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1.2.3 Le théorème de Van Kampen . . . . . . . . . . . . . . 14
1.2.4 Le groupe fondamental des espaces projectifs . . . . . . 16
1.2.5 Le groupe fondamental des groupes classiques . . . . . 18

1.3 Quelques exemples illustratifs . . . . . . . . . . . . . . . . . . 21
1.3.1 Le tore . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.3.2 Une surface de genre 2 . . . . . . . . . . . . . . . . . . 27
1.3.3 La bouteille de Klein . . . . . . . . . . . . . . . . . . . 31

2 Revêtements 34
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PARTIE I

GROUPES
FONDAMENTAUX ET

REVÊTEMENTS
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Dans ce premier chapitre certains résutats, seront admis. Les démontrer
demanderait trop de temps et nous éloignerait du sujet qui nous intéresse. Le
lecteur pourra trouver des démonstrations complémentaires dans l’ouvrage
de Claude Godbillon, [G], dont ce chapitre est inspiré.
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Chapitre 1

Groupe fondamental

1.1 Définitions de base

Définition 1.1.1. On considère un espace topologiqueX. I désigne l’intervalle
[0, 1]

1. Un chemin dans X est une application continue c : I → X. c(0) est
appelé origine de c et c(1) l’extrémité. Si x = c(0), y = c(1) on dit
que c est un chemin joignant x à y.

2. Pour tout point x ∈ X on désigne par cx le chemin constant d’origine
et d’extrémité x défini par : ∀t ∈ I, cx(t) = x.

3. Si c : I → X est un chemin joignant x à y, on désigne par c̄ le chemin
joignant y à x défini par c̄(t) = c(1− t), c̄ est appelé chemin inverse

de c.

4. Si c est un chemin joignant x à y et c′ est un chemin joignant y à z
alors on note cc′ le chemin joignant x à z le chemin défini par :

cc′(t) =











c(2t) si 0 6 t 6
1

2

c′(2t− 1) si
1

2
6 t 6 1

cc′ est le chemin composé de c et c′.

Définition 1.1.2. Deux chemins c et c′ de X ayant même origine et même
extrémité sont dits homotopes s’il existe une application continue
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H : I × I → X telle que :
i) ∀t ∈ I, H(t, 0) = c(t) et H(t, 1) = c′(t).
ii) ∀s ∈ I, H(0, s) = x et H(1, s) = y.
La relation “être homotope à” entre les chemins est alors appelée relation

d’homotopie.

Plus visuelement, un chemin c′ est homotope à un chemin c s’il peut être
“déformé” continûement en le chemin c (voir dessin ci-dessous).

c(0) c(1)

c’

c c(t)

c’(t)

Figure 1.1: Le chemin c’ est homotope à c.

Proposition 1.1.1. La relation d’homotopie est une relation d’équivalence
dans l’ensemble des chemins joignant x à y.

Nous allons par la suite considérer l’ensemble des classes d’homotopie des
chemins joignant x à y que nous noterons Πx,y(X).
Notons [c] les éléments de Πx,y(X), et

Π(X) =
⋃

x,y∈X

Πx,y(X)

. Nous allons munir ce dernier ensemble d’une loi de composition interne
“.” définie par [c][c′] = [cc′] lorsque cela a un sens (i.e. lorsque c(1) = c′(0))
L’étude des propriétés de la relation d’homotopie vont nous permettre de
déduire celles de la loi “.”.

Théorème 1.1.2. Soient c, γ deux chemins homotopes joignant x à y et c′,
γ′ deux chemins homotopes joignant y à z. On a alors :
i) Les chemins inverses c̄ et γ̄ sont homotopes.
ii) Les chemins composé cc′ et γγ′ sont homotopes.
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Démonstration. Voir [G].Chapitre V.1.3.

Ce théorème assure la définition de la loi “.” lorsque c(1) = c′(0).

Théorème 1.1.3. Soient c1 un chemin joignant x à y, c2 joignant y à z et
c3 joignant z à u. Les chemins (c1c2)c3 et c1(c2c3) sont alors homotopes.

Démonstration. Voir [G].Chapitre V.1.4.

Par conséquent, on a ([c1][c2])[c3] = [(c1c2)c3] = [c1(c2c3)] = [c1]([c2][c3]).
La loi “.” est donc “associative”.

Théorème 1.1.4. Soit c un chemin joignant x à y. Les chemins ccy et cxc
sont homotopes à c.

Démonstration. Voir [G].Chapitre V.1.6.

On en déduit : [c][cy] = [c] et [cx][c] = [c].
Les classes [cx] et [cy] sont donc les éléments neutres respectivement à droite
et à gauche pour la loi “.”.

Théorème 1.1.5. Soit c un chemin joignant x à y. cc̄ et c̄c sont alors
homotopes respectivement à cx et cy.

Démonstration. Voir [G].Chapitre V.1.7.

On a alors [c][c̄] = [cx] et [c̄][c] = [cy].
Ce théorème se traduit donc par le fait que [c̄] est l’inverse de [c] pour la loi
“.”.

On constate que la loi “.” présente toutes les caractéristique d’une loi de
groupe, mais qu’elle n’est pas définie sur Π(X)× Π(X) tout entier. Elle ne
permet donc pas de munir Π(X) d’une structure de groupe.
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1.1.1 Groupe fondamental

Définition 1.1.3. Soit x ∈ X. Un lacet de base x dans X est un chemin
d’origine et d’extrémité x dans X. On note π1(X, x) l’ensemble Πx,x(X) des
classes d’homotopies des lacets de base x dans X.

Théorème 1.1.6. D’après ce qui précède, la composition des chemins induit
une structure de groupe sur l’ensemble π1(X, x). ( L’élément neutre étant
alors [cx] et [c̄] l’inverse de [c] )

Définition 1.1.4. Le groupe π1(X, x) est appelé groupe fondamental de
X au point x.

Proposition 1.1.7. Soit c un chemin d’origine x et d’extrémité y dans X.
L’application αc : [γ] 7→ [cγc̄] est un isomorphisme de π1(X, y) sur π1(X, x)
qui ne dépend que de la classe d’homotopie de [c].
Si c′ est un second chemin joignant x à y, alors les isomorphismes αc et αc′
sont conjugués dans π1(X, x).

Démonstration. Voir [G].Chapitre V.2.3.

Corollaire 1.1.8. Si x et y sont dans une même composante connexe par
arcs de X, les groupes π1(X, x) et π1(X, y) sont alors isomorphes.
En particulier, si X est connexe par arc tous ses groupes fondamentaux sont
isomorphes et on parlera alors du groupe fondamental π1(X) de X.

Ceci nous permet d’introduire la notion d’espace simplement connexe :

Définition 1.1.5. Un espace X est dit simplement connexe s’il est con-
nexe par arcs et si tous ses groupes fondamentaux π1(X, x) sont triviaux.
( Il suffit pour cela qu’un seul de ces groupes fondamentaux soit trivial. )

Un exemple d’espace topologique simplement connexe est le plan R2. En
effet, si l’on trace un lacet sur ce plan, on remarque que l’on peut le déformer
continûment jusqu’à obtenir un lacet trivial. Nous verrons une démonstration
de ceci dans la partie 1.2.1.

Considérons à présent deux espaces topologiques X et Y .
Si f est une application continue de X dans Y et c un chemin joignant x à y
dans X , alors f ◦ c est un chemin joignant f(x) à f(y) dans Y . On remarque
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alors que :

• La composition c 7→ f ◦ c est compatible avec l’homotopie des chemins
( i.e. [c] = [c′] ⇒ [f ◦ c] = [f ◦ c] ), ainsi qu’avec la composition des chemins
( i.e. f ◦ (cc′) = (f ◦ c)(f ◦ c′) ).

• f induit donc une application f? : Π(X) → Π(Y ) telle que :
f?(αβ) = f?(α)f?(β) ( lorsque αβ est bien défini ).

Proposition 1.1.9. Une application continue f : X → Y induit un mor-
phisme de groupe f? : π1(X, x) → π1(Y, f(x)).De plus :
• si f = IdX , alors f? = Idπ1(X,x)
• si g : Y → Z est une application continue, on a (g ◦ f)? = g? ◦ f?.

Démonstration. Voir [G].Chapitre V.3.1.

Corollaire 1.1.10. Si f est un homéomorphisme de X sur Y , alors f? est
un isomorphisme de π1(X, x) sur π1(Y, f(x)), et on a alors (f?)

−1 = (f−1)?.

Dans le cas où X et Y sont des espaces connexes par arcs, ce théorème
se traduit par le fait que deux espaces connexes par arcs homéomorphes ont
des groupes fondamentaux isomorphes.
Le groupe fondamental constitue donc un invariant topologique des espaces
connexes par arcs.

Remarque 1.1.1. Si f est une application continue injective ( resp. surjec-
tive ), f? n’est pas nécessairement injective ( resp. surjective ). Nous verrons
un contre-exemple dans la conséquence 1.2.11, lorsque nous serons en mesure
de calculer le groupe fondamental de certains espace topologiques.

Nous avons cependant la proposition suivante :

Proposition 1.1.11. Soit C la composante connexe par arcs de x dans X.
L’injection canonique i : C → X induit un isomorphisme i? de π1(C, x) sur
π1(X, x).

Démonstration. Voir [G].Chapitre V.3.3.
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1.2 Calcul du groupe fondamental

Proposition 1.2.1. Soient X, Y des espaces topologiques.
On note p1 (resp. p2) la projection de X × Y sur X (resp. Y ) Si (x, y) ∈
X × Y , l’application (p1)? × (p2)? est un isomorphisme de π1(X × Y, (x, y))
sur π1(X, x)× π1(Y, y).

Démonstration. Voir [G].Chapitre VI.1.1.

Remarque 1.2.1. L’isomorphisme inverse de cette application est alors
l’application φ : ([c1], [c2]) 7→ ((i1)?[c1])((i2)?[c2]), où i1 : x 7→ (x, y) (resp.
i2 : y 7→ (x, y)) pour y (resp. x) fixé quelconque.

Corollaire 1.2.2. Si Y est simplement connexe, la projection p1 : X ×Y →
X induit un isomorphisme (p1)? de π1(X × Y, (x, y)) sur π1(X, x) .

Corollaire 1.2.3. Si X et Y sont simplement connexes leur produit X × Y
est aussi simplement connexe.

Définition 1.2.1. Un sous-espace Y d’un espace X est un rétracte par

déformation de X s’il existe une application continue r : X → Y telle que
r|Y = IdY et une application continue H : X × I → X ayant les propriétés
suivantes :

• H(x, 0) = x pour tout x ∈ X.

• H(x, 1) = r(x) pour tout x ∈ X.

• H(x, t) = x pour tout x ∈ Y et tout t ∈ I.

On dit alors que r est une rétraction par déformation de X sur Y .

Exemple 1.2.1. On note Sm−1 la sphère unité dans Rm, pour m > 1. Sm−1

est un rétracte par déformation de Rm \ {0}. En effet, on peut poser, pour
x ∈ Rm \ {0}, r(x) = x

||x||
. En considérant H(x, t) = t x

||x||
+ (1 − t)x, on

vérifie que r est une rétraction par déformation de Rm \ {0} sur Sm−1.

Proposition 1.2.4. Soit Y un sous-espace d’un espace X, i l’injection de Y
dans X et x ∈ Y . Si Y est un rétracte par déformation de X, le morphisme
induit i? : π1(Y, x) → π1(X, x) est alors un isomorphisme.

Démonstration. Voir [G].Chapitre VI.1.6.

Nous allons à présent calculer le groupe fondamental de certains espaces
topologiques.
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1.2.1 Le groupe fondamental d’un espace numérique

On rappelle qu’un espace numérique est un espace topologique X tel qu’il
existe n ∈ N tel que X soit homéomorphe à Rn (Un tel espace est alors
nécessairement connexe par arcs).
Un tel espace X a donc un groupe fondamental π1(X) isomorphe à π1(R

n)
(cf. corollaire 1.1.10) qui est homéomorphe à (π1(R))

n (cf. Proposition 1.2.1).

On s’est donc ramené au calcul du groupe fondamental de R.

Proposition 1.2.5. L’espace topologique R est simplement connexe.

Démonstration. Soit c : I → R un lacet (de base 0) dans R et soit
H : I × I → R l’application continue définie par H(t, s) = sc(t). Puisque
c(0) = c(1) = 0, on a H(0, s) = H(1, s) = 0 pour tout s ∈ I. Par ailleurs
H(t, 0) = 0 et H(t, 1) = c(t) pour tout t ∈ I. Par conséquent le chemin c est
homotope au chemin constant c0. R est donc simplement connexe.

�

Par conséquent tout espace numérique est simplement connexe.

1.2.2 Le groupe fondamental du cercle S1

On rappelle que le cercle S1 est connexe par arcs. S1 sera ici considéré comme
l’ensemble des nombres complexes de module 1.
Dans cette partie nous noterons p : R → S1 la projection t 7→ e2iπt, et pour
n ∈ Z, γn désignera le lacet de base 1 dans S1, défini par γn(t) = p(nt) pour
tout t ∈ I.

Théorème 1.2.6. Le groupe fondamental π1(S
1, ∗) du cercle S1 est isomor-

phe à Z.
Plus précisément, l’application n 7→ [γn] est un isomorphisme de Z sur
π1(S

1, 1).

(Puisque S1 est connexe par arcs, pour tout z ∈ S1, π1(S
1, z) = π1(S

1, 1).
Il nous suffit donc de montrer que π1(S

1, 1) ' Z.)
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Pour démontrer ce résultat, nous avons besoin du lemme suivant :

Lemme 1.2.7. Si c : I → S1 est un lacet de base 1 dans S1, il existe un
unique chemin c̃ dans R ayant 0 pour origine et tel que p ◦ c̃ = c. c̃ est alors
appelé un relèvement de c

Démonstration. Pour tout a ∈ R la projection p : R → S1 est un
homéomorphisme de ]a− 1

2
, a+ 1

2
[ sur l’ouvert S1 \ {−p(a)}. Par conséquent

si l’on note p−1
a l’homéomorphisme inverse de p, et si c̃1 et c̃2 sont deux appli-

cations vérifiant la propriété de l’énoncé, alors elles vérifient c̃1 = c̃2 = c◦p−1
a

pour tout t ∈]a − 1
2
, a + 1

2
[. Donc c̃1 et c̃2 cöıncident sur tout intervalle

]a− 1
2
, a+ 1

2
[, donc sur R. D’o‘u l’unicité de c̃.

Par ailleurs, c étant continu sur le segment I, il existe n ∈ N tel que, pour
tous t, t′ tels que |t− t′| 6 1

n
, ||c(t)−c(t′)|| 6 1 (continuité uniforme), et donc

1 − Re
(

c(t)c(t′)
)

= ||c(t)−c(t′)||2

2
6 1

2
. On a donc c(t)c(t′) 6= −1. Donc pour

t, t′ tels que |t − t′| 6 1
n
, p−1

0

(

c(t)c(t′)
)

est bien défini. Par conséquent, on

peut définir une application c̃ de I dans R par :

c̃(t) = p−1
0

(

c(t)c

(

j

n

)

)

+

j
∑

i=1

p−1
0

(

c

(

i

n

)

c

(

i− 1

n

)

)

pour j
n
6 t 6 j+1

n
.

Cette application est continue et vérifie c̃(0) = 0 et p ◦ c̃ = c.

�

Définition 1.2.2. Si c̃ est le chemin correspondant au lacet c dans le lemme
précédent, le réel c̃(1) est alors un entier appelé le degré du lacet c, et on
le notera deg(c). En particulier, on vérifie que le degré du lacet γn est n.

Lemme 1.2.8. Si H est une application continue de I × I dans S1 telle que
H(0, 0) = 1, alors il existe une unique application H̃ de I × I dans R telle
que H̃(0, 0) = 0 et p ◦ H̃ = H.

La démonstration de ce lemme est identique à celle du lemme 1.2.7.
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Définition 1.2.3. L’application H̃ est appelée un relèvement de H.

Proposition 1.2.9. Deux lacets c et γ de base 1 dans S1 sont homotopes si
et seulement s’ils ont même degré.

Démonstration. Si c et γ ont même degré, alors leurs relèvements c̃ et
γ̃ ont mêmes extrémités. L’application continue H̃ : I × I → R définie par
H̃(t, s) = (1−s)c̃(t)+sγ̃(t) est alors une homotopie de c̃ à γ̃. Par conséquent
on vérifie que H = p ◦ H̃ est une homotopie de c à γ.

Réciproquement, si H est une homotopie de c à γ, et si H̃ est le relèvement
de H , alors les applications c̃ : t 7→ H̃(t, 0) et γ̃ : t 7→ H̃(t, 1) les relèvements
de c et γ et c̃(1) = H̃(1, 0) = H̃(1, 1) = γ̃(1). c et γ ont donc même degré.

�

Proposition 1.2.10. Soient c et γ deux lacets de base 1 dans S1. On a alors
deg(cγ) = deg(c) + deg(γ).

Démonstration. Si c̃ et γ̃ sont des relèvements de c et γ, alors l’application

a : I → R définie par a(t) =











c̃(2t) si 0 6 t 6
1

2

γ̃(2t− 1) + c̃(1) si
1

2
6 t 6 1

est un

relèvement de cγ.

