien de groupe G.

Nous pouvons donc assurer 'existence d’un revetement galoisien de groupe
G de type fini donné.

Comment pouvons-nous en déduire I'existence d’une extension galoisienne

de C(T") de groupe G?

C’est 'objet du chapitre suivant.
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Chapitre 6

Correspondance
revétements /extensions

6.1 Fonctions algébriques

Soient X et Y deux surfaces de Riemann, p : Y — X un revétement holomor-
phe non ramifié a n feuillets et f une fonction méromorphe sur Y. d’apres la
proposition 2.1.1, tout point x € X admet un voisinage V tel qu’il existe une
famille non vide de sections au-dessus de V', (8;)ic(1,...n} telles que tem pour
tout i € I, s;(V) est un ouvert de p~'(V') que 'on notera U;, U; NU; = O, et
P (V) = Uicq....my Ui Plu, : Ui = V est alors holomorphe pour tout i. On
note alors f; :== fos;.

Considérons alors le polynome :

n

[[T—f) =T"+aT"" + .. + e € MU)[X]

i=1

Les ¢; étant des fonctions méromorphes sur U et on a alors ¢; = (—1)'0;(f1, ..., fu),
ou les o; sont les polynomes symétriques élémentaires en n variables.

Par le méme procédé on construit les fonctions ¢; sur des voisinages de tous
les points z € X, et on peut alors définir les fonctions ¢; méromorphes sur
X.

On les appelle les fonctions symétriques élémentaires de f pour le
revetement p 1 Y — X.
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Proposition 6.1.1. Soient X etY deux surfaces de Riemann, etp:Y — X
un revétement holomorphe ramifié a n feuillets.

Soit A C X un ensemble fermé discret contenant toutes les valeurs critiques
de p, et soit B = p~1(A).

Supposons que p est une fonction holomorphe sur'Y \ B et que les fonctions
€1y ey Cn € O(X \ A) sont les fonctions symétriques €l’ementaires de f.
Alors, f peut étre prolongée en une fonction holomorphe sur'Y si et seulement
si toutes les fonctions ¢; peuvent étre prolongées en des fonctions holomorphes
sur X.

Démonstration. Soit a € A et {by,...,b,} = p~*(a). Soit U un voisinage
ouvert relativement compact de a tel que UN A = {a} et ¢ : U — C une
carte complexe sur X, telle que ¢(a) = 0. V := p~1(U) est un voisinage
ouvert relativement compact de chacun des b;.

e Supposons que f peut étre prolongée holomorphiquement en tout point
b;. [ est alors bornée sur V' \ {by,...,b,}. Les ¢; sont donc bornée sur
U \ {a}. Donc, par le théoreme des singularités de Riemann, les ¢;
peuvent étre prolongée holomorphiquement en a.

e Supposons que les ¢; peuvent étre prolongées holomorphiquement en a.
Toutes les fonctions ¢; sont alors bornées sur U\ {a}. Mais ceci implique
que f est bornée sur V' \ {by,...,b,}, car si x = p(y) alors f(y)" +
ci(x)f(y)" L+ ...+ co(z) = 0. D’apres le théoreme des singularités de
Riemann, f peut étre prolongée holomorphiquement en chaque b;.

O

Signalons que nous avons un résultat analogue pour les fonctions méromorphes:

Proposition 6.1.2. Soient X etY deux surfaces de Riemann, etp:Y — X
un revétement holomorphe ramifié a n feuillets.

Soit A C X un ensemble fermé discret contenant toutes les valeurs critiques
de p, et soit B =p~t(A).

Si on suppose f holomorphe sur Y \ B et cq,...,c, € M(X \ A).

Alors [ peut étre prolongée méromorphiquement sur Y si et selement si les
¢; peuvent étre prolongées méromorphiquement sur X .