Ces deux dernières propositions nous permettent de conclure que
φ : π1(S

1, 1) → Z définie par φ([c]) = deg(c) est un morphisme ayant pour
inverse l’application n 7→ [γn]. Cette dernière application est donc un iso-
morphisme de groupe et donc :

π1(S
1, 1) ' Z

Conséquence 1.2.11. • Nous avons alors un exemple d’application in-
jective d’un espace X dans un espace Y qui n’induit pas une injection
de π1(X) dans π1(Y ). En effet, S1 s’injecte naturellement dans R2,
mais il n’existe pas d’injection de π1(S

1) ' Z dans π1(R) ' {1}.

• Le groupe fondamental de l’espace R2 \{0} est isomorphe à Z. En effet
nous avons déjà établi que le cercle S1 est un rétracte par déformation
de R2\{0}. Donc, d’après la proposition 1.2.4, π1(R

2\{0}) ' π1(S
1) '

Z.
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1.2.3 Le théorème de Van Kampen

On considère X un espace connexe par arcs tel que X = X1 ∪X2 où X1 et
X2 sont des ouverts non vides connexes par arcs tels que X0 = X1 ∩X2 soit
lui aussi non vide et connexe par arcs.

Notations. Si x ∈ X0, on pose :

• π1(Xα) est le groupe fondamental π1(Xα, x) pour α = 0, 1, 2.

• π1(X) = π1(X, x).

• jα le morphisme de π1(X0) dans π1(Xα) induit par l’injection de X0

dans Xα pour α = 1, 2.

• kα le morphisme de π1(Xα) dans π1(X) induit par l’injection de Xα

dans X pour α = 0, 1, 2.

On a alors le diagramme commutatif suivant :

π1(X1)
k1 // π1(X)

π1(X0)

j1

OO

j2
//

k0
99ttttttttt
π1(X2)

k2

OO

Proposition 1.2.12. Le groupe π1(X) est engendré par les images de k1? et
de k2?.

Démonstration. Voir [G].Chapitre VI.4.1.

Corollaire 1.2.13. Si X1 et X2 sont simplement connexes, alors X = X1 ∪
X2 est simplement connexe.

Corollaire 1.2.14. Si m > 2 alors Sm est simplement connexe.

Théorème 1.2.15 (Van Kampen). Si hα est un morphisme π1(Xα) dans
un groupe G pour α = 1; 2, et si h1 ◦ j1 = h2 ◦ j2, alors il existe un unique
morphisme h de π1(X) dans G tel que h ◦ kα = hα pour α = 1; 2.

Ce théorème siginifie donc que le diagramme ci-dessous est commutatif :
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G

π1(X1)
k1 //

h1

44jjjjjjjjjjjjjjjjjjj
π1(X)

h

;;xxxxxxxxx

π1(X0)

j1

OO

j2
//

k0
99ttttttttt
π1(X2)

k2

OO h2

EE����������������

Démonstration. Voir [G].Chapitre X.1.1.

Proposition 1.2.16. Soient H1 et H2 deux groupes. Il existe un groupe G et
des morphismes (injectifs) h1 : H1 → G et h2 : H2 → G ayant les propriétés
suivantes :

1. G est engendré par Im(h1) et Im(h2),

2. si ki : Hi → K, pour i = 1, 2, sont deux morphismes dans un groupe
K, alors il existe un unique morphisme k : G→ K tel que ki = k ◦ hi,
pour i = 1, 2.

G est alors unique à isomorphisme près. On appelle G le produit libre de
H1 et H2, et on note G = H1 ? H2.

Remarque 1.2.2. Lorsque les Hi, i = 1, 2, sont des groupes libres engendrés
par Ai, i = 1, 2, alors H1 ? H2 est isomorphe au groupe libre engendré par
A1 ∪ A2.

Remarque 1.2.3 (important). Nous pouvons reformuler le théorème de Van
Kampen de la façon suivante :

π1(X1 ∪ X2) = π1(X1) ?π1(X0) π1(X2) := π1(X1) ? π1(X2)/〈(k1 ◦ j1(g))(k2 ◦
j2(g))

−1, g ∈ π1(X1 ∩ X2)〉 (La notation ?π1(X0) s’appelle produit amal-

gamé.

On a alors une formule explicite pour le groupe fondamental de X : c’est
le produit libre des groupes fondamentaux de X1 et de X2 quotienté par la
relation qui identifie les classes des lacets de X1 ∩X2.

Corollaire 1.2.17. Si X0 = X1 ∩X2 est simplement connexe, alors π1(X)
est isomorphe au produit libre π1(X1) ? π1(X2).
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Exemple 1.2.2. On pose X = R2 \{p1, p2} l’espace R2 privé de deux points.
On peut supposer p1 = (0, 0) et p2 = (1, 0). Posons alors X1 = {(x, y), x 6 1

2
}

et X2 = {(x, y), x > 1
2
}. On a alors X1 ∩ X2 = {(x, y), x = 1

2
} qui est

homéomorphe à R, donc simplement connexe.

D’après le corollaire 1.2.17, π1(X) ' π1(X1) ? π1(X2). Or X1 et X2 sont
homéomorphes à R2 \ {0} qui a pour groupe fondamental le groupe libre en-
gendré par un élément Fa1 ' Z. Par conséquent, π1(X) est le groupe libre
engendré par deux éléments Fa1,a2.

On peut généraliser ceci au cas de l’espace R2 privé de n points p1, ..., pn.
Le groupe fondamental de cet espace sera alors le groupe libre engendré par
n éléments Fa1,...,an.

Corollaire 1.2.18. Si X2 est simplement connexe, et si J1 est le sous-groupe
distingué de π1(X1) engendré par l’image de j1, le groupe fondamental de X
est isomorphe au groupe quotient π1(X1)/J1.

Démonstration. Voir [G].Chapitre VI.4.8.

1.2.4 Le groupe fondamental des espaces projectifs

Nous allons à présent utiliser le théorème de Van Kampen pour calculer le
groupe fondamental des espaces projectifs complexes.
Pour cela, il nous faut avant tout introduire la notion de décomposition cel-
lulaire :

Définition 1.2.4. On considère K un espace topologique séparé. Une par-

tition en cellules de K est une partition π de K dont chaque partie est
homéomorphe à Rm, l’entier m est alors appelé la dimension de cette par-
tie. On désigne alors par Km la réunion des éléments de π de dimension
inférieure ou égale à m.

Une décomposition cellulaire de K est une partition en cellules de K
telle que, pour chaque élément e de dimension m de cette partition, il existe
une application continue f de la boule fermée Dm dans Km vérifiant :

1. f(Sm−1) ⊂ Km−1.

2. f |Dm\Sm−1 est un homéomorphisme de Dm \ Sm−1 sur e.
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Si K admet une décomposition cellulaire, on dit que :

• K est un complexe cellulaire

• Km est le squelette de dimension m de K

• e est une cellule de dimension m de K

• f est une application d’attachement de la cellule e

On dit qu’un complexe cellulaire K est fini s’il admet un nombre fini de
cellules.

Une décomposition cellulaire de l’espace projectif complexe PmC est déterminée
par PmC = AmC ∪Am−1C ∪ ... ∪A1C ∪A0C (où ApC désigne l’espace affine
complexe de dimension p).
La suite des squelettes de dimension 2p est alors P0C ⊂ P1C ⊂ ... ⊂ PmC.

Théorème 1.2.19. Soit K un complexe cellulaire fini connexe, et soit x un
point du squelette K2. L’injection i de K2 dans K induit un isomorphisme
de π1(K

2, x) sur π1(K, x).

Démonstration. Voir [G].Chapitre VI.5.3.

Corollaire 1.2.20. L’espace projectif complexe PmC où m > 0 est simple-
ment connexe.

Démonstration. Si m = 0, PmC est alors réduit à un point.
Si m > 0, le squelette de dimension 2 de PmC est alors P1C. Donc par le
thèorème précédent, on a π1(P

mC, x) ' π1(P
1C, x).

Par ailleurs, P1C est homéomorphe à la sphère S2 qui est simplement con-
nexe (cf. corollaire 1.2.14) Par conséquent, P1C est également simplement
connexe.

�

Nous pourrions déterminer de manière analogue le groupe fondamental
de l’espace projectif réel PmR, en considérant la décomposition cellulaire
PmR = AmR ∪ ... ∪ A1R ∪ A0R, mais c’est plus compliqué, et nous verrons,
d’autre part, dans le chapitre 3 qu’il est possible de déterminer le groupe
fondamental de cet espace d’une autre manière. Nous établierons alors que
π1(P

1R) ' Z et π1(P
mR) ' Z/2Z pour m > 2. Voir 3.1.2 pour les détails.
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1.2.5 Le groupe fondamental des groupes classiques

Nous allons à présent nous intéresser au groupe fondamental des groupes
topologiques classiques sous-groupes de GLn(C).

Lemme 1.2.21. Soit G un groupe classique admettant une décomposition po-
laire, c’est-à-dire un homéomorphisme G ' K×A où A est un espace affine
et K un sous-groupe compact maximal de G. On a alors : π1(G) ' π1(K).

Démonstration. Si G ' K×A, alors d’après la proposition 1.2.1, π1(G) '
π1(K)×π1(A). Or A est un espace numérique, donc simplement connexe, et
donc π1(G) ' π1(K).

�

Pour plus de détails sur la décomposition polaire, voir, e.g. [M].

Nous allons donc exhiber les groupes fondamentaux des groupes (où K = R

ou C)
SLn(K) = {M ∈ Mn(K), det(M) = 1},
On(K) = {M ∈ Mn(K), tMM = In},
SOn(K) = {M ∈ On(K), det(M) = 1},
Op,q(R) = {M ∈ Mp+q(R),

tMIp,qM = Ip,q} où Ip,q =

(

Ip 0
0 −Iq

)

,

Un(C) = {M ∈ Mn(C),
tM̄M = In},

SUn(C) = {M ∈ Un(C), det(M) = 1},
Up,q(C) = {M ∈ Mp+q(C),

tM̄Ip,qM = Ip,q},
Spn(K) = {M ∈ M2n(K), tMJM = J} où J =

(

0 −In
In 0

)

,

Sp(n) = Spn(C) ∩ U2n(C).

Théorème 1.2.22. On a les isomorphismes :
π1(SO2(R), 1) ' Z,
π1(SOm(R), 1) ' Z/2Z pour m > 3.

Démonstration.
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• Le groupe SO2(R) est homéomorphe à S1 (via l’homéomorphisme
(

cos θ − sin θ
sin θ cos θ

)

7→ eiθ) et donc, π1(SO2(R), 1) ' Z.

La deuxième partie de ce théorème se démontre par récurrence sur
m > 3.

• On montre que le groupe SO3(R) est homéomorphe à l’espace projectif
P3R. Pour cela, on fait agir les quaternion de norme 1 sur l’ensemble des
quaternions H ' R4 (ici, on identifiera S3 à l’ensemble des quaternions
de norme 1) : ∀q ∈ S3, x ∈ H 7→ qxq−1.
Cette action laisse {xi + yj + zk ∈ H} ' R3 invariant. Donc, à tout
élément q ∈ S3, on associe une isométrie h(q) de R3, donc un élément
de O3(R), et plus précisément, par connexité de S3, un élément de
SO3(R).
Le noyau de q 7→ h(q) est alors {−1, 1}.
De plus l’application q 7→ h(q) est surjective (par exemple, si q =

cosθ + isinθ on a h(q) =





1 0 0
0 cos 2θ − sin 2θ
0 sin 2θ cos 2θ



 ).

Par conséquent, SO3(R) ' P3R donc π1(SO3(R), 1) ' Z/2Z.

• On suppose que π1(SOm−1(R)) ' Z/2Z avec m > 4.
Soit n = (0, ..., 0, 1) ∈ Sm−1, et U = Sm−1 \ {−n}, V = Sm−1 \ {n}.
On note q : SOm(R) → Sm−1, α 7→ α(n). On peut alors mon-
trer (cf.[G].Chapitre VI.6.1) que U × SOm−1(R) ' q−1(U) et V ×
SOm−1(R) ' q−1(V ).
Or, puisque m > 4, les morphismes induits par les injections de q−1(U∪
V ) dans q−1(U) et q−1(V ), j1 : π1(q

−1(U ∪ V )) → π1(q
−1(U)) et

j2 : π1(q
−1(U ∪ V )) → π1(q

−1(V )) sont des isomorphismes. Donc,
d’après le théorème de Van Kampen on a le diagramme commutatif
suivant :

G

π1(q
−1(U))

k1 //

'

33ffffffffffffffffffffffffffffff
π1(q

−1(U ∩ V ))

h

88pppppppppppp

π1(q
−1(U ∪ V ))

'

OO

'
//

k0
55llllllllllllll
π1(q

−1(V ))

k2

OO '

AA�������������������

Par conséquent, k1 et k2 sont aussi des isomorphismes (admettent h
comme “réciproque”)
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Donc, on a finallement : π1(q
−1(U)) ' π1(q

−1(U ∩ V )) = π1(SOm(R)).
Or, on a vu que π1(q

−1(U)) ' π1(SOm−1(R)) et π1(SOm−1(R)) ' Z/2Z
par hypothèse de récurrence. Donc π1(SOm(R)) ' Z/2Z.

Corollaire 1.2.23. π1(O2(R), 1) ' Z,
π1(Om(R), 1) ' Z/2Z pour m > 3.

Par ailleurs, en faisant agir l’espace SUm(C) sur la sphère S
2m−1, on démontre

de façon analogue le théorème suivant :

Théorème 1.2.24. Le groupe SUm(C) est simplement connexe pour m > 0.

Corollaire 1.2.25. Pour tout m > 1, π1(Um(C), 1) ' Z.

Démonstration. C’est immédiat, en considérant l’homéomorphisme : Um(C) '
{λIm|λn ∈ U}× SUm(C) ' S1 × SUm(C) (où U désigne l’ensemble des nom-
bres complexes de module 1).

Par la même méthode que pour le calcul du groupe fondamental de SOm(R)
et SUm(C), on peut détrerminer le groupe fondamental de Sp(n) = Spn(C)∩
U2n(C)

Théorème 1.2.26. Pour n > 1, le groupe topologique Sp(n) est simplement
connexe.

En effet, on peut montrer que Sp(n) ' On(H) = {M ∈ Mn(H)|tM̄M =
1} où H est le corps des quaternions, et pour q = x + yi + zj + tk ∈ H,
q̄ = x− yi− zj − tk. En faisant alors agir cet espace sur S4n−1, on démontre,
comme pour SUm(C), que Sp(n) est simplement connexe. Nous sommes
à présent en mesure de déterminer les groupes fondamentaux des groupes
topologiques GLn(R) et GLn(C) en utilisant la décomposition polaire. Voici
un tableau donnant les résultats obtenus :
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Espace topologique Décomposition polaire

GLn(R) GLn(R) ' On(R)× R
n(n+1)

2

GLn(C) GLn(C) ' Un(C)× Rn2

SLn(R) SLn(R) ' SOn(R)× R
n2+n−2

2

SLn(C) SLn(C) ' SUn(C)× Rn2−2

Spn(R) Spn(R) ' Un(C)× Rn(n+1)

Spn(C) Spn(C) ' Sp(n)× R4n2

On(C) On(C) ' On(R)× R
n(n−1)

2

Op,q(R) Op,q(R) ' Op(R)×Oq(R)× Rpq

Up,q(C) Up,q(C) ' Up(C)× Uq(C)× R(p+q)2

Ainsi, pour pouvoir déterminer les groupes fondamentaux de ces groupes nous
avons seulement besoin des groupes fondamentaux de On(R), SOn(R), Un(C),
SUn(C), Sp(n) que nous avons déjà déterminé. Les voici regroupés dans un
tableau :

Espace topologique Groupe fondamental
O2(R) Z

SO2(R) Z

On(R), n > 3 Z/2Z
SOn(R), n > 3 Z/2Z
Un(C), n > 1 Z

SUn(C), n > 1 {1}
Sp(n) {1}

1.3 Quelques exemples illustratifs

Voici à présent quelques exemples plus visuels de calculs de groupes fonda-
mentaux.

1.3.1 Le tore

Nous savons que le tore T2 est défini comme le produit S1×S1. Par conséquent,
d’après la proposition 1.2.1, π1(T

2) ' π1(S
1)× π1(S

1) ' Z× Z.
Ce groupe fondamental admet donc deux générateurs. Les lacets c et c′ qui
engendrent le groupe fondamental sont assez simples à visualiser sur le dessin
ci-dessous :
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c

c’

Figure 1.2: Les lacets c et c′ engendrent π1(T
2)

Ce groupe a pour présentation : 〈a, b | aba−1b−1 = 1〉.
On peut retrouver ce résultat de la façon suivante :

Le groupe de présentation 〈a, b | aba−1b−1 = 1〉 peut être représenté par
le dessin ci-dessous :

a

b

b

a

Si l’on “recolle” les deux côtés du carré correspondant au générateur a (c’est
possible car les deux flèches se superposent), on obtient alors le cylindre
suivant :

b

b

a
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Enfin, si l’on “recolle” les deux cercles correspondant au générateur b (ici
encore les flèches se superposent), on retrouve alors le tore T2.

b

a

Voyons à présent un exemple où le calcul du groupe fondamental peut parâıtre
moins évident : le tore épointé.

Comme nous l’avons fait précédemment, nous pouvons visualiser sur une
figure que le tore privé d’un point p admet (au moins) 3 lacets distincts (de
base un point donné) que l’on nomme c1, c2, c3 :

p

c1

c2 c3

Ceci nous permet de supposer que le groupe fondamental du tore épionté est
engendré par 3 éléments. Quelle(s) relation(s) existe-t-il entre ces éléments?
Nous allons vérifier, par une méthode analogue à celle utiliser pour construire
le tore, que le groupe fondamental du tore épointé a pour présentation :
〈a, b, c | [a, b]c = 1〉 où [a, b] = aba−1b−1.
Ce groupe peut en effet être représenté par le dessin suivant :

a

b

c

a

b
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On peut recoller les arêtes a entre elles. Une telle manipulation a pour effet
de déformer l’une des arêtes b en un cercle, et de superposer deux arêtes b et
c. Puis on transforme ces deux arêtes en des cercles en les “tordant dans le
même sens”. On obtient successivement les figures suivantes :

a

b

b

c
a

b

b

c

Par la suite, on peut “réduire le cercle c à un point” et “étirer l’arête a”, de
façon à obtenir une surface dont les contours sont indiqués en pointillés (ces
manipulations ne changeront pas le groupe fondamental de l’objet, car la
figure initiale est alors un rétracte par déformation de la figure finale) Enfin,
en joignant les deux cercles b, on retrouve bien le tore épointé.

��
��
��

��
��
��

b
b

b
a

c

c

le groupe fondamental de cet objet est donc π1(X) ' G où G est le groupe de
présentation 〈a, b, c | [a, b]c = 1〉 où [a, b] = aba−1b−1 (qui est aussi le groupe
libre engendré par deux éléments : F{a,b}).

On peut le visualiser d’une autre manière : Le tore épointé peut être vu
comme un tore percé d’un trou. Ce trou peut être agrandit et déformé (la
figure obtenu sera un rétracte par déformation de la figure initiale), sans que
cela ne modifie le groupe fondamental de la surface. Plus précisément on
agrandit le trou jusqu’à obtenir une réunion de deux anneaux, par le procédé
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suivant :

��
��
��
��
��

��
��
��
��
����������������������

���
���
���
���

����
��
��
��

Chaque anneau peut être réduit à un cercle. Tout revient donc à calculer le
groupe fondamental de deux cercles ( de groupe fondamental Z) reliés entre
eux par un point (simplement connexe). Donc, d’après le théorème de Van
Kampen, le groupe fondamental du tore épointé est le produit libre Z ? Z,
c’est-à-dire, le groupe libre engendré par deux éléments F{a,b}.

Voici, une troisième méthode pour retrouver le groupe fondamental du tore
épointé :
Considèrons a et b et c les lacets suivants :

a

b

c

p

On peut déformer le lacet c en le faisant tourner autour du tore dans le sens
inverse de b :
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p

On le déforme ensuite en le faisant tourner dans le sens inverse de a, et on
obtient le lacet suivant :

p a
b

On remarque alors que le lacet obtenu est engendré par les lacets a et b. Plus
précisément, c’est le lacet bab−1a−1. Mais c’est aussi le lacet c déformé, donc
le même lacet à homotopie près.
On a donc la relation : c = bab−1a−1, et donc on retrouve bien [a, b]c = 1
Essayons de généraliser pour le tore privé de n points :

On peu “découper” une partie du tore contenant les n trous. Le tore privé
de n points est alors la réunion des deux espaces X1 et X2 ci-dessous :

X2

����
����
����
����
����

����
����
����
����
����

X1
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L’espace X2 est un plan privé de n points. Son groupe fondamental est alors
le groupe libre engendré par n éléments c1, ..., cn.
L’espace X1 est le tore privé d’un point (où l’on a “élargi” le trou). Son
groupe fondamental est donc engendré par a, b, c avec pour relation [a, b]c =
1.
Le lacet c est représenté ci-dessous :

�
�
�
�

X1

c

Mais c’est aussi un lacet de X1 ∩ X2 , donc ce lacet est homotope au lacet
c sur X2, qui est homotope au lacet c1c2...cn. (d’après le théorème de Van
Kampen) Comme le montre le dessin ci-dessous :

c
c1

c4

c3

c2

c5

Ainsi, par le théorème de Van Kampen, on conclut que le groupe fondamen-
tal du tore privé de n points est :
〈a, b, c1, c2, ...cn | [a, b]c1c2...cn = 1〉

Nous allons à présent analyser le cas d’une surface de genre 2, et nous com-
parerons alors les résultats obtenus avec ceux du tore.

1.3.2 Une surface de genre 2

Comme nous l’avons fait pour le tore, nous pouvons remarquer qu’une surface
de genre 2 admet (au moins) 4 type de lacets distincts c1, c2, c3, c4 représentés
en pointillés sur la figure ci-dessous :
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c1 c3

c2

c4

C’est pourquoi on peut supposer que le groupe fondamental d’une surface de
genre 2 admet 4 générateurs a1, b1, a2, b2.
On montre alors qu’une surface de genre 2 a un groupe fondamental de
présentation : 〈a1, b1, a2, b2 | [a1, b1][a2, b2] = 1〉 où [a, b] = aba−1b−1.
Un tel groupe peut être représenté ainsi :

a1

a2

b2

a2

b2 b1

a1

b1

En supperposant les arêtes a1 et les arêtes a2, et en transformant les arêtes
b1 et b2 en cercles (comme nous l’avons fait pour le tore épointé), on obtient
le dessin ci-dessous :
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a1a2

b1b2

b2 b1

Et finalement, en recollant les cercles b1 et b2 entre eux, on retrouve bien une
surface de genre 2.

b2
b1

Une autre manière de retrouver le groupe fondamental d’une surface de genre
2 est d’utiliser le théorème de Van Kampen, en coupant la suface en deux
tores privés d’un point.
Nous allons développer cette méthode dans le cas un peu plus général d’une
surface de genre 2 privée de n points :

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��
��

��
��
��
��

�
�
�

�
�
�

On commence par ramener tous les trous du même côté de la surface (c’est
possible par déformation). Puis, on coupe la suface en deux parties, comme
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sur le dessin ci-dessous :
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a1

c c
a2

b2b1

On obtient alors à gauche un tore privé d’un point dont le groupe fondamen-
tal est engendré par les lacets a1, b1 et c, avec pour relation [a1, b1]c = 1.
A droite on obtient un tore privé de n+1 points dont le groupe fondamental
est engendré par les lacets a2, b2, le lacet c′, et par n autres lacets c1, ..., cn
(un lacet pour chaque point que l’on avait retiré initialement à la surface de
genre 2), avec pour relation [a2, b2]c

′c1...cn = 1, donc c′ = [a2, b2]
−1c−1

n ...c−1
1 =

[b2, a2]c
−1
n ...c−1

1

Par le théorème de Van Kampen, le groupe fondamental de la surface de
genre 2 privée de n points est alors le produit libre des groupes 〈a1, b1, c |
[a1, b1]c = 1〉 et 〈a2, b2, c′, c1, c2, ...cn | c′ = [a2, b2]

−1c−1
n ...c−1

1 〉, quotienté par
la relation c = c′ (en effet, c et c′ sont les mêmes lacets sur l’intersection des
deux surfaces, donc ce sont les mêmes sur la surface de genre 2 d’après le
théorème de Van Kampen).
On obtient le groupe 〈a1, b1, a2, b2, c1, c2, ...cn | [a1, b1][b2, a2]−1c−1

n ...c−1
1 = 1〉,

que l’on peut encore écrire, quitte à changer les notations : 〈a1, b1, a2, b2, c1, c2, ...cn
| [a1, b1][a2, b2]c1...cn = 1〉.

On calculerai de même le groupe fondamental d’une surface de genre 3 privée
de n points :
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Il suffit pour cela de ramener tous les trous au milieu, puis de découper la
figure comme ci-dessous, et il ne reste plus qu’à appliquer le théorème de Van
Kampen.
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On trouve alors pour groupe fondamental 〈a1, b1, a2, b2, a3, b3, c1, c2, ...cn |
[a1, b1][a2, b2][a3, b3]c1...cn = 1〉.

On peut généraliser tout ceci en montrant par récurrence sur g que le groupe
fondamental d’une surface de genre g est 〈a1, b1, a2, b2, ..., ag, bg | [a1, b1][a2, b2]...[ag, bg] =
1〉, et que le groupe fondamental d’une surface de genre g privée de n points a
pour groupe fondamental 〈a1, b1, a2, b2, ..., ag, bg, c1, ..., cn | [a1, b1][a2, b2]...[ag, bg]c1...cn =
1〉.

Voyons à présent un dernier exemple : la bouteille de Klein.

1.3.3 La bouteille de Klein

Le groupe fondamental de la bouteille de Klein est le groupe de présentation
: 〈a, b | aba−1b = 1〉.
Voici pour nous en convaincre :

Le groupe 〈a, b | aba−1b = 1〉 peut être représenté par le dessin suivant :

a

b

b

a

Comme nous l’avions fait dans le cas du tore, nous pouvons recoller les arêtes
a entre elles, pour obtenir le cylindre suivant :

31



b

b

a

Par la suite, on peut déformer la figure de la façon suivante :

b

b b

b

Et finalement, en recollant les deux cercles b, on retrouve bien la bouteille de
Klein.
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Chapitre 2

Revêtements

2.1 Définitions et constructions des revêtements

Définition 2.1.1. Soit B un espace topologique. Un revêtement de B est
la donnée d’un espace topologique E et d’une application continue p : E → B
tels que :
Pour tout b ∈ B, il existe un voisinage V de b, un espace discret non vide F ,
et un homéomorphisme Φ : p−1(V ) → V ×F tel que le diagramme ci-dessous
soit commutatif (où p1 : V × F → V est l’application : (y, f) 7→ y) :

p−1(V )
Φ //

p
##F

FF
FF

FF
FF

V × F

p1
||xx
xx
xx
xx
x

V

On dit alors que :

• p : E → B (ou parfois E) est un revêtement de B,

• B est la base du revêtement,

• E est l’espace total,

• p est la projection (c’est une application nécessairement surjective),

• p−1(b) est la fibre au-dessus du point b de B,

• V est un voisinage distingué de b,

• Φ est une trivialisation de p au-dessus de V .
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Par ailleurs, on dit que le revêtement p : E → B est connexe (resp. com-
pact, simplement connexe,...) si l’espace total E est connexe (resp. compact,
simplement connexe,...).

Exemple 2.1.1. Un premier exemple très simple de revêtement est l’application
R → R, x→ λx où λ ∈ R∗ (C’est un homéomorphisme ).
Un autre exemple est le revêtement de C∗ donné par f : C → C∗, z 7→ e2iπz,
qui induit même un revêtement de S1 : f |R : R → S1.
Un troisième exemple est la projection p : Sm → PmR, pour m > 2 qui est
un revêtement de PmR ' Sm/{−1,+1}.

On dit qu’un revêtement p : E → B est trivial lorsqu’il existe une trivi-
alisation de p au-dessus de B tout entier.

Définition 2.1.2. Soient E et B deux espaces topologiques. Soit p : E → B
une application continue. Une section de p au-dessus d’un sous espace A
de B est une application continue s : A→ E telle que p ◦ s = IdA.

Voici à présent une proposition caractérisant les revêtements d’un espace
B au moyen de sections au dessus des voisinages distingués :

Proposition 2.1.1. Soit B un espace topologique. Une application continue
p : E → B est un revêtement si et seulement si pour tout b ∈ B, il existe un
voisinage V de b et une famille non vide si(V ) de sections de p au-dessus de
V satisfaisant les propriétés suivantes :

1. pour tout i ∈ I, si(V ) est un ouvert de p−1(V ),

2. si(V ) ∩ sj(V ) = Ø,

3. p−1(V ) =
⋃

i∈I si(V ).

Démonstration. Voir [G].Chapitre VII.2.2.

Théorème 2.1.2. Si p : E → B est un revêtement, et si B est connexe,
alors toutes les fibres p−1(b) ont même cardinal. Si ce cardinal est un entier
m, on dit que E est un revêtement à m feuillets de B.
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Démonstration. Voir [G].Chapitre VII.2.3.

Nous allons à présent considérer le cas où des groupes discrets agissent sur
des espaces topologiques. Nous verrons alors que ces actions nous permet-
tront d’exhiber des revêtements d’espaces homogènes.

Définition 2.1.3. Soit G un groupe topologique discret opérant sur un espace
topologique X. On dit que l’action est :

• libre si pour tout x ∈ X, Gx = StabG(x) = {e}.

• propre si pour tout compact K de X, l’ensemble GK = {g ∈ G|gK ∩
K 6= Ø} est relativement compact dans G (cette condition est toujours
satisfaite lorsque G est compact, ou lorsque G est discret et GK fini
pour tout compact K de X.

Théorème 2.1.3. Soit G un groupe discret opérant proprement et librement
sur un espace localement compact E, et soit p la projection de E sur l’espace
E/G des orbites de G. L’application p : E → E/G est alors un revêtement.

Démonstration. Voir [G].Chapitre VII.3.1.

Ce théorème nous permet de donner quelques exemples de revêtements non
triviaux :

Exemple 2.1.2. • Si l’on considère l’action naturelle de Zm sur Rm, la
projection p : Rm → Rm/Zm est un revêtement du tore Tm ' Rm/Zm.

• Si l’on note U ⊂ S1 le groupe des racines n-èmes de l’unité agissant na-
turellement sur S1, la projection p : S1 → S1/U est alors un revêtement.
Par ailleurs, l’application h : S1/U → S1, [z] 7→ zn est bien définie et
c’est un homéomorphisme. L’application qn := h ◦ p : S1 → S1, z 7→ zn

est donc un revêtement. Nous verrons à la fin de la section 3.1 que tous
les revêtements connexes de S1 sont ou bien de cette forme, ou bien le
revêtement p : R → R/Z ' S1 défini précédemment.

• L’homèomorphisme Pm(R) ' Sm/{−1,+1} nous donne un revêtement
p : Sm → Pm(R) de l’espace projectif Pm(R).
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Nous sommes donc en mesure d’exhiber des revêtements connexes de
certains espaces topologiques, mais pouvons-nous les trouver tous? Com-
ment classifier les revêtements connexes d’un espace topologique donné? La
réponse à cette question sera donnée par le théorème 3.1.12.
Pour le cercle, il est assez naturel de penser que les seuls revêtements sont
donnés par le cercle lui même et par les droites du plan. Cela devient moins
évident en revanche si l’on demande de classifier les revêtements connexes
d’un objet tel que la bouteille de Klein. Nous serons pourtant en mesure de
le faire grâce au théorème 3.1.12.

Voici à présent une proposition généralisant le théorème 2.1.3 dans le cas
où l’espace topologique E considéré est localement connexe et localement
compact :

Proposition 2.1.4. Soit G un groupe discret opérant proprement et libre-
ment sur un espace E localement connexe et localement compact, et soit H
un sous-groupe de G. La projection canonique q : E/H → E/G est alors un
revêtement.

Démonstration. Voir [G].Chapitre VII.3.4.

À présent que nous avons une idée de ce qu’est un revêtement, nous al-
lons introduire la notion de morphisme de revêtement :

Définition 2.1.4. Soit p : E → B et p′ : E ′ → B deux revêtements. Un
morphisme du revêtement E dans le revêtement E ′ est un couple (H, h)
d’applications continues H : E → E ′ et h : B → B′ telles que p′ ◦H = h ◦ p.
Autrement dit, le diagramme ci-dessous est commutatif :

E
H //

p

��

E ′

p′

��
B

h
// B′

On dit aussi que H : E → E ′ est un morphisme au-dessus de h, et plus
simplement un morphisme lorsque B = B′ et h = IdB.

Voici un premier exemple de morphisme de revêtement :
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Exemple 2.1.3. Considérons les revêtements qn : S1 → S1, z 7→ zn vus
précédemment. Soient n,m, r, s ∈ N∗ tels que nr = ms. Le couple (qr, qs)
est alors un morphisme du revêtement qn : S1 → S1 dans le revêtement
qm : S1 → S1. On a en effet qr ◦ qn(z) = znr = zms = qm ◦ qs(z).

Définition 2.1.5. Soit p : E → B et p′ : E ′ → B deux revêtements. Soit
(H, h) un morphisme de E dans E ′.
On dit que (H, h) est un isomorphisme de revêtements lorsque H et h sont
des homéomorphismes (le couple (H−1, h−1) est alors un isomorphisme de E ′

sur E).

Théorème 2.1.5. Soit p′ : E ′ → B′ un revêtement, et soit h une application
continue d’un espace B dans B′. Il existe un revêtement p : E → B et une
application continue H : E → E ′ ayant les propriétés suivantes :

• (H, h) est un morphisme de revêtements,

• si q : D → B est un revêtement de B, et si K est un morphisme de
revêtements de D dans E ′ au-dessus de h, il existe un unique mor-
phisme de revêtements L : D → E tel que K = H ◦ L.

De plus le revêtement E est alors unique à isomorphisme près. On l’appelle
le revêtement image réciproque de E ′ par h, et on le note souvent h∗E ′.