Démonstration. Voir [F].Chapitrel.8.2.
Nous allons a présent voir apparaitre un lien entre les revétements de surfaces

de Riemann et ’algebre des fonctions méromorphes. Soit p : Y — X une ap-
plication holomorphe non constante. Considérons alors p* : M(X) — M(Y),
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f — fop. Il est facile de voir que cette application est bien définie et que
c’est un morphisme de corps. Le morphisme p* : M(X) — M(Y) permet
alors de munir M(Y") d'une structure de M(X)-algebre. De plus, M(Y)
étant un corps, c’est une extension de M(X)

Ce morphisme est particulierement intéressant dans le cas ou p est un revétement:

Soient X et Y deux surfaces de Riemann et p : ¥ — X un revétement
holomorphe ramifié a n feuillets. Si f € M(Y) et si ¢y, ..., ¢, € M(X) sont
les fonctions symétriques élémentaires assocées a f, alors f™ + (p*cy) f"* +
..+ (p*c,) = 0 (d’apres la définition des fonctions symétriques élémentaires).
Par conséquent toute fonction f € M(Y) est un élément algébrique sur
K = p*(M(X)). Par conséquent, M(Y') est une extension algébrique de K
et tout élément de M(Y') est de degré < n. (Par la suite, on identifiera K a
M(X) via le morphisme p* : M(X) — M(Y).)

On a de plus le résultat suivant :

Proposition 6.1.3. On a [M(Y) : K] < n.

Par ailleurs, s’il existe f € M(Y) et x € X avec {y1, ..., yn} := p~(x) tels
que les f(y;) pouri = 1...n sont tous distincts, alors l'extension M(Y")/ M(X)
est de degré exactement n.

Démonstration. Posons L := M(Y'). Considérons fy € L un élément de
degré maximal ng < n sur K.
Soit f € L quelconque. Par le théoreme de I’élément primitif, il existe g € L
tel que K(g) = K(f, fo). Par définition de ng, on a [K(g) : K| < ng, mais
par ailleurs, K(fo) C K(f, fo) donc ng < [K(f, fo) : K]. D’ou finalement,
K(fo, f) = K(fo) et donc f € K(fy) pour tout f € L.
Par conséquent, L = K(fy) et donc [L : K] =ng < n.

D’autre part, le polynome minimal de f est de degré ng, on le note P =
T + p*an, 1 T™ ' + ...+ p*ag € K[T]. Siz € X, et {y1, ..., yn} = p ()
alors pour tout i : P(f(y:)) = f(4:)" + (ang—1(2)) f(y:)™ ™" + ... + (ao(2)).
Donc les f(y;) sont racines d'un méme polynéme de degré ny < n. Donc
f(y;) peut prendre au plus ng valeurs distinctes.

D’ou, si les f(y;) sont tous distincts, alors n = ng.

O

On commence a comprendre qu’une correspondance entre les revétement
d’une surface de Riemann X et les extensions de M(X) sera donnée par
lapplication : (revétement holomorphe ramifié p : ¥ — X) —— (extension

M(Y)/M(X)).
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Nous allons a présent introduire le concept de fonction algébrique :

Théoréme 6.1.4. Soit X une surface de Riemann, et P(T) = T"+c;T" '+
oo + ¢, un polynome irréductible de degré n.

Il existe une surface de Riemann Y, un revétement ramifié holomorphe a
n feuillets p ' Y — X et une fonction méromorphe F' € M(Y) telle que
(p*P)(F) = 0. Le triplet (Y, p, F') est alors unique au sens o, si (Z,q,G) est
un autre triplet satisfaisant les mémes propriétés, alors il existe une unique
application biholomorphe o : Z — 'Y telle que g =poo et G =c*F.

On dit que le triplet (Y,p, F') est une fonction algébrique définie par le
polynome P(T).

Démonstration. Voir [F].Chapitrel.8.9.

6.2 Correspondance

Soient X et Y deux surfaces de Riemann et p: Y — X un revétement holo-
morphe ramifié de X et posons :

Vo € Aut(Y)Vfe M(Y)of:=foo ' € M(Y). On a alors une correspon-
dance entre Aut(Y') et Gy m(x) donnée par :

¢ Aut(Y) — Gy mex)

o (fof)

Cette application est bien définie car f — o f est bien un automorphisme de
M(Y) (de réciproque f + o1 f) laissant K = p*M(X) invariant.