Ce théorème signifie que le diagramme suivant est commutatif :

D
K

''PP
PPP

PPP
PPP

PPP
P

q

��/
//
//
//
//
//
//
//

L

  @
@@

@@
@@

@

E
H //

p

��

E ′

p′

��
B

h
// B′

Démonstration (de l’existence de E, p,H). On cherche à déterminer un es-
pace E et des applications continues p et H telles que le diagramme suivant
commute :

E
H //

p

��

E ′

p′

��
B

h
// B′
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On construit alors E à partir de B, E ′, h et p′ : On pose alors E = {(b, x′) ∈
B × E ′|h(b) = p′(x′)}. Puis, on définit p : E → B comme la projection
(b, x′) 7→ b, et H : E → E ′ comme la projection (b, x′) → x′. On a alors
p′ ◦H(b, x′) = p′(x′) = h(b) = h ◦ p(b, x′).

On montre ensuite que p : E → B est un revêtement : soit b ∈ B, on
note b′ = h(b) ∈ B′. Puisque p′ : E ′ → B′ est un revêtement, il existe un
voisinage distingué V ′ de b′, un espace discret F , et une trivialisation de p′

au-dessus de V ′, notée Φ′ : p′−1(V ′) → V ′ × F . Notons p2 : V ′ × F → F la
projection sur F .
Soit alors V := h−1(V ′), et Φ : V ⊂ B×E ′ → V ×F , (a, x′) 7→ (a, p2(Φ

′(x′)).
Φ est alors une trivialisation de p au-dessus de V . p : E → B est donc bien
un revêtement.

Enfin, si l’on considère q : D → B un autre revêtement de B. et K : D → E ′

un morphisme de revt̂ements, on vérifie que L : D → E, x 7→ (q(x), K(x))
est le seul morphisme de revêtements tel que K = H ◦ L.

�

Voici quelques exemples de construction de revêtement image réciproque :

Exemple 2.1.4. 1. Prenons B′ = R, E ′ = R, p′ : x 7→ λx où λ ∈ R∗,
B = R2 et h : (x, y) 7→ x.
Le revêtement image réciproque est alors h∗E ′ = {((x, y), z) ∈ R2 ×
R|x = λz}. h∗E ′ est donc le plan de R3 d’équation x = λz.

2. Un exemple moins trivial de revêtement image réciproque est le cas où
B′ est le tore T2 = S1×S1, B le cylindre R×S1, et E ′ le cylindre S1×R,
avec p′ : (x, θ) 7→ (x, e2iπθ) et h : (θ′, y) 7→ (e2iπθ

′
, y). Le revêtement

image réciproque de E ′ est le plan R2 :
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H //

p

��

p′��

h
//

En effet, E = {((θ′, y), (x, θ)) ∈ (R × S1) × (S1 × R)|x = e2iπθ
′
, y =

e2iπθ} = {((θ′, e2iπθ), (e2iπθ′, θ))|θ, θ′ ∈ R} ' R2

3. Considérons le cas où B′ = S1 ' R/Z et B = S1 ' R/2Z, h : z → z2

et où E ′ est la bande de Moebius, c’est-à-dire l’ensemble [0, 1] × [0, 1]
où l’on identifie les points (0, y) et (1, 1− y). Un revêtement du cercle
est alors donné par p′ : E ′ → S1, [(x, y)] 7→ e2iπx. Le revêtement image
réciproque de E ′ est alors “la bande de Moebius tordue deux fois” :

H //

p
��

p′
��

h
//

Nous allons à présent introduire la notion d’automorphisme de revêtements:

Définition 2.1.6. Soit p : E → B un revêtement. Un automorphisme du
revêtement E est un isomorphisme H de E dans lui-même.

Dans ce qui va suivre, nous noterons Aut(E) l’ensemble des automor-
phismes d’un revêtement E.
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Cet ensemble est muni de la composition des applications continues est alors
un groupe.
Ce groupe Aut(E) agit alors continûment sur chaque fibre p−1(b) de E.

Voici un théorème utile :

Théorème 2.1.6. Soient p : E → B et p′ : E ′ → B′ deux revêtements et
h : B → B′ une application continue. Si E est connexe, deux morphismes de
E dans E ′ au-dessus de h qui cöıncident en un point sont égaux.

Démonstration. Voir [G].Chapitre VII.6.4.

Ce théorème permet en particulier d’établir le résultat suivant qui permet de
déterminer le groupe des automorphismes de certains revêtements.

Corollaire 2.1.7. Soit G un groupe discret opérant librement et proprement
sur un espace topologique E connexe et locallement compact. Le groupe des
automorphismes du revêtement p : E → E/G est alors isomorphe à G.

Démonstration. Voir [G] Chapitre VII.6.6.

La définition de ce groupes des automorphismes va alors nous permettre
d’introduire les revêtements galoisiens :

2.2 Revêtements galoisiens

Définition 2.2.1. Un revêtement p : E → B est dit galoisien si :

• E est connexe,

• Aut(E) agit transitivement sur chaque fibre p−1(b), où b ∈ B.

On dit aussi que E est un revêtement galoisien de groupe G = Aut(E).

Lorsque E est un revêtement galoisien, on peut montrer que la projection
π : E → E/Aut(E) est un homéomorphisme.

Remarque 2.2.1. Lorsque G est un groupe discret opérant proprement et
librement sur un espace E connexe et localement compact, le revêtement p :
E → E/G est un revêtement galoisien de groupe G.
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D’après cette remarque, les revêtement de l’exemple 2.1.2 sont alors tous
galoisiens.

Ce terme de revêtements galoisien n’est pas sans rapport avec la notion
d’extensions galoisiennes dans la théorie de Galois. Nous verrons apparâıtre
tout au long de ce chapitre certaines similitudes entre les résultats de la
théorie des revêtments et ceux de la théorie de Galois. L’origine de ces simil-
itudes sera d’ailleurs explicitée dans la partie 2.

Rappelons-nous que la théorie de Galois permet d’établir une correspondance
entre les sous-extensions d’une extension galoisienne et les sous-groupes du
groupe de Galois de cette extension. Qu’en est-il pour les revêtements ga-
loisien ?

Nous allons introduire la notion de revêtement associé à un revêtement ga-
loisien E,

Considèrons un revêtement galoisien de groupe G, et soit F un espace dis-
cret sur lequel G opère à gauche. On peut alors montrer que pour g ∈ G,
g : (x, f) 7→ (gx, gf) est une action continue, libre et propre du groupe G
sur l’espace E × F . Par conséquent, d’après le théorème 2.1.3, la projection
πF : E×F → (E×F )/G est un revêtement. Notons alors EF = (E×F )/G.

On construit une application pF : EF → B une application continue telle
que le diagramme suivant commute :

E × F
p1 //

πF
��

E

p

��
EF pF

// B

Cette application pF est alors bien définie et unique. En effet, si (x, f) ∈
E × F , (x′, f ′) = (gx, gf), et posons b = p(x). Puisque G agit sur la fibre
au-dessus de b, on a p(x′) = p(gx) = b. On a alors p ◦ p1(x′, f ′) = p(x′) =
b = p(x) = p ◦ p1(x, f). Donc, si [x, f ] désigne l’orbite de (x, f), l’application
pF : [x, f ] 7→ p ◦ p1(x, f) est bien définie, et elle est unique par construction.

On peut même démontrer que cette application est un revêtement. Il suffit
pour cela de considérer un point b ∈ B, x ∈ p−1(b), V un voisinage distingué
de b (pour le revêtement p : E → B) et s une section de p au-dessus de V
telle que s(b) = x. On peut alors vérifier que la famille des σf : V → EF ,
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y 7→ πF (s(y), f), pour f ∈ F , est une famille de sections vérifiant les hy-
pothèses de la proposition 2.1.1.

Définition 2.2.2. Le revêtement pF : EF → B est appelé le revêtement

de fibre F associé au revêtement galoisien p : E → B.

Remarque 2.2.2. Un exemple de revêtement associé à un revêtement ga-
loisien p : E → B de groupe G est donné par pG/H : EG/H → B, où H est
un sous-groupe de G.
De plus, ce revêtement est isomorphe au revêtement qH : E/H → B, [x] →
p(x) (qui est bien défini car G, donc H agit sur les fibres p−1({p(x)})), via
le morphisme h : E/H → EG/H , [x] → [(x,H)].

On commence ici à remarquer une correspondance entre les sous-groupes
de G et les revêtements associés. La proposition suivante établit cette corre-
spondance :

Proposition 2.2.1. Si EF est un revêtement connexe associé à un revêtement
galoisien E, alors EF est isomorphe à un revêtement du type qH : E/H → B,
où H est le stabilisateur d’un point de F .

Démonstration. Voir [G].Chapitre VIII.3.3.

Plus précisément, on a le théorème suivant :

Théorème 2.2.2. Soit p : E → B un revêtement galoisien de groupe G.

1. L’ensemble des classes d’isomorphismes de revêtement connexes as-
sociés à E est en bijection avec l’ensemble des classes de sous-groupes
conjugués de G.

2. Un revêtement connexe associé à E est galoisien si et seulement s’il cor-
respond à un sous-groupe normal de H de G. Son groupe d’automorphisme
est alors isomorphe au groupe quotient G/H.

Signalons que la bijection donnée en 1) est l’application [E/H ] 7→ [H ]
(de réciproque [H ] 7→ [E/H ]) où [E/H ] est la classe d’isomorphisme du
revêtement E/H (connexe) associé àE (pour plus de détails, voir [G].Chapitre
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VIII.4.7). La proposition 2.2.1 assure que tout revêtement associé est bien
isomorphe à un tel groupe.

Cette correspondance nous rappelle bien la correspondance de Galois en-
tre les sous-extensions d’une extension galoisienne et les sous-groupes de son
groupe de Galois.
Grâce à ce théorème , nous pouvons à présent déterminer les revêtements as-
sociés à un revêtement galoisien d’un espace B de groupe G, en déterminant
les sous-groupes de G.
Ajoutons à cela une proposition parfois bien utile :

Proposition 2.2.3. Si p : E → B est un revêtement galoisien de B, alors
un revêtement connexe q : D → B est isomorphe à un revêtement associé à
E si et seulement s’il existe un morphisme de revêtements de E sur D.

Démonstration. Voir [G].Chapitre VIII.2.7.

Nous allons à présent introduire la définition d’un revêtement galoisien par-
ticulier : le revêtement universel.

Définition 2.2.3. Un revêtement universel d’un espace B est un revêtement
galoisien p : E → B tel que tout revêtement de B soit isomorphe à un
revêtement associé à E.

Les revêtement universel sont particulièrement intéressants à étudier,
étant donné que leurs revêtements connexes sont tous isomorphes à des
revêtements connexes associés que nous pourrons identifier grâce au théorème
2.2.2. En somme, les revêtements universels d’un espace B sont des revêtements
qui nous permettrons de déterminer tous les revêtements connexes de B.

Cependant une question subsiste : comment déterminer le groupe d’un revêtement
galoisien ?
La partie qui va suivre va répondre à ce problème : elle nous permettra de
faire le lien entre le groupe d’un revêtement galoisien et les groupes fondamentaux
des espaces topologiques considérés.
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Chapitre 3

Revêtements et groupes
fondamentaux

3.1 Groupes fondamentaux des revêtements

Définition 3.1.1. Soient p : E → B et h : X → B deux applications
continues. Un relèvement de h est une application continue H : X → E
telle que p ◦H = h, c’est-à-dire telle que le diagramme suivant commute :

E

p
��

X
h

//

H

>>}}}}}}}
B

Remarquons que cette définition correspond bien à la définition d’un
relèvements des lacets dans S1 donnée dans le lemme 1.2.7.

Lorsque p : E → B est un revêtement, les relèvements de h sont partic-
ulièrement intéressants à étudier. En effet on a la proposition suivante :

Proposition 3.1.1. Soient p : E → B un revêtement et h : X → B une
application continue. Si X est connexe, deux relèvements de h qui cöıncident
en un point sont égaux.

Démonstration. Voir [G].Chapitre VII.6.3.

Proposition 3.1.2. 1. Pour tout chemin c : I → B d’origine b ∈ B, et
pour tout point x ∈ p−1(b), il existe un unique relèvement γ : I → E
tel que γ(0) = x.
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2. Soient c, c′ deux chemins d’origine b ∈ B ayant même extrémité et
soient γ, γ′ leurs relèvements d’origine x ∈ p−1(b). Si c et c′ sont
homotopes, γ et γ′ ont même extrémité et sont homotopes.

Démonstration.

1. Si c : I → B est un chemin d’origine b, l’unicité du relèvement γ
tel que γ(0) = x est un corollaire immédiat de la proposition 3.1.1.
La démonstration de l’exitence d’un tel relèvement, utilise le lemme
suivant :

Lemme 3.1.3. Tout revêtement du segment I = [0, 1] est trivial.

(Pour une démonstration de ce lemme, voir [G].Chapitre IX.2.1.)
Soit q : D → I le revêtement image réciproque de E par c : I → B, et
soit C le morphisme de D dans E au-dessus de c. Le revêtement D est
trivial d’après le lemme, donc il existe une section s de q au-dessus de
I telle que s(0) = (0, x). Le chemin γ = C ◦ s est alors un relèvement
de c tel que γ(0) = x.

2. La démonstration de la seconde assertion est analogue : voir [G].Chapitre
IX.2.2.

�

Dans le cas particulier où les chemins c et c′ sont des lacets de base b, nous
pouvons reformuler cette proposition de la façon suivante :

La première assertion signifie que pour un lacet c sur B de base b donné
on peut construire un unique chemin γ sur E d’origine x ∈ p−1(b) fixée, tel
que c = p ◦ γ.

La deuxième assertion se traduit par le fait que si c et c′ sont deux lacets
ayant même classe d’homotopie ([c] = [c′], alors les chemins γ et γ′ construits
ont même classe d’homotopie ([γ] = [γ′]). En particulier, si l’on se donne [γ]
et [γ′] deux classes d’homotopie de lacets sur E telles que p?([γ]) = p?([γ

′])
alors [γ] = [γ′].

On commence alors à entrevoir le lien entre le groupe fondamental de B
et celui de son revêtement E :

Théorème 3.1.4. Soit p : E → B un revêtement, et soient x ∈ E et
b = p(x). Le morphisme p? : π1(E, x) → π1(B, b) est injectif.
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Voici un premier exemple simple pour illustrer ce théorème :

Exemple 3.1.1. Nous savons qu’un revêtement du cercle S1 est donné par
p : R → S1. On remarque que π1(R) ' {1} s’injecte naturellement dans
π1(S

1) ' Z.

On peut se demander pour quels revêtements le morphisme p? est un
isomorphisme. La réponse est donnée par le lemme suivant (dans le cas où
E est connexe par arcs) :

Lemme 3.1.5. Soit p : E → B un revêtement connexe par arcs de B, et
soit x ∈ E et b = p(x). Le morphisme p? : π1(E, x) → π1(B, b) est un
isomorphisme si et seulement si p est un homéomorphisme.

Démonstration. Voir [G].Chapitre IX.3.1.

Dans toute la suite de cette section nous allons supposer que B est un espace
connexe et localement connexe par arcs.

Proposition 3.1.6. Soient p : E → B et p′ : E ′ → B deux revêtements
connexes de B, b ∈ B, x ∈ p−1(b), x′ ∈ p′−1(b). Il existe un morphisme h de
E dans E ′ tel que h(x) = x′ si et seulement si p?π1(E, x) ⊂ p′?π1(E

′, x′).
Ce morphisme est alors un isomorphisme si et seulement si p?π1(E, x) =
p′?π1(E

′, x′).

Démonstration. Voir [G].Chapitre IX.3.5.

On comprend que si l’on considère le cas particulier où E = E ′, on voit
apparâıtre une condition sur les groupes p?π1(E, x) et p

′
?π1(E

′, x′) pour qu’il
existe un automorphisme de E tel que x = x′. Ceci constitue donc une
première approche du lien entre les groupes fondamentaux des revêtements
et le groupe des automorphismes.

Théorème 3.1.7. Soit p : E → B un revêtement connexe, x ∈ E, b = p(x),
et soit N le normalisateur de p?π1(E, x) dans π1(B, b). Il existe un (unique)
morphisme h de N sur le groupe Aut(E) des automorphismes de E ayant la
propriété suivante :
si c est un lacet de base b dans B tel que [c] ∈ N , et si γ est le relèvement
de c, d’origine x dans E, alors h([c])(x) = γ(1).
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Démonstration.(de l’existence de h) Posons y = γ(1) et soit [c] ∈ N .
D’après la proposition 3.1.2, y ne dépend que de la classe d’homotopie de c,
et on a par ailleurs : p?π1(E, y) = [c]−1(p?π1(E, x))[c] (cf proposition 1.1.7)
Or, [c]−1(p?π1(E, x))[c] = p?π1(E, x) (car [c] ∈ N) On a donc p?π1(E, y) =
p?π1(E, x), et donc, d’après la proposition 3.1.6, il existe un unique automor-
phisme h([c]) de E tel que h([c]) = y.

Nous avons donc construit l’application h : N → Aut(E), et c’est bien
un morphisme : en effet, si c, c′ sont deux lacets de base b dans B tels
que [c], [c′] ∈ N , et γ, γ′ leurs relèvements d’origine x. On vérifie alors que
γ(h([c])γ′) est le relèvement de cc′ d’origine x. On a alors h([c][c′])(x) =
h([cc′])(x) = h([c])γ′(1) = h([c])h([c′])(x).
Par conséquent, (par unicité de l’automorphisme de E transformant x en
γ(h([c])γ′)(1)) on a h([c][c′]) = h([c])h([c′]).
h est donc bien un morphisme.

�

Remarque 3.1.1. On peut remarquer que le noyau du morphisme h est
p?π1(E, x). De plus, il est facile de voir que h est surjectif : en effet, si k est
un automorphisme de E, il existe un chemin γ joignant x à k(x) dans E, et
on vérifie alors que k = h([p ◦ γ]) et [p ◦ γ] ∈ N . (Pour plus de détails voir
[G].Chapitre IX.4.1.)

On comprend alors que si E est un revêtement connexe de B, et si
p?π1(E, x) est distingué dans π1(B, b) pour tout b ∈ B et x ∈ p−1(b), alors
N = π1(B, b),et donc h induit un isomorphisme de groupes de π1(B, b)/p?π1(E, x)
sur Aut(E). Or pour tous x, y ∈ p−1(b), on considère un lacet [c] dont le
relèvement admet x et y pour extrémités, et on a dans ce cas : h([c])(x) = y,
donc Aut(E) agit transitivement sur chaque fibre p−1(b). Le revêtement E
est donc galoisien.

Ainsi, si E est connexe et p?π1(E, x) est distingué dans π1(B, b), alors E
est galoisien. La réciproque est vraie et facile à vérifier (cf [G]. Chapitre
IX.4.3).
Le théorème suivant résume tout ceci :

Théorème 3.1.8. Soit p : E → B un revêtement connexe.
E est un revêtement galoisien si et seulement si pour tout b ∈ B et tout
x ∈ p−1(b), p?π1(E, x) est distingué dans π1(B, b).
Si c’est le cas, on a alors l’isomorphisme Aut(E) ' π1(B, b)/p?π1(E, x).
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Démonstration. Voir [G].Chapitre IX.4.3.

Ainsi d’une part ce thórème nous donne une condition nécéssaire et suff-
isante pour qu’un revêtement connexe soit galoisien (il existe d’ailleurs une
condition analogue pour qu’une sous-extension d’une extension galoisienne
soit galoisienne, nous la rappellerons dans la section suivante), et d’autre
part, elle nous donne un moyen d’identifier le groupe d’un revêtement ga-
loisien en considérant les groupes fondamentaux des espaces E et B.
C’est plus simple encore dans le cas où E est simplement connexe, car alors,
on a le corollaire immédiat suivant :

Corollaire 3.1.9. Si p : E → B est un revêtement connexe, et si E est
simplement connexe, alors p : E → B est un revêtement galoisien de groupe
G isomorphe à π1(B, b).

En particulier, si G est un groupe discret agissant proprement et libre-
ment sur un espace E localement compact, localement connexe par arcs et
simplement connexe, alors on en déduit que le groupe fondamental de E/G
est isomorphe à G. On peut alors se servir de cette propriété pour calculer le
groupe fondamental d’un espace topologique donné. Voici quelques exemples:

Exemple 3.1.2. 1. Le revêtement du tore p : Rm → Tm ' Rm/Zm nous
donne π1(T

m) ' Zm.

2. p : Sm → PmR est un revêtement simplement connexe pour m > 2. Par
conséquent on retrouve l’isomorphisme annoncé à la fin de la section
1.2.4 à savoir π1(P

mR) ' Z/2Z pour m > 2.

3. Le groupe Z/nZ agit (proprement et librement) sur la sphère S2m+1 par
: k̄.(z1, ..., zm+1) = (ζkz1, ..., ζ

kzm+1), où la sphère S2m+1 est considérée
comme l’ensemble des éléments de Cm+1 de norme 1, et ζ est une racine
primitive nème de l’unité. Si on note L2m+1

n := S2m+1/(Z/nZ) l’espace
lenticulaire de dimension 2m+ 1 et de groupe Z/nZ le revêtement p :
S2m+1 → L2m+1

n est simplement connexe, et donc π1(L
2m+1
n ) ' Z/nZ.

Remarque 3.1.2. L’intérêt de ceci est qu’à présent, nous sommes en mesure
de déterminer un espace topologique ayant pour groupe fondamental un groupe
abélien de type fini G donné. En effet, nous savons qu’un tel groupe peut
sécrire sous la forme G ' Zm × Z/n1Z× ...× Z/nrZ.
On sait que le groupe fondamental du tore Tm de dimension m (produit
de m exemplaires du cercle S1) π1(T

m) ' Zm, et que pour tout entier n,
π1(L

2m+1
n ) ' Z/nZ.

L’espace Tm×(L2m+1
n1

)×...×(L2m+1
nr

) admet donc G pour groupe fondamental.
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Ainsi, les revêtements simplements connexes d’un espaces B connexe et
localement connexe par arcs est un revêtement galoisien dont on peut facile-
ment déterminer le groupe d’automorphismes.
Si nous revenons à présent à notre problème de classification des revêtements,
nous avions, à la fin de la section précédente que les revêtements universels
permettent de retrouver tous les revêtements connexes d’un espace B à partir
des sous-groupes du groupe d’automorphisme.
Le revêtement “idéal” que nous aimerions avoir pour classifier les revêtements
connexes d’un espace B connexe et localement connexe par arcs serait donc
un revêtement universel simplement connexe. Mais c’est en réalité beaucoup
plus simple que cela car on a la proposition suivante :

Proposition 3.1.10. Tout revêtement simplement connexe de B est un
revêtement universel.

Démonstration. Si q : D → B est un revêtement connexe de B, d’après
la proposition 3.1.6, il existe un morphisme de E sur D, et ceci implique que
D est isomorphe à un revêtement associé à E d’après la proposition 2.2.3.

La réciproque de cette proposition est aussi vraie (voir [Sp]).
Les revêtements universels de B sont donc exactement les revêtements sim-
plements connexes de B. La question est donc à présent de savoir : dans
quels cas l’espace B admet-il un revêtement universel?
Pour répondre à cette question, nous allons à présent introduire la notion
d’espace semi-localement simplement connexe.

Définition 3.1.2. Un espace B est semi-localement simplement connexe si
: pour tout b ∈ B, il existe un voisinage Vb de b tel que tout lacet de base b
dans Vb soit homotope dans B au lacet constant cb.

On a alors le théorème suivant :

Théorème 3.1.11. Un espace B connexe et localement connexe par arcs
possède un revêtement universel si et seulement s’il est semi-localement sim-
plement connexe.

Voici une idée de la construction du revêtement universel lorsque B est
connexe, localement connexe par arcs et semi-localement simplement con-
nexe.
On commence par recouvrir B par des ouverts V dont tous les lacets sont
homotopes au lacet constant (c’est possible car B est semi-localement sim-
plement connexe).
On fixe b ∈ B et on note E l’ensemble des classes d’homotopies des chemins
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d’origine b dans B.
Soit p : E → B l’application définie par : p([c]) = c(1)
Pour tout V , on fixe bV ∈ V et on note FV := p−1(bV ) (que l’on considère
comme un espace discret). p : E → B est alors un revêtement de B dont
les voisinages distingués sont les V , et les trivialisations sont donnée par
les applications ΦV : p−1(V ) → V × FV , [c] 7→ (p([c]), [γ]) de réciproque
(x, [γ]) 7→ [γλ] pour b ∈ V fixé (où γ est un chemin joignant b à bV et λ un
chemin joignant bV à c(1) tels que [c] = [γλ]).
On montre enfin que le revêtement p : E → B est simplement connexe, donc
universel (cf. [G].Chapitre IX.5.3).

On peut alors donner le théorème suivant :

Théorème 3.1.12. Soit B un espace connexe, localement connexe par arcs
et semi-localement simplement connexe; et b ∈ B fixé.

• L’espace B possède un revêtement simplement connexe p : E → B.
Ce revêtement est un revêtement universel de B, et le groupe G =
Aut(E) des automorphismes de E est isomorphe au groupe fondamental
π1(B, b).

• Si H est un sous-groupe de G, alors qH : E/H → B est un revêtement
connexe de B, et il est galoisien si et seulement si H est distingué dans
G (et on a alors Aut(E/H) ' G/H).

• Réciproquement, si q : D → B est un revêtement connexe de B, alors
il est isomorphe à qH : E/H → B, (où H est le stabilisateur d’un point
x de q−1(b), et c’est alors un sous-groupe de G).

• Deux revêtements qH : E/H → B et qK : E/K → B sont isomorphes
si et seulement si H est K sont conjugués dans G.

Ce théorème permet donc de classifier les revêtements connexes de B à
isomorphisme près.

Appliquons ce résultat au cas du cercle S1 et de la bouteille de Klein :

Exemple 3.1.3. • Nous savons que : π1(S
1) ' Z.

Les sous-groupes de Z sont les nZ où n ∈ N.
Un revêtement simplement connexe de S1 est donné par la projection :
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p : R → S1, θ 7→ e2iπθ. Les revêtements connexes de S1 sont donc tous
isomorphes à un revêtement qnZ : R/nZ → S1, [θ] 7→ e2iπθ, qui n’est
autre que le revêtement qn : S1 → S1, z 7→ zn.

• Notons B la bouteille de Klein que l’on définit comme l’espace homogène
: R2/G où G est le groupe 〈a, b | bab = a〉, où a : (x, y) 7→ (−x, y + 1)
et b : (x, y) 7→ (x+ 1, y).
Les éléments de G s’écrivent alors de manière unique ambn avec m,n ∈
Z.

Déterminons les sous-groupes de G : on peut vérifier qu’ils sont tous
de la forme Hm,n = (ambn) ou de la forme Km,n,p = (ambn, bp) avec
m 6= 0, p > 0 et 0 6 n < p. On vérifie alors que Km,n,p et Hm,n sont
distingués dans G si et seulement si m et pair (les revêtements corre-
spondants seront alors galoisiens).

L’espace Em,n = R2/Hm,n est homéomorphe au cylindre S1×R pour m
pair, et à la bande de Moebius pour m impair .
L’espace Em,n,p = R2/Km,n,p est homéomorphe au tore T2 pour m pair,
et à la bouteille de Klein pour m impair.

Les seuls revêtements de B à isomorphisme près sont donc le cylin-
dre S1 × R, le tore T2, la bande de Moebius, et la bouteille de Klein
B.

3.2 Quelques rappels de théorie de Galois

Dans ce qui suit K désigne un corps isomorphe à un sous-corps de C.

Définition 3.2.1. Une extension de K de degré fini n est une K-algèbre
L, qui soit un K-espace vectoriel de dimension finie n. On note [L : K] = n
la dimension de L sur K, aussi appelée degré de L sur K.

Proposition 3.2.1. Soit L une extension de K.
Soit x ∈ L.
On note alors K[x] := {P (x)|P ∈ K[X ]} et K(x) := {F (X)|F ∈ K(X)}.
On est dans l’un des cas suivant.

• Ou bien l’une des conditions équivalentes suivantes est vérifiée :

1. [K(x) : K] < +∞
2. Il existe un polynôme unitaire P ∈ K[X ] tel que P (x) = 0.
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3. Il existe un polynôme irréductible unitaire de degré fini noté Px,K ∈
K[X ] tel que Px,K(x) = 0. Le polynôme Px,K est alors unique
et est appelé le polynôme minimal de x sur K et on a alors
[K(x) : K] = deg(Px,K)

4. K[x] = K(x)

x est alors dit algébrique sur K.

• Ou bien [K(x) : K] = +∞, et on dit alors que x est transcendant
sur K.

Remarque 3.2.1. Tout comme nous avons définiK(x), on peut définir, pour
x, y ∈ L, K[x, y] = {P (x, y)|P ∈ K[X, Y ]} = K[x][y]. Plus généralement en-
core, pour x1, x2, ..., xn : K[x1, x2, ..., xn] = {P (x1, x2, ..., xn)|P ∈ K[X1, X2, ..., Xn]}

Définition 3.2.2. Soit P un polynôme unitaire de degré n de K[X ] et soient
x1, x2, ..., xn ses racines dans une clôture algébrique de K (comptées avec
multiplicité).
Un corps de décomposition de P est une extension L de K de degré fini
telle que L = K[x1, x2, ..., xn].

Proposition 3.2.2. Soit L/K une extension de K de degré fini et GL/K son
groupe de Galois. Les assertions suivantes sont équivalentes :

1. LGL/K = K,

2. Pour tout x ∈ L, toute les racines de Px,K sont dans L,

3. L est un corps de décomposition d’un polynôme P de K[X ],

4. [L : K] = |G|.

Si l’une de ces propositions est vérifiée on dit alors que L/K est une exten-

sion galoisienne de K.

Lemme 3.2.3 (Artin). Soit L/K une extension galoisienne de K (de degré
fini). Soit H un sous-groupe fini de GL/K . On note LH := {x ∈ L|σ(x) =
x, ∀σ ∈ H}.
L’extension L/LH est alors une extension galoisienne de groupe de Galois H
et on a donc [L : LH ] = |H|.

Théorème 3.2.4 (Correspondance de Galois). Soit L/K une extension ga-
loisienne de K de groupe de Galois GL/K.
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• Si H est un sous-groupe de GL/K, alors L
H/K est une sous-extension

de L/K et elle est galoisienne si et seulement si H est distingué dans
GL/K (et on a alors GLH/K ' GL/K/H).

• Réciproquement, si E/K est une sous-extension de L/K, alors E =
LH , (où H = GL/E, qui est un sous-groupe de G).

Remarque 3.2.2. On peut reformuler la correspondance de Galois de la
façon suivante : On a la correspondance biunivoque entre l’ensemble E des
sous-extensions E/K de L (i.e. les extensions de K incluses dans L) et
l’ensemble G des sous-groupes de GL/K donnée par l’application :

• φ : E → G, E 7→ GL/E

• Sa réciproque est ψ : G → E , H 7→ LH .

De plus, si l’on considère l’action de GL/K sur E donnée par GL/K × E ,
(σ, E) 7→ σ(E), ainsi que l’action de GL/K sur G : GL/K × G, (σ,H) 7→
σHσ−1, les bijections φ et ψ sont alors compatibles avec ces actions.
C’est-à-dire, si E ∈ E , σ ∈ GL/K, alors GL/σ(E) = σGL/Eσ

−1, et si H ∈ G,
σ(LH) = LσHσ

−1

3.3 Revêtements/extensions de corps

Lors des sections précédentes, nous avons mis l’accent sur les similitudes que
nous avons pu rencontrer entre les résultats de la théorie des revêtements et
de la théorie de Galois.
Ces similitudes ont ici été regroupées dans le tableau suivant : on y voit ap-
parâıtre à gauche les objets et théorèmes de la théorie de Galois (cf. section
précèdente), et à droite les objets et théorèmes correspondants de la théorie
des revêtements.
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Théorie de Galois Revêtements
Extension L d’un sous-corps K de C Revêtement p : E → B

Extension galoisienne L de K Revêtement galoisien p : E → B de B
Sous-extensions E de L/K Revêtements associés pF : EF → B

Groupe de galois d’une extension Groupe des automorphismes d’un
galoisienne L : GL/K = AutK(L) revêtement galoisien E : G = Aut(E)

Correspondance de Galois : Correspondance :
H ⊂ GL/K 7→ LH H ⊂ G 7→ (qH : E/H → B)
Si H ⊂ GL/K , alors Si H ⊂ G, alors

(LH/K est galoisienne) ⇔ (H C GL/K) (qH : E/H → B est galoisien) ⇔ (H C G)
et GLH/K ' GL/K/H et Aut(E/H) ' G/H

Cette comparaison peut parâıtre pour le moins surprenante, et nous seri-
ons en droit de nous demander s’il n’existe pas un lien direct entre ces deux
théories.
En fait, c’est bien le cas, et ce lien sera détaillé dans la partie suivante, dans
le cas des revêtements des surfaces de Riemann.
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PARTIE II

SURFACES DE RIEMANN
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Mise en bouche

Le but de cette partie est d’utiliser les résultats obtenus dans la partie
précédente pour répondre au problème inverse de Galois. Dans son arti-
cle Groupe de Galois sur Q, Jean-Pierre Serre expose le problème suivant
(cf. [S]):
étant donné un groupe G de type fini, existe-t-il une extension galoisienne
finie E de Q dont le groupe de Galois Gal(E/Q) soit isomorphe à G?

Dans le cas où G est un groupe abélien fini, le problème admet bien des
solutions :

On suppose que G est un groupe abélien fini. On sait alors que G s’
écrit sous la forme

∏r
i=1 Z/niZ. Or d’après le théorème de la progression

arithmétique de Dirichlet, il existe une infinité de nombres premiers pi con-
grus à 1 modulo ni (pour tout i). Par conséquent, il existe une famille (pi)
de nombres premiers distincts tels que (Z/piZ)

∗ contienne un sous-groupe
isomorphe à Z/niZ. On a alors un morphisme surjectif φ de (Z/pZ)∗ dans
∏r

i=1 Z/niZ = G où p désigne le produit p =
∏r

i=1 pi. Soit L le corps cyclo-
tomique sur Q engendré par les racines peme de l’unité. Son groupe de Galois
est alors isomorphe à (Z/pZ)∗. Or, (Z/pZ)∗/Ker(φ) ' G. Mais par la cor-
respondance de Galois, ceci est le groupe de Galois de l’extension LKer(φ).
D’où le résultat.