Par ailleurs, il est immédiat que ¢ est un morphisme de groupe.

On en déduit le théoreme suivant :

Théoréme 6.2.1. Soit X une surface de Riemann. On pose K = M(X)
et P(T) un polynome irréductible unitaire de degré n. Soit (Y,p, F') la fonc-
tion algébrique définie par P(T) et L := M(Y). On considere K comme un
sous-corps de L.

o L/K est alors une extension de degrén de K, et on a L ~ KI[T|/(P(T)).

e De plus, le morphisme ¢ : Aut(Y) — Gk, 0 — (f — of) est un
1somorphisme de groupes.

e Le revetement Y — X est alors galoisien si et seulement si l’extension
L/K est galoisienne.

80



Démonstration.

D’apres la proposition 6.1.3, on a bien [L : K] = n.

L’isomorphisme L ~ KI[T]/(P(T)) est clair, puisque deg(P) = n et
P(F) =0, et I est un élément primitif de L (cf. démonstration de la
proposition 6.1.3).

L’application ¢ est injective : en effet, soit 0 € Aut(Y), telle que
of = fpourtout f € L. Onaalors oF = F, c’est-a-dire (¢ 71)*F = F.
Or d’apres le théoreme 6.1.4, Id;, est 'unique application biholomorphe
telle que (07!)*F = F. Donc o = Idy.

L’application ¢ est surjective : soit o € G i, (Y, p,aF’) est une fonc-
tion algébrique définie par le polynome P(T). Donc il existe 7 €
Aut(Y) tel que aF = 7 F = 771F. Puisque F engendre L, le mor-
phisme f + 771 f est le morphisme o.

Enfin, p : Y — X est galoisien si et seulement si Aut(Y) contient
n éléments (car 'action de Aut(Y) sur les fibres est alors transitive).
Et de méme l'extension Gk est galoisienne si et seulement si G x
contient [L : K| = n éléments.

O

6.3 Application a la sphere de Riemann

A la fin du chapitre 5 les revétements galoisiens ¢y : Y — P! que nous avions
construit, nous donnent donc, par cette correspondance, des extensions ga-
loisiennes de K := M(P!).

Rappelons que nous avions construit ces revétements a partir d’'un revétement
universel de la sphere de Riemann privée de n + 1 points.

Voici quelques exemples de tels revetements universels :

Exemple 6.3.1. e La sphere de Riemann privée de 2 points P\ {21, 22}

qui est homéomorphe (et méme biholomorphe) a C* (il suffit d’identifier
21 400 el z9 4 0). Un revétement universel de cet espace est alors donné
par p: C — C*, z — %™,

Pour la sphere de Riemann privée de 3 points, c’est plus compliqué

On se rameéne avant tout au cas de la sphere de Riemann privée
des points 0, 1, et co. On considére alors un tore C/unZ + weZ, que
l’on peut ramener, par isomorphisme a un tore T, := C/Z + TZ, avec
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T € P, ou P:={z € C|Im(z) > 0} est le demi-plan de Poincaré. On
définit la fonction o : T, — P'C de Weierstrass sur T, (on rappelle que
0(2) = 2+ 2 ez <ﬁ — %)) Cette fonction est doublement
périodique de périodes 1 et 7. On note alors e1(1) = p(3), ex(7) =
p(3(1+7)), et es(1) := p(57), les valeurs de o en chaque demi-période.
L’application X : P — P1\ {0,1,00}, 7 — er)=esln) oot glors un

e1(r)—es(r)
revétement universel de P'\ {0,1,00} (pour plus de détails, voir [L]).

Proposition 6.3.1. Toute fonction méromorphe sur P! est rationnelle.