Dans le cas où G est un groupe non abélien, c’est beaucoup plus difficile.
Une méthode efficace consiste à se ramener à l’étude des extensions de Q(T )
(corps des fractions rationnelles sur Q).
Si ET est une extension galoisienne finie de Q(T ), de groupe de Galois G
d’ordre n. ET est alors un corps de décomposition d’un certain polynôme
PT (X) = Xn + an−1(T )X

n−1 + ...+ a0(T ) ∈ Q(T )[X ] irréductible sur Q(T ).
Le théorème d’irréductibilité de Hilbert assure l’existence d’une infinité de
rationnels t ∈ Q tels que Pt(X) = Xn+an−1(t)X

n−1+ ...+a0(t) ∈ Q[X ] soit
irréductible. Choisissons un tel rationnel t.
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L’algèbre Et[X ] := Q[X ]/(Pt[X ]) est alors une extension galoisienne de degré
n sur Q et de groupe de Galois G.

Ainsi lorsqu’on a une extension galoisienne de Q(T ) de groupe de Galois
G fini, on peut en déduire l’existence d’une extension galoisienne de Q de
groupe de Galois G.

Pour faire le lien avec la théorie des revêtements, nous devrions identifier
Q(T ) à l’ensemble des fractions rationnelles sur P1Q. Mais cet ensemble
à une géométrie compliquée, voilà pourquoi, pour simplifier, nous allons
plonger P1Q dans P1C, et nous nous intéresserons alors exclusivement au
cas des extensions finies de C(T ).

Le problème devient alors : pour un groupe fini G fixé, existe-t-il des ex-
tensions galoisiennes de C(T ) de groupe de Galois G?

Une solution à ce problème consiste à utiliser la correspondance entre la
théorie des revêtement des surfaces de Riemann et la théorie de Galois. Plus
précisément, nous allons voir dans le chapitre 6 que si l’on a revêtement ga-
loisien de la sphère de Riemann P1 (voir 4.1.1) de groupe d’automorphisme
G, on peut en déduire l’existence d’une extension galoisienne de C(T ) de
groupe de Galois G.
Nous ramènerons donc le problème à : pour un groupe de type fini G donné
existe-t-il un revêtement galoisien de P1 dont le groupe de Galois est G?

Pour construire un tel revêtement commençons par donner une présentation
de G : Supposons que G admette n générateurs et posons F := F{a1,...,an}

le groupe libre engendré par n éléments. On construit alors un morphisme
surjectif f : F → G de noyau H := ker(f). On a alors G ' F/H .
Posons à présent X := P1 \ {z1, ..., zn+1} la sphère de Riemann privée de
n + 1 points. Le groupe fondamental de cette surface est alors π1(X) ' F
(signalons au passage que dans son exposé, Jean-Pierre Serre identifie plutôt
π1(X) au groupe engendré par n + 1 éléments c1, ..., cn+1 avec la relation
c1...cn+1 = 1, ce qui finalement revient bien à notre groupe libre F engendré
par n éléments). D’après la partie I, on sait qu’il existe un revêtement uni-
versel X̃ de X , et on a alors Aut(X̃) ' F .

Par ailleurs, H = ker(f) est distingué dans F . Il suffit donc de prendre
l’espace homogène X̃/H pour obtenir un revêtement galoisien p : X̃/H → X
de groupe Aut(X̃/H) ' F/H ' G.
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Nous déterminóns donc ainsi un revêtement galoisien de P1 \{z1, ..., zn+1} de
groupe G. Nous aimerions alors pouvoir le prolonger en un revêtement ga-
loisien de P1 de groupe G. Nous verrons dans le chapitre 5 que c’est possible
(dans un cadre plus général).

Le chapitre 6 nous permettra alors d’établir une correspondance entre les
revêtements galoisiens de P1 et les extensions galoisiennes de M(P1) l’algèbre
des fonctions méromorphes sur P1 (voir chapitre 4).
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Chapitre 4

Revêtements des surfaces de
Riemann

4.1 Surfaces de Riemann

Pour définir les surfaces de Riemann, nous devons avant tout introduire les
notions suivantes :

Définition 4.1.1. Une variété de dimension n est un espace topologique
séparé X tel que tout point x ∈ X admet un voisinage homéomorphe à un
ouvert de Rn.

Définition 4.1.2. Soit X une variété de dimension 2.

• Une carte complexe sur X est un homéomorphisme φ : U → V d’un
ouvert U de X sur un ouvert V de C.

• Deux cartes complexes φ1 : U1 → V1 et φ2 : U2 → V2 sont dites holo-

morphiquement compatibles si l’application : φ2 ◦ φ−1
1 : φ1(U1 ∩

U2) → φ2(U1 ∩ U2) est biholomorphe.

• Un atlas complexe sur X est un ensemble A = {φi : Ui → Vi, i ∈ I}
de cartes complexes holomorphiquement compatibles et dont les ouverts
recouvrent X :

⋃

i∈I Ui = X.

• Deux atlas complexes A et A′ sont analytiquement équivalents

si toute carte de A est holomorphiquement compatible avec n’importe
quelle carte de A′. La relation “être analytiquement équivalent à” est
une relation déquivalence sur l’ensemble des atlas complexes sur X.
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Figure 4.1: cartes complexes

• Une structure complexe sur X est une classe d’équivalence d’atlas
complexes sur X analytiquement équivalents.

Nous avons à présent tous les éléments nécessaires pour définir les surfaces
de Riemann :

Définition 4.1.3. Une surface de Riemann est un couple (X,Σ), où X
est une variété de dimension 2 connexe et Σ une structure complexe sur X.

Par la suite nous utiliserons la notation X pour désigner une surface de
Riemann, lorsque la structure complexe dont elle est munie est claire.
Voici quelques exemples simples de surfaces de Riemann :

Exemple 4.1.1. • Le plan complexe est clairement une surface de Rie-
mann (dont la seule carte complexe est l’identité sur C).

• La sphère de Riemann P1 := C ∪ {∞} est une surface de Riemann.

En effet on munit P1 de la topologie suivante : les ouverts de P1

sont les ouverts de C et les ensembles du type V ∪ {∞} où V est le
complémentaire d’un compact dans C (La sphère de Riemann munie
de cette topologie est alors compacte). On peut recouvrir P1 par les
ouverts U1 := C et U2 := C∗ ∪ {∞}, et on définit les cartes complexes

φ1 : U1 → C, z 7→ z et φ2 : U2 → C, z 7→
{

1
z

si z ∈ C

0 si z = ∞ . De plus

U1 et U2 sont connexes, donc P1 est bien connexe.
Remarquons bien que cette définition de la sphère de Riemann n’est pas
la même que celle donnée par la projection stéréographique : en effet,
si la projection d’un point sur la sphère S3 à partir du pôle nord N nous
donne un point z, la projection de ce même point à partir du pôle sud
S donne le point 1/z (et non le point 1/z).
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Figure 4.2: projection stéréographique

• Les tores : Soient w1, w2 ∈ C. On définit Γ := Zw1 + Zw2. Un tel
ensemble est appelé un réseau (voir dessin ci-dessous). L’espace ho-
mogène C/Γ muni de la topologie quotient est une surface de Riemann.

En effet si l’on considère un ouvert V de C qui ne contient pas de
paire de points équivalents (par exemple les voisinages V1, V2, V3 sur le
dessin) alors U := π(V ) (où π : C → C/Γ est la projection canonique)
est un ouvert de C/Γ, et on peut recouvrir cet espace par de tels ou-
verts. Puisque les V n’admettent pas de paire de points équivalents, on
peut définir les cartes φ : U → V (réciproques de π|V ), et on munit
ainsi l’espace C/Γ d’une structure complexe. De plus, puisque C est
connexe, C/Γ est connexe.

L’espace C/Γ est appelé tore car on a un homéomorphisme f : C/Γ →
S1 × S1 défini par f(λw1 + µw2) = (e2iπλ, e2iπµ) pour tous λ, µ ∈ R.

Nous allons à présent définir les fonctions holomorphes sur une surface
de Riemann donnée à valeurs dans C .

Définition 4.1.4. Soit X une surface de Riemann et Y un ouvert de X.
Une fonction f : Y → C est dite holomorphe si, pour toute carte complexe
φ : U → V sur X, la fonction f ◦ φ−1 : φ(U ∩ Y ) ⊂ C → C est holomorphe
(au sens usuel). On notera O(Y ) l’ensemble des fonctions holomorphes sur
Y .

Remarquons qu’en particulier, les cartes complexes sur X sont holomor-
phes sur leur ensemble de définition. On définit ensuite les fonctions holo-
morphes d’une surface de Riemann dans une autre :
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Figure 4.3: exemple de réseau

Définition 4.1.5. Soient X et Y deux surfaces de Riemann.
Une application continue f : X → Y est dite holomorphe si pour tout
couple de cartes φ1 : U1 → V1 sur X et φ2 : U2 → V2 sur Y , avec f(U1) ⊂ U2

l’application φ2 ◦ f ◦φ−1
1 : V1 ⊂ C → V2 ⊂ C est holomorphe (au sens usuel).

Une application f : X → Y est biholomorphe si elle est bijective et si f ,
f−1 sont holomorphes.
On dit que deux surfaces de Riemann X et Y sont isomorphes s’il existe
une application biholomorphe de X dans Y .

Exemple 4.1.2. Soient Γ := Zw1 + Zw2 et Γ′ := Zw′
1 + Zw′

2 deux réseaux.
Soit a ∈ C∗ tel que aΓ ⊂ Γ′.
L’application C → C, z 7→ az induit une application holomorphe f : C/Γ →
C/Γ′, [z] 7→ [az].

En effet, si φ : U → V et φ′ : U ′ → V ′ sont des cartes telles que f(U) ⊂ U ′

respectivement sur C/Γ et C/Γ′, on a alors φ−1 = π|V donc : ∀z ∈ V
φ′ ◦ f ◦ φ−1(z) = φ′ ◦ f([z]) = φ′([az]) = az + k1w

′
1 + k2w

′
2 où k1 et k2 sont

des entiers fixés indépendants de z ∈ V . On remarque que cette application
est bien holomorphe, donc f est holomorphe.

Voici un premier résultat sur les fonctions holomorphes d’une surface de
Riemann dans une autre surface de Riemann

Théorème 4.1.1. Soient X et Y deux surfaces de Riemann et f1, f2 : X →
Y sont deux applications holomorphes qui cöıcident sur un ensemble A ⊂ X
qui admet un point limite a ∈ X.
Alors, f1 et f2 cöıcident sur X.

Nous pouvons également définir les fonctions méromorphes sur une sur-
face de Riemann :
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Définition 4.1.6. Soit X une surface de Riemann et Y un ouvert de X.
Une fonction méromorphe sur Y est une fonction holomorphe f : Y ′ → C

sur un ouvert Y ′ ⊂ Y tel que :

1. Y \ Y ′ ne contient que des points isolés.

2. Pour tout point p ∈ Y \ Y ′ on a limx→p|f(x)| = ∞
Les points de Y \ Y ′ sont les pôles de f .
L’ensembles des fonctions méromorphes sur Y sera noté M(Y ).

Remarque 4.1.1. Pour une surface de Riemann X donnée, l’ensemble
M(X) des fonctions méromorphes sur X forme un corps.

Exemple 4.1.3. L’application f : z 7→
{

1
z

si z ∈ C

0 si z = ∞ est holomorphe sur

l’ouvert C∗ ∪ {∞} de P1. (immédiat car c’est une carte sur P1). On peut la
prolonger en une fonction méromorphe sur P1. En effet, limz→0|1z | = ∞.

Plus généralement, les homographies z 7→ az+b
cz+d

, avec ad − bc 6= 0, sont holo-
morphes (au sens usuel) sur {z ∈ C|cz + d 6= 0}. Ces fonctions peuvent être
prolongées en des fonctions méromorphes sur P1.

Un autre exemple de fonction méromorphe est la fonction ℘ de Weier-
strass:

Exemple 4.1.4. Soit Γ = w1Z+w2Z un réseau. La fonction de Weierstrass
est la fonction définie par

℘Γ(z) =
1

z2
+

∑

γ∈Γ\{0}

(

1

(z − γ)2
− 1

γ2

)

. Elle est méromorphe sur C, et ses pôles sont les points de Γ.
En effet, on remarque que la série converge absolument et normalement sur
chaque compact de C\Γ (les termes de la séries étant majorés par |γ|−3). La
fonction est alors holomorphe sur C \ Γ. Il est clair que limz→γ|f(z)| = ∞
pour tout γ ∈ Γ. ℘ est donc méromorphe sur C.

Nous allons à présent étudier les propriétés des fonctions holomorphes sur
des surfaces de Riemann. Nous verrons que l’on retrouve sensiblement les
mêmes résultats que pour les fonctions holomorphes au sens usuel.

Théorème 4.1.2 (des singularités de Riemann). Soit U un ouvert d’une
surface de Riemann et soit a ∈ U et f ∈ O(U \ {a}) bornée sur un voisinage
de a. f peut alors être prolongée en une fonction f̃ ∈ O(U). On dit alors
que a est une singularité apparente.
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Démonstration. Voir [F].Chapitre1.1.8.

Théorème 4.1.3. Soit X une surface de Riemann et f ∈ M(X). Pour
chaque pôle p on définit f(p) := ∞. f : X → P1 est alors une application
holomorphe.
Réciproquement, si f : X → P1 est une application holomorphe, alors ou bien
f est identiquement égale à ∞, ou bien f−1(∞) est un ensemble de points
isolés et f : X \ f−1(∞) est une fonction holomorphe sur X.

Démonstration. Voir [F].Chapitre1.1.15.

Exemple 4.1.5. L’exemple 4.1.3 illustre parfaitement cette situation : f :

P1 \ {0} , z 7→
{

1
z

si z ∈ C

0 si z = ∞ est une fonction méromorphe sur P1. Si

l’on pose f(0) = ∞, alors f : P1 → P1 est bien une fonction holomorphe
(elle est même biholomorphe : on a f ◦ f = IdP1)

Théorème 4.1.4. Soient X et Y deux surfaces de Riemann et soit f : X →
Y une application holomorphe non constante. Soit a ∈ X et b := f(a).
Alors, il existe k ∈ N∗ et des cartes φ : U → V sur X, et ψ : U ′ → V ′ sur Y
telles que :

1. a ∈ U , φ(a) = 0, b ∈ U ′, ψ(b) = 0,

2. f(U) ⊂ U ′,

3. L’application F := ψ ◦ f ◦ φ−1 : V → V ′ est donnée par F (z) = zk

pour tout z ∈ V . On appelle k la multiplicité au point a. On peut
caractériser cet entier ainsi : c’est l’entier k tel que pour tout voisinage
U0 de a, il existe un voisinage U ⊂ U0 de a et un voisinage V de b tel
que pour tout y ∈ V , f−1(y) ∩ U contient k éléments.

Démonstration. Voir [F].Chapitre1.2.1.

Exemple 4.1.6. Dans l’exemple 4.1.5, tous les points de P1 ont pour multi-
plicité 1. En effet, si nous reprenons les ouverts U1 et U2 ainsi que les cartes
φ1 et φ2 de l’exemple 4.1.1 on a :

• Si z ∈ C, alors z ∈ U1 et φ2 ◦ f ◦ φ−1
1 (z) = z.
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• Si z = ∞, alors z ∈ U2 et φ1 ◦ f ◦ φ−1
2 (z) = z.

Un autre exemple est le cas d’une fonction polynôme f : z 7→ zn+an−1z
n−1+

... + a0 de C dans C prolongée en une fonction holomorphe f̃ : P1 → P1 en
posant f(∞) = ∞. ∞ a pour multiplicité k.

Voici à présent quelques corollaires de ce théorème :

Corollaire 4.1.5. Soient X et Y deux surfaces de Riemann et soit f : X →
Y une application holomorphe non constante. f est alors ouverte, c’est-à-
dire, l’image par f de tout ouvert de X est un ouvert de Y .

Démonstration. Voir [F].Chapitre1.2.4.

Corollaire 4.1.6. Soient X et Y deux surfaces de Riemann et soit f : X →
Y une application holomorphe injective. f est alors une application biholo-
morphe de X sur f(X).

Démonstration. Voir [F].Chapitre1.2.5.

Corollaire 4.1.7 (Principe du maximum). Soit X une surface de Riemann
et f : X → C une application holomorphe non constante. Le module de f
n’atteint pas sa borne supérieure.

Démonstration. Voir [F].Chapitre1.2.6.

Théorème 4.1.8. Soient X et Y deux surfaces de Riemann. On suppose que
X est compact. soit f : X → Y une application holomorphe non constante.
Y est alors compact et f est surjective

Démonstration. Voir [F].Chapitre1.2.7.

Dans le cas particulier où Y = C, puisque C n’est pas compact, on en déduit
le corollaire suivant :

Corollaire 4.1.9. Soit X une surface de Riemann compacte. Toute appli-
cation holomorphe f : X → C est constante.

Démonstration. Voir [F].Chapitre1.2.8.
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4.2 Revêtements des surfaces de Riemann

Définition 4.2.1. Soient X et Y deux surfaces de Riemann, et p : Y → X
une application holomorphe non constante.
Un point y ∈ Y est appelé point de ramification de p s’il n’existe aucun
voisinage V de y tel que p|V soit injective .
On dira que l’application p est non ramifiée si elle n’admet pas de point de
ramification.

On a une caractérisation des applications non ramifiées donnée par le
théorème suivant :

Théorème 4.2.1. Soient, X et Y deux surfaces de Riemann.
Une application holomorphe non constante p : Y → X est non ramifiée si et
seulement si c’est un homéomorphisme local.

Démonstration. Voir [F].Chapitre1.4.4.

Voici quelques exemples :

Exemple 4.2.1. • Soit k > 2 et soit pk : C → C, z 7→ zk. Le point 0
est alors un point de ramification de pk (et c’est le seul). L’application
p|C∗ est alors non ramifiée.

• L’application exp : C → C∗ est holomorphe et non ramifiée.

Remarque 4.2.1. D’après le théorème 4.1.4, le résultat du premier exemple
nous permet d’affirmer que, X et Y sont des surfaces de Riemann, et p : Y →
X une application holomorphe non constante, un point y ∈ Y est un point
de ramification si et seulement si f prend la valeur x := f(y) en y avec
multiplicité k > 2.

Nous allons à présent reprendre les notions étudiée dans la partie précédente,
et voir quels résultats nous obtenons dans le cadre des Surfaces de Riemann.
Nous verrons entre autre que nous nous intéresserons plus particulièrement
aux revêtements holomorphes de surfaces de Riemann par des surfaces de
Riemann (donc des revêtements connexes) .

Avant tout, nous allons donner un résultat qui généralise la proposition 3.1.2:

Théorème 4.2.2. Soient X et Y deux espaces topologiques séparés, p : Y →
X un revêtement de Y .
Si Z un espace connexe, localement connexe par arcs et simplement connexe,
et f : Z → X une application continue, alors pour tout z ∈ Z et y ∈ Y
tels que f(z) = p(y), il existe un unique relèvement f̃ : Z → Y de f tel que
f̃(z) = y
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Démonstration. Voir [F].Chapitre1.4.17.

Voici à présent un premier résultat concernant les relèvements d’applications
holomorphes non ramifiées.

Théorème 4.2.3. Soient X, Y et Z des surfaces de Riemann.
Si p : Y → X est une application holomorphe non ramifiée et f : Z →
X une application holomorphe, alors tout relèvement g : Z → Y de f est
holomorphe.

Démonstration. Voir [F].Chapitre1.4.9.

Un exemple simple qui illustre cette situation est le logarithme d’une fonction
:

Exemple 4.2.2. On considr̀e une surface de Riemann simplement connexe
X. Etant donnée une application holomorphe f : X → C∗, on cherche à
déterminer un logarithme de f , c’est-à-dire une fonction F : X → C holo-
morphe telle que f = exp(F ), donc telle que le diagramme suivant commute:

C

exp
��

X
f //

F

>>||||||||
C∗

Par conséquent chercher F revient à chercher un relèvement holomorphe de
f .

Or, exp : C → C∗ est un revêtement de C∗, donc d’après le théorème 4.2.2,
un unique relèvement F : X → C tel que F (x) = z pour tout choix de (x, z)
tels que f(x) = ez.

Mais d’autre part, exp : C → C∗ est holomorphe et non ramifiée, donc
d’après le théorème 4.2.3, chacun de ces relèvements est holomorphe.

Ainsi, toute application f holomorphe sur une surface de Riemann simple-
ment connexe à valeurs dans C∗ admet localement un logarithme.

Nous allons à présent introduire les applications propres entre espaces
topologiques.

Définition 4.2.2. Soient X et Y deux espaces localement compacts.
Une application f : X → Y est propre si, pour tout K ⊂ X compact,
f−1(K) est compact.
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Remarque 4.2.2. Une application propre est nécessairement fermée.

Lemme 4.2.4. Soient X et Y deux espaces localement compacts et p une
application propre et discrète. Alors pour tout point x ∈ X l’ensemble p−1(x)
est fini.

Démonstration. Voir [F].Chapitre1.4.21.

Théorème 4.2.5. Soient X et Y deux espaces localement compact.
Si p : Y → X est homéomorphisme local propre, alors p : Y → X est un
revêtement.

Démonstration. Voir [F].Chapitre1.4.22.

Appliquons ce théorème aux surfaces de Riemann (qui sont des espaces lo-
calement compacts) Considérons deux surfaces de Riemann X et Y , et soit
f : X → Y une application propre holomorphe non constante.
L’ensemble A des points de ramifications de f est fermé et discret (cf. théorème
4.1.4). Puisque f est propre, B := f(A) est également fermé et discret. On
appelle B l’ensemble des valeurs critiques de f .

Si l’on note Y ′ := Y \B et X ′ := X \ f−1(B) ⊂ X \ A.
L’application f |X′ : X ′ → Y ′ est alors une application propre holomorphe
non ramifiée, et le théorème précédent nous permet de conclure que c’est un
revêtement non ramifié de Y ′.

Avant d’aller plus loin, donnons quelques exemples de revêtements non ram-
ifiés :

Exemple 4.2.3. • exp : C → C∗ est un revêtement holomorphe de C∗,
et c’est même son revêtement universel (C étant simplement connexe).

• Soit Γ = w1Z + w2Z un réseau dans C. La projection canonique p :
C → C/Γ nous donne alors le revêtement universel du tore complexe
C/Γ. Son groupe d’automorphisme est alors Aut(C/Γ) ' Γ ' Z × Z

(on retrouve bien le groupe fondamental du tore).

Dans la section qui va suivre nous allons développer l’exemple des revêtements
non ramifié du disque unité privé d’un point et nous verrons alors qu’il est
possible de prolonger ce revêtement en un revêtement ramifié du disque unité.
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4.3 Revêtements du disque unité

Dans cette section on notera D le dique unité (i.e. D = {z ∈ C||z| < 1}

Avant de parler de revêtements deD, nous allons nous intéresser aux revêtements
holomorphes non ramifiés du disque épointé D∗ := D \ {0}.
Ces revêtements sont classifiés par le théorème suivant :

Théorème 4.3.1. Soit X une surface de Riemann et f : X → D∗ un
revêtement holomorphe non ramifié de D∗.
Deux cas se présentent:

1. Si le revêtement admet un nombre infini de feuillets, alors il existe une
application biholomorphe φ : X → H sur le demi plan H := {z ∈
C|Re(z) < 0} tel que le diagramme suivant commute :

X
φ //

f !!B
BB

BB
BB

B H

exp}}||
||
||
||

D∗

2. Si le revêtement admet un nombre fini k de feuillets, alors il existe une
application biholomorphe φ : X → D∗ telle que le diagramme suivant
commute (où pk : D

∗ → D∗ est définie par z 7→ zk).

X
φ //

f !!B
BB

BB
BB

B D∗

pk}}zz
zz
zz
zz

D∗

Remarquons que les applications exp : H → D∗ et pk : D∗ → D∗ sont
deux types de revêtements du disque épointé. Le revêtement exp : H → D∗

est d’ailleurs le revêtement universel de D∗ (étant donné que H est simple-
ment connexe).
Puisque l’application φ est biholomorphe (donc bijective), ce théorème im-
plique que tout revêtement du disque épointé est ou bien isomorphe au
revêtement exp : H → D∗, ou bien au revêtement pk : D

∗ → D∗.

Démonstration. exp : H → D∗ étant un revêtement universel , puisque
f : X → D∗ est un revêtement connexe de D∗, il est isomorphe à un
revêtement associé du type qG : H/G → D∗ où G est un sous-groupe de
Aut(H).
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1. Si G = {Id}, alors X est isomorphe au revêtement exp : H → D∗.
D’où l’existence d’un homéomorphisme φ tel que exp ◦φ = f . Mais φ
est alors un relèvement de X au-dessus de f qui est une application
holomorphe non ramifiée, donc d’après le théorème 4.2.3, φ est bien
holomorphe (et de même on conclut que f−1 est holomorphe). φ est
donc bien biholomorphe.

2. Supposons à présent que G est non trivial. On sait que Aut(H) '
π1(D

∗) ' Z. On peut voir Aut(H) comme le groupe des translations
τn : z 7→ z + 2iπn où n ∈ Z. Puisque G est non trivial, il existe k ∈ N∗

tel que G = {τnk : z 7→ z + 2iπnk, n ∈ Z}. Soit g : H → D∗ le
revêtement défini par g(z) = exp(z/k). De plus, H étant simplement
connexe, et puisque f : X → D∗ est un revêtement, le théorème 4.2.2
nous affirme l’exitence d’un relèvement h : H → D∗ de H au-dessus de
exp : H ∈ D∗ et ce relèvement est de plus holomorphe.
D’autre part, g(z) = g(z′) si et seulement s’il existe τnk ∈ G tel que
z′ = τnk(z). Il existe donc une bijection φ telle que le diagramme
suivant commute :

H

h~~}}
}}
}}
}} g

!!B
BB

BB
BB

B

f !!B
BB

BB
BB

B

X
φ // D∗

Puisque h et g sont localement biholomorphe, φ est biholomorphe. Il
est alors immédiat que exp ◦ φ = f .

�

Nous avons donc déterminé les revêtements holomorphes non ramifiés du
disque épointé par des surfaces de Riemann. Nous allons en déduire le
théorème suivant :

Théorème 4.3.2. Soit X une surface de Riemann, D le disque unité et
f : X → D une application propre holomorphe non constante et dont 0 est
la seule valeur critique. Il existe alors un entier k > 1 et une application
biholomorphe φ : X → D tel que le diagramme ci-dessous commute (où
pk : z 7→ zk) :

X
φ //

f   A
AA

AA
AA

A D

pk~~~~
~~
~~
~~

D
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Démonstration. Notons X∗ := f−1(D∗). f |X∗ : X∗ → D∗ est alors
un revêtement propre holomorphe et non ramifié de D∗. D’après le lemme
4.2.4, f |X∗ admet un nombre fini de feuillets. Donc, d’après le théorème
précédent, il existe une application biholomorphe φ tels que le diagramme
suivant commute :

X∗ φ //

f !!D
DD

DD
DD

D D∗

pk}}zz
zz
zz
zz

D∗

Montrons à présent par l’absurde que f−1(0) est un singleton (ce qui nous
permettra de prolonger l’application f)

Supposons f−1(0) contient n points b1, ..., bn avec n > 1. Il existe alors n voisi-
nages ouverts Vi des points bi disjoints et un disque D(r) = {z ∈ C||z| < r}
avec 0 < r 6 1, tels que f−1(D(r)) ⊂ V1 ∪ ... ∪ Vn.

PosonsD∗(r) := D(r)\{0}. Puisque f−1(D∗(r)) est connexe car homéomorphe
à p−1

k (D∗(r)) = D∗( k
√
r) (f. diagramme ci-dessus).

Tout point bi étant un point d’accumulation de f−1(D∗(r)), f−1(D(r)) est
également connexe. Ce qui contredit : f−1(D(r)) ⊂ V1 ∪ ... ∪ Vn.

On peut donc poser {b} := f−1(0). On prolonge alors φ en b en posant
φ(b) := 0. On a ainsi prolongé φ en une application biholomorphe φ : X → D
telle que pk ◦ φ = f .

�

Remarquons bien que dans cette démonstration nous avons prolongé le revêtement
holomorphe non ramifié f |X∗ : X∗ → D∗ en un revêtement holomorphe non
ramifié.
Nous aimerions savoir si un tel prolongement est toujours possible. C’est-
à-dire, si l’on se donne deux surfaces de Riemann X et Y ′, A un ensemble
fermé discret et p : Y ′ → X\A un revêtement propre holomorphe non ramifié
de X \ A, peut-on prolonger p en un revêtement holomorphe ramifié de X :
p̃ : Y → X ?

Le chapitre qui suit va nous permettre de répondre à cette question.
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Chapitre 5

Prolongements des revêtements
non ramifiés

Théorème 5.0.3. Soit X une surface de Riemann, A ⊂ X un sous-ensemble
discret fermé, et soit X ′ := X \ A. Soit Y ′ une surface de Riemann et
p′ : Y ′ → X ′ un revêtement propre holomorphe non ramifié.

On peut alors prolonger p′ en un revêtement ramifié de X. C’est-à-dire
qu’il existe une surface de Riemann Y , une application propre holomorphe
p : Y → X et une application biholomorphe φ : Y \ p−1(A) → Y ′ telle que le
diagramme ci-dessous commute :

Y \ p−1(A)

p|Y \p−1(A)

��

φ

yysss
ss
ss
ss
s

Y ′

p′
// X ′

Démonstration. Pou tout a ∈ A on choisit un voisinage ouvert Ua de a tel
que Ua ∩ Ua′ = Ø pour a 6= a′ et ψa : Ua → D une carte complexe à valeurs
dans le disque unité du plan complexe telle que ψa(a) = 0
Soit U∗

a := Ua \ {a}. Puisque p′ : Y ′ → X ′ est propre, p′−1(U∗
a ) admet un

nombre fini de composantes connexes que l’on note V ∗
ai

pour i = 1, ..., n(a).
Pour tout i, l’application p′|V ∗

ai
: V ∗

ai
→ U∗

a est un revêtement ramifié et

puisque ψa est une carte complexe (donc un homéomorphisme), ψa ◦ p′ :
V ∗
ai

→ D∗ constitue un revêtement ramifié de D∗. Soit kai son nombre de
feuillets (nécessairement fini puisque p′ est propre). D’après le théorème
4.3.1, il existe une application biholomorphe φai : V ∗

ai
→ D∗ telle que le

diagramme suivant commute (où pai(z) = zkai )
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V ∗
ai

φai //

p′

��

D∗

pai
��

U∗
a

ψa // D∗

On choisit à présent des points zai , pour a ∈ A, i = 1...n(a) d’un ensemble
Z tel que Y ′ ∩ Z = Ø.
On pose alors Y := Y ′ ∪ {zai |a ∈ A, i = 1...n(a)}. On peut munir cet en-
semble d’une topologie : Si (Wi)i∈I est une base de voisinages de a, alors
{zai} ∪ (p′−1(Wi) ∩ V ∗

ai
) est une base de voisinage de zai . On construit ainsi

une topologie telle que Y soit un espace séparé.

Par la suite, on définit l’application p : Y → X en posant p(y) = p′(y)
pour tout y ∈ Y ′ et p(zai) = a. L’application p est alors propre.

Nous voudrions maintenant munir Y d’une structure de surface de Riemann.
Pour cela, nous définissons des cartes complexes en prolongeant les cartes
ψa : V ∗

ai
→ D∗ sur Vai := V ∗

ai
∪ {zai} en posant ψa(z

ai) := 0. Ces nouvelles
cartes ψa : Vai → D sont holomorphiquement compatibles avec les cartes de
Y ′.
Le dessin ci-dessous résume les différents prolongements effectués :

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������

��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������

���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������

D

DV

pa

0

0

a i

ip’

az
i

Ua
X

Y

a

p

a

iaz

L’application p : Y → X est alors holomorphe. De plus, puisque Y \
p−1(A) = Y ′ il suffit de poser φ := IdY ′ pour avoir l’application biholo-
morphe souhaitée.
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La proposition suivante vient compléter ce théorème :

Proposition 5.0.4. Soient X, Y , Z trois surfaces de Riemann et p : Y →
X, q : Z → X deux revêtements propres holomorphes. Soit A ⊂ X un sous-
ensemble fermé discret, et soit X ′ := X \A, Y ′ := p−1(X ′) et Z ′ := q−1(X ′).
Alors toute application biholomorphe σ′ : Y ′ → Z ′ telle que q|Z′ ◦ σ′ = p|X′

peut être prolongée en une application biholomorphe σ : Y → Z telle que
q ◦ σ = p.
En particulier, tout élément de Aut(Y ′) peut être prolongé en un élément de
Aut(Y ).

Démonstration. Voir [F].Chapitre1.8.5.

Cette proposition assure donc l’unicité du prolongement du revêtement p′ :
Y ′ → X ′ vu dans le théorème 5.0.3, à isomorphisme près.

Définition 5.0.1. Soient X et Y deux surfaces de Riemann, et p : Y →
X un revêtement holomorphe ramifié. Soit A ⊂ X l’ensemble des valeurs
critiques de p, et soit X ′ := X \ A et Y ′ := p−1(X ′).
On dit que le revêtement p : Y → X est galoisien de groupe G si le
revêtement p|Y ′ : Y ′ → X ′ est galoisien de groupe G.

Remarquons à présent l’intérêt du théorème 5.0.3 pour notre problème :
Rappelons que l’on souhaite construire un revêtement de P1 de groupe de
galois G fixé engendré par n éléments.
La sphère de Riemann privée de n + 1 points, X := P1 \ {p1, ..., pn+1} est
homéomorphe au plan complexe privé de n points C \ {z1, ..., zn} (il suffit
d’identifier l’un des points pi à ∞).
X a donc pour groupe fondamental le groupe libre à n éléments F :=
F{a1,...,an}.