Démonstration. Soit f € M(P'). Nous allons d’abord montrer que f
admet un nombre fini de poles :
Supposons que f admet une infinité de poles. On peut alors construire une
suite de poles (z;) qui converge dans P! (car P! est compact). Donc par le
théoreme 4.1.1, f est identiquement égale a oo, d’ou contradiction.

On peut a présent supposer que oo n’est pas un pole de f. (si ce n’est
pas le cas, il suffit de remplacer f par 1/f

Notons alors aq, ..., a, € C les poles de f, et pour chaque pole a;, on choisit
une carte complexe ¢; : U; — V; définie sur un voisinage ouvert U; de a;.
On peut alors effectuer un développement en série de Laurent de f o ¢; au
voisinage de a;. On note alors h;(z) = Z;:l_kz cij(z—a;)’ la partie principale
de ce développement.

La fonction g := f — (hy o ¢~ + ... + hy, 0 1) est alors holomorphe sur PL.
Elle est donc constante d’apres le corollaire 4.1.9.

On en déduit donc que f est rationnelle.
O
Remarque 6.3.1. Cette proposition est une conséquence du fait suivant :

e FEn général une surface de Riemann compact se plonge dans un espace
projectif.

e D’apres le théoreme de Chow, toute sous-variété analytique d’un espace
projectif est algébrique (pour plus de détails voir [GH] ou [Si])

Par conséquent M (P') se plonge dans C(T'). Réciproquement, il est clair
que C(T) se plonge dans M (P!).
On a donc que M(P!) ~ C(T'). On a donc bien obtenu le théoreme :

Théoreme 6.3.2. Pour tout groupe G de type fini donné, il existe une ex-
tension galoisienne de C(T') de groupe de Galois G.
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Voici un exemple d’application :

Exemple 6.3.2. Posons G = Z/nZ le groupe cyclique d’ordre n (engendré
par un élément).

On considére alors la sphére de Riemann privée de 2 points P\ {z1, 20} qui
est homéomorphe a C*. Rappelons le revéetement universel de C* donné par
p:C— C*, 2+ e, _

On considére alors le revétement donné par gz : C/nZ — C*, [2] — e™n-.

On a alors M(C/nZ) est une extension de M(P') ~ C(t).
Or M(C/nZ) ~ C(/t), ( Si f € M(CJZ) et g € C(t)) telle que f([2]) =
g(e2i7rz)

2imz

, on associe 4 f la fonction h:z — g(e n )).

Une extension galoisienne de C(t) de groupe de Galois Z/nZ est alors donnée

par C({/t).

83



Annexe A

Liste des groupes
fondamentaux

A.1 Groupe fondamental des espaces topologiques
familiers :

Espace topologique

Groupe fondamental

R i
R*\ {p1,p2, .-, Pn} Flay ap,....an)
St 7
T 7"
§ n>2 i)
P"C,n>1 {1}
P'R Y/
PR, n > 2 7)27

Tore privé de n points

(a,b,c1,ca,...0n | [a,b]cieg...0, = 1)

Surface de genre g
privée de n points

<a'17b17a27627 "'7agvbgvclv -5 Cn
‘ [CLl, bl][ag, bg]...[ag,bg]cl...cn = 1>

Bouteille de Klein

{(a,b ] aba™'b=1)
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A.2 Groupe fondamental des groupes clas-

siques :
Groupe Classique | Groupe fondamental
O2(R) Z
On(R), n >3 Z]2Z.
SOu(R), n >3 7]27.
Sp(n) {1}
SUL(C) {1}
GL,(R), n >3 Z]2Z.
GL,(C),n>1 7,
SLy(R), n >3 Z]2Z
SLa(C) {1}
Spa(R) Z
Spn((C) {1}
0,(C) Z
On(C),n >3 Z]27.
O32(R) 7 X 7
O9,4(R), ¢ =3 7 X 71.]27
Op2(R), p >3 7 X 71.]27
0, qR), p=3,¢>3 Z]27 X 7]2Z
Upq(C) 7 X 7.
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