On choisit alors un revêtement universel propre holomorphe deX , p : X̃ → X
qui admettra donc F pour groupe d’automorphismes.
Par ailleurs si l’on se donne un morphisme surjectif φ : F → G (un tel mor-
phisme existe, il suffit d’envoyer les générateurs de F sur les générateurs de
G), on a alors G ' F/H où H := ker φ.
Si l’on considére le revêtement associé qH : Y ′ → X , où Y ′ := X̃/H ,
ce revêtement est alors propre holomorphe non ramifié et galoisien (car
H = ker φ est distingué dans F ) de groupe F/H ' G.

Mais D’après le théorème 5.0.3, on peut prolonger qH : Y → X en un
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revêtement ramifié de P1, qH : Y → P1, qui sera alors galoisien de groupe G.

Nous pouvons donc assurer l’existence d’un revêtement galoisien de groupe
G de type fini donné.

Comment pouvons-nous en déduire l’existence d’une extension galoisienne
de C(T ) de groupe G?

C’est l’objet du chapitre suivant.
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Chapitre 6

Correspondance
revêtements/extensions

6.1 Fonctions algébriques

Soient X et Y deux surfaces de Riemann, p : Y → X un revêtement holomor-
phe non ramifié à n feuillets et f une fonction méromorphe sur Y . d’après la
proposition 2.1.1, tout point x ∈ X admet un voisinage V tel qu’il existe une
famille non vide de sections au-dessus de V , (si)i∈{1,...,n} telles que tem pour
tout i ∈ I, si(V ) est un ouvert de p−1(V ) que l’on notera Ui, Ui ∩Uj = Ø, et
p−1(V ) =

⋃

i∈{1,...,n}Ui. p|Ui
: Ui → V est alors holomorphe pour tout i. On

note alors fi := f ◦ si.

Considérons alors le polynôme :

n
∏

i=1

(T − fi) = T n + c1T
n−1 + ...+ cn ∈ M(U)[X ]

L̇es ci étant des fonctions méromorphes sur U et on a alors ci = (−1)iσi(f1, ..., fn),
où les σi sont les polynômes symétriques élémentaires en n variables.

Par le même procédé on construit les fonctions ci sur des voisinages de tous
les points x ∈ X , et on peut alors définir les fonctions ci méromorphes sur
X .
On les appelle les fonctions symétriques élémentaires de f pour le
revêtement p : Y → X .
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Proposition 6.1.1. Soient X et Y deux surfaces de Riemann, et p : Y → X
un revêtement holomorphe ramifié à n feuillets.
Soit A ⊂ X un ensemble fermé discret contenant toutes les valeurs critiques
de p, et soit B = p−1(A).
Supposons que p est une fonction holomorphe sur Y \B et que les fonctions
c1, ..., cn ∈ O(X \ A) sont les fonctions symétriques él’ementaires de f .
Alors, f peut être prolongée en une fonction holomorphe sur Y si et seulement
si toutes les fonctions ci peuvent être prolongées en des fonctions holomorphes
sur X.

Démonstration. Soit a ∈ A et {b1, ..., bn} := p−1(a). Soit U un voisinage
ouvert relativement compact de a tel que U ∩ A = {a} et φ : U → C une
carte complexe sur X , telle que φ(a) = 0. V := p−1(U) est un voisinage
ouvert relativement compact de chacun des bi.

• Supposons que f peut être prolongée holomorphiquement en tout point
bi. f est alors bornée sur V \ {b1, ..., bn}. Les ci sont donc bornée sur
U \ {a}. Donc, par le théorème des singularités de Riemann, les ci
peuvent être prolongée holomorphiquement en a.

• Supposons que les ci peuvent être prolongées holomorphiquement en a.
Toutes les fonctions ci sont alors bornées sur U\{a}. Mais ceci implique
que f est bornée sur V \ {b1, ..., bn}, car si x = p(y) alors f(y)n +
c1(x)f(y)

n−1 + ... + cn(x) = 0. D’après le théorème des singularités de
Riemann, f peut être prolongée holomorphiquement en chaque bi.

�

Signalons que nous avons un résultat analogue pour les fonctions méromorphes:

Proposition 6.1.2. Soient X et Y deux surfaces de Riemann, et p : Y → X
un revêtement holomorphe ramifié à n feuillets.
Soit A ⊂ X un ensemble fermé discret contenant toutes les valeurs critiques
de p, et soit B = p−1(A).
Si on suppose f holomorphe sur Y \B et c1, ..., cn ∈ M(X \ A).
Alors f peut être prolongée méromorphiquement sur Y si et selement si les
ci peuvent être prolongées méromorphiquement sur X.

Démonstration. Voir [F].Chapitre1.8.2.

Nous allons à présent voir apparâıtre un lien entre les revêtements de surfaces
de Riemann et l’algèbre des fonctions méromorphes. Soit p : Y → X une ap-
plication holomorphe non constante. Considérons alors p? : M(X) → M(Y ),
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f 7→ f ◦ p. Il est facile de voir que cette application est bien définie et que
c’est un morphisme de corps. Le morphisme p? : M(X) → M(Y ) permet
alors de munir M(Y ) d’une structure de M(X)-algèbre. De plus, M(Y )
étant un corps, c’est une extension de M(X)

Ce morphisme est particulièrement intéressant dans le cas où p est un revêtement:

Soient X et Y deux surfaces de Riemann et p : Y → X un revêtement
holomorphe ramifié à n feuillets. Si f ∈ M(Y ) et si c1, ..., cn ∈ M(X) sont
les fonctions symétriques élémentaires assocées à f , alors fn + (p?c1)f

n−1 +
...+(p?cn) = 0 (d’après la définition des fonctions symétriques élémentaires).
Par conséquent toute fonction f ∈ M(Y ) est un élément algébrique sur
K := p?(M(X)). Par conséquent, M(Y ) est une extension algébrique de K
et tout élément de M(Y ) est de degré 6 n. (Par la suite, on identifiera K à
M(X) via le morphisme p? : M(X) → M(Y ).)
On a de plus le résultat suivant :

Proposition 6.1.3. On a [M(Y ) : K] 6 n.
Par ailleurs, s’il existe f ∈ M(Y ) et x ∈ X avec {y1, ..., yn} := p−1(x) tels
que les f(yi) pour i = 1...n sont tous distincts, alors l’extensionM(Y )/M(X)
est de degré exactement n.

Démonstration. Posons L := M(Y ). Considérons f0 ∈ L un élément de
degré maximal n0 6 n sur K.
Soit f ∈ L quelconque. Par le théorème de l’élément primitif, il existe g ∈ L
tel que K(g) = K(f, f0). Par définition de n0, on a [K(g) : K] 6 n0, mais
par ailleurs, K(f0) ⊂ K(f, f0) donc n0 6 [K(f, f0) : K]. D’où finalement,
K(f0, f) = K(f0) et donc f ∈ K(f0) pour tout f ∈ L.
Par conséquent, L = K(f0) et donc [L : K] = n0 6 n.

D’autre part, le polynôme minimal de f est de degré n0, on le note P =
T n0 + p?an0−1T

n0−1 + ... + p?a0 ∈ K[T ]. Si x ∈ X , et {y1, ..., yn} := p−1(x)
alors pour tout i : P (f(yi)) = f(yi)

n0 + (an0−1(x))f(yi)
n0−1 + ... + (a0(x)).

Donc les f(yi) sont racines d’un même polynôme de degré n0 6 n. Donc
f(yi) peut prendre au plus n0 valeurs distinctes.
D’où, si les f(yi) sont tous distincts, alors n = n0.

�

On commence à comprendre qu’une correspondance entre les revêtement
d’une surface de Riemann X et les extensions de M(X) sera donnée par
l’application : (revêtement holomorphe ramifié p : Y → X) 7−→ (extension
M(Y )/M(X)).
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Nous allons à présent introduire le concept de fonction algébrique :

Théorème 6.1.4. Soit X une surface de Riemann, et P (T ) = T n+c1T
n−1+

... + cn un polynôme irréductible de degré n.
Il existe une surface de Riemann Y , un revêtement ramifié holomorphe à
n feuillets p : Y → X et une fonction méromorphe F ∈ M(Y ) telle que
(p?P )(F ) = 0. Le triplet (Y, p, F ) est alors unique au sens où, si (Z, q, G) est
un autre triplet satisfaisant les mêmes propriétés, alors il existe une unique
application biholomorphe σ : Z → Y telle que q = p ◦ σ et G = σ?F .
On dit que le triplet (Y, p, F ) est une fonction algébrique définie par le
polynôme P (T ).

Démonstration. Voir [F].Chapitre1.8.9.

6.2 Correspondance

Soient X et Y deux surfaces de Riemann et p : Y → X un revêtement holo-
morphe ramifié de X et posons :
∀σ ∈ Aut(Y ),∀f ∈ M(Y ) σf := f ◦σ−1 ∈ M(Y ). On a alors une correspon-
dance entre Aut(Y ) et GM(Y )/M(X) donnée par :

φ : Aut(Y ) → GM(Y )/M(X)

σ 7→ (f 7→ σf)

Cette application est bien définie car f 7→ σf est bien un automorphisme de
M(Y ) (de réciproque f 7→ σ−1f) laissant K = p?M(X) invariant.
Par ailleurs, il est immédiat que φ est un morphisme de groupe.
On en déduit le théorème suivant :

Théorème 6.2.1. Soit X une surface de Riemann. On pose K := M(X)
et P (T ) un polynôme irréductible unitaire de degré n. Soit (Y, p, F ) la fonc-
tion algébrique définie par P (T ) et L := M(Y ). On considère K comme un
sous-corps de L.

• L/K est alors une extension de degré n deK, et on a L ' K[T ]/(P (T )).

• De plus, le morphisme φ : Aut(Y ) → GL/K , σ 7→ (f 7→ σf) est un
isomorphisme de groupes.

• Le revêtement Y → X est alors galoisien si et seulement si l’extension
L/K est galoisienne.
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Démonstration.

• D’après la proposition 6.1.3, on a bien [L : K] = n.

• L’isomorphisme L ' K[T ]/(P (T )) est clair, puisque deg(P ) = n et
P (F ) = 0, et F est un élément primitif de L (cf. démonstration de la
proposition 6.1.3).

• L’application φ est injective : en effet, soit σ ∈ Aut(Y ), telle que
σf = f pour tout f ∈ L. On a alors σF = F , c’est-à-dire (σ−1)?F = F .
Or d’après le théorème 6.1.4, IdL est l’unique application biholomorphe
telle que (σ−1)?F = F . Donc σ = IdL.

• L’application φ est surjective : soit α ∈ GL/K , (Y, p, αF ) est une fonc-
tion algébrique définie par le polynôme P (T ). Donc il existe τ ∈
Aut(Y ) tel que αF = τ ∗F = τ−1F . Puisque F engendre L, le mor-
phisme f 7→ τ−1f est le morphisme α.

• Enfin, p : Y → X est galoisien si et seulement si Aut(Y ) contient
n éléments (car l’action de Aut(Y ) sur les fibres est alors transitive).
Et de même l’extension GL/K est galoisienne si et seulement si GL/K

contient [L : K] = n éléments.

�

6.3 Application à la sphère de Riemann

A la fin du chapitre 5 les revêtements galoisiens qH : Y → P1 que nous avions
construit, nous donnent donc, par cette correspondance, des extensions ga-
loisiennes de K := M(P1).
Rappelons que nous avions construit ces revêtements à partir d’un revêtement
universel de la sphère de Riemann privée de n + 1 points.
Voici quelques exemples de tels revêtements universels :

Exemple 6.3.1. • La sphère de Riemann privée de 2 points P1 \{z1, z2}
qui est homéomorphe (et même biholomorphe) à C∗ (il suffit d’identifier
z1 à ∞ et z2 à 0). Un revêtement universel de cet espace est alors donné
par p : C → C∗, z 7→ e2iπz.

• Pour la sphère de Riemann privée de 3 points, c’est plus compliqué
: On se ramène avant tout au cas de la sphère de Riemann privée
des points 0, 1, et ∞. On considère alors un tore C/w1Z + w2Z, que
l’on peut ramener, par isomorphisme à un tore Tτ := C/Z + τZ, avec
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τ ∈ P , où P := {z ∈ C|Im(z) > 0} est le demi-plan de Poincaré. On
définit la fonction ℘ : Tτ → P1C de Weierstrass sur Tτ (on rappelle que

℘(z) = 1
z2
+
∑

γ∈Z+τZ\{0}

(

1
(z−γ)2

− 1
γ2

)

). Cette fonction est doublement

périodique de périodes 1 et τ . On note alors e1(τ) := ℘(1
2
), e2(τ) :=

℘(1
2
(1+τ)), et e3(τ) := ℘(1

2
τ), les valeurs de ℘ en chaque demi-période.

L’application λ : P → P1 \ {0, 1,∞}, τ 7→ e2(τ)−e3(τ)
e1(τ)−e3(τ)

est alors un

revêtement universel de P1 \ {0, 1,∞} (pour plus de détails, voir [L]).

Proposition 6.3.1. Toute fonction méromorphe sur P1 est rationnelle.

Démonstration. Soit f ∈ M(P1). Nous allons d’abord montrer que f
admet un nombre fini de pôles :
Supposons que f admet une infinité de pôles. On peut alors construire une
suite de pôles (zi) qui converge dans P1 (car P1 est compact). Donc par le
théorème 4.1.1, f est identiquement égale à ∞, d’où contradiction.

On peut à présent supposer que ∞ n’est pas un pôle de f . (si ce n’est
pas le cas, il suffit de remplacer f par 1/f
Notons alors a1, ..., an ∈ C les pôles de f , et pour chaque pôle ai, on choisit
une carte complexe φi : Ui → Vi définie sur un voisinage ouvert Ui de ai.
On peut alors effectuer un développement en série de Laurent de f ◦ φi au
voisinage de ai. On note alors hi(z) =

∑−1
j=−ki

cij(z−ai)j la partie principale
de ce développement.
La fonction g := f − (h1 ◦ φ−1 + ...+ hn ◦ φ−1) est alors holomorphe sur P1.
Elle est donc constante d’après le corollaire 4.1.9.

On en déduit donc que f est rationnelle.

�

Remarque 6.3.1. Cette proposition est une conséquence du fait suivant :

• En général une surface de Riemann compact se plonge dans un espace
projectif.

• D’après le théorème de Chow, toute sous-variété analytique d’un espace
projectif est algébrique (pour plus de détails voir [GH] ou [Si])

Par conséquent M(P1) se plonge dans C(T ). Réciproquement, il est clair
que C(T ) se plonge dans M(P1).
On a donc que M(P1) ' C(T ). On a donc bien obtenu le théorème :

Théorème 6.3.2. Pour tout groupe G de type fini donné, il existe une ex-
tension galoisienne de C(T ) de groupe de Galois G.

82



Voici un exemple d’application :

Exemple 6.3.2. Posons G = Z/nZ le groupe cyclique d’ordre n (engendré
par un élément).
On considère alors la sphère de Riemann privée de 2 points P1 \ {z1, z2} qui
est homéomorphe à C∗. Rappelons le revêtement universel de C∗ donné par
p : C → C∗, z 7→ e2iπz.
On considère alors le revêtement donné par qnZ : C/nZ → C∗, [z] 7→ e

2iπz
n .

On a alors M(C/nZ) est une extension de M(P1) ' C(t).
Or M(C/nZ) ' C( n

√
t), ( Si f ∈ M(C/Z) et g ∈ C(t)) telle que f([z]) =

g(e2iπz), on associe à f la fonction h : z 7→ g(e
2iπz
n )).

Une extension galoisienne de C(t) de groupe de Galois Z/nZ est alors donnée
par C( n

√
t).
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Annexe A

Liste des groupes
fondamentaux

A.1 Groupe fondamental des espaces topologiques

familiers :

Espace topologique Groupe fondamental
Rn {1}

R2 \ {p1, p2, ..., pn} F{a1,a2,...,an}

S1 Z

Tn Zn

Sn , n > 2 {1}
PnC, n > 1 {1}

P1R Z

PnR, n > 2 Z/2Z
Tore privé de n points 〈a, b, c1, c2, ...cn | [a, b]c1c2...cn = 1〉
Surface de genre g 〈a1, b1, a2, b2, ..., ag, bg, c1, ..., cn
privée de n points | [a1, b1][a2, b2]...[ag, bg]c1...cn = 1〉
Bouteille de Klein 〈a, b | aba−1b = 1〉
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A.2 Groupe fondamental des groupes clas-

siques :

Groupe Classique Groupe fondamental
O2(R) Z

On(R), n > 3 Z/2Z
SO2(R) Z

SOn(R), n > 3 Z/2Z
Un(C), n > 1 Z

Sp(n) {1}
SUn(C) {1}
GL2(R) Z

GLn(R), n > 3 Z/2Z
GLn(C), n > 1 Z

SL2(R) Z

SLn(R), n > 3 Z/2Z
SLn(C) {1}
Spn(R) Z

Spn(C) {1}
O2(C) Z

On(C), n > 3 Z/2Z
O2,2(R) Z× Z

O2,q(R), q > 3 Z× Z/2Z
Op,2(R), p > 3 Z× Z/2Z

Op,q(R), p > 3, q > 3 Z/2Z× Z/2Z
Up,q(C) Z× Z
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(1971).

[GH] P. Griffiths, J. Harris Principles of Algebraic Geometry, Wiley Classics
Library, (1994).
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d’affection tout au long de mes études. Merci à Mireille pour avoir tout
fait pour assister à ma présentation orale. Merci également à Abdel pour
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