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Introduction

Ce document donne un aperçu des travaux de recherche que j’ai menés
depuis ma thèse. Grosso modo, ceux-ci s’articulent autour des trois thèmes
suivants :

• les modèles stochastiques d’évolution de séquences d’ADN,
• les méthodes de renouvellement,
• les modèles de branchement-sélection.

L’étude de l’évolution biologique au niveau moléculaire s’appuie forte-
ment sur la modélisation mathématique et l’utilisation de méthodes statis-
tiques. Dans ce cadre, l’un des problèmes est de décrire le processus de surve-
nue des mutations dans les séquences d’ADN. Le chapitre 1 rend compte de
travaux, effectués pour partie en collaboration avec J.B. Gouéré, L. Guéguen,
A. Huet, et D. Piau, traitant de modèles de substitution de nucléotides avec
dépendance au contexte : il s’agit de modèles stochastiques décrivant les
substitutions de nucléotides survenant le long d’une séquence d’ADN, en
prenant en compte la dépendance des taux de substitution en un site donné
vis-à-vis de la composition des sites voisins. Les résultats décrits portent à la
fois sur l’étude théorique des propriétés de ces modèles, et sur les méthodes
statistiques développées pour les appliquer à des données génomiques.

Le principe des méthodes de renouvellement est d’analyser le comporte-
ment d’un modèle stochastique en identifiant, au sein de celui-ci, une struc-
ture séquentielle constituée de variables aléatoires indépendantes et iden-
tiquement distribuées. Elles constituent aujourd’hui un outil fondamental
pour l’étude des marches aléatoires en milieu aléatoire (voir par exemple
[144, 143]) et de certaines marches aléatoires en auto-interaction (voir par
exemple [92]), et permettent d’obtenir des résultats caractérisant précisé-
ment le comportement asymptotique des modèles étudiés (caractère ballis-
tique de la marche aléatoire, loi des grands nombres, comportement de type
limite centrale, grandes déviations, etc.). Le chapitre 2 décrit des travaux
effectués en collaboration avec A. Ramírez, dans lesquels une approche par
renouvellement est utilisée pour étudier des modèles stochastiques micro-
scopiques de propagation de front de type X + Y → 2X, dans le cas uni-
dimensionnel, conduisant à des résultats de grandes déviations et de fluc-
tuations pour différents modèles. Le chapitre 3 décrit un autre volet de
cette collaboration, consacré aux modèles de marche aléatoire excitée, pour
lesquels l’approche par renouvellement nous a permis d’obtenir un résultat
caractérisant les fluctuations en dimension d ≥ 2.

Les modèles de branchement-sélection constituent une description ex-
trêmement simplifiée des processus de sélection naturelle à l’œuvre dans
l’évolution des organismes vivants. L’étude de ces modèles a notamment
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6 INTRODUCTION

pour but de comprendre, dans un cadre simple, l’influence de facteurs tels que
la taille de la population, ou l’amplitude et la fréquence des mutations, sur
la vitesse d’évolution. La classe de modèles que nous étudions se trouve être
liée à une théorie plus générale décrivant la propagation de fronts stochas-
tiques, développée par les physiciens théoriciens E. Brunet et B. Derrida. Le
chapitre 4 décrit principalement des travaux effectués en collaboration avec
J.B. Gouéré, dans lequels nous avons obtenu des preuves mathématiques
confirmant certaines des prédictions de Brunet et Derrida.

Même si les thèmes de recherche décrits ci-dessus apparaissent dans des
chapitres séparés, un certain nombre de liens existent entre eux, qui méri-
tent d’être signalés. Par exemple, tant les systèmes de particules de type
X + Y → 2X discutés au chapitre 2, que les modèles de branchement-
sélection abordés au chapitre 4, peuvent être vus comme des modèles stochas-
tiques de propagation de front, du type de ceux décrits par l’équation de
Fisher-Kolmogorov-Petrovsky-Piscounov, mais dans des régimes asympto-
tiques différents : limite d’un grand nombre de particules par site pour le
chapitre 4, ou limite d’un «petit» nombre pour le chapitre 2. D’autre part,
même si les points de vue adoptés sont très différents, l’objectif commun
des modèles étudiés aux chapitres 1 et 4 est de décrire mathématiquement
certains aspects des processus qui gouvernent l’évolution du vivant. On
peut également noter que les modèles de branchement-sélection sont à la
base des algorithmes particulaires de type Monte-Carlo séquentiel discutés
au chapitre 1. Enfin, de manière peut-être moins explicite, des propriétés de
renouvellement sont utilisées de manière cruciale dans l’étude des modèles
de branchement-sélection du chapitre 4 et des modèles de substitution du
chapitre 1.

Par ailleurs, ce manuscrit n’aborde pas les travaux [25, 20, 24], qui
s’inscrivaient dans un projet de recherche différent, ayant connu quelques
infortunes1.

Chaque chapitre contient non seulement l’énoncé des résultats obtenus
sur le sujet abordé, mais également une description du contexte scientifique,
des principales idées utilisées dans les preuves, ainsi que des extensions pos-
sibles et de certaines perspectives de recherche future. Les résultats math-
ématiques sont énoncés de façon précise, mais un style moins formel est
généralement employé dans le reste de la présentation, dans l’espoir de com-
muniquer les idées essentielles tout en évitant le caractère quelquefois aride
des articles dans lesquels se trouvent les résultats correspondants. Pour per-
mettre une identification facile, les résultats que j’ai obtenus sont signalés
par une couleur différente de celle employée dans le reste du texte. Enfin,
dans la mesure du possible, j’ai tenté de conserver une certaine cohérence des
notations entre ce manuscrit et les articles auxquels il se réfère; cependant,
je n’ai pas hésité à effectuer certains changements de notations lorsque qu’il
m’a semblé que la clarté y gagnait.

1Les travaux [113] et [11], menés indépendamment, ont considérablement limité
l’apport de [20] et [24].



CHAPTER 1

Context-dependent nucleotide substitution models

1. Introduction

1.1. Molecular evolution. Broadly speaking, the goal of the scientific
discipline known as molecular evolution (see e.g. [84]) is to study biological
evolution at the molecular level. On the one hand, one wants to under-
stand the rates and patterns of changes in DNA (or RNA) sequences and
their products (proteins or RNA molecules), over evolutionary time. On the
other hand, one wants to use molecular data to reconstruct the evolutionary
history of biological entities, such as sequences, organisms or species. Both
approaches are intimately related, and both heavily rely on mathematical
modeling to make sense of the flood of data produced by modern sequencing
technology. We refer to [68, 125, 81, 82] for surveys of the mathematical,
statistical and computational approaches used in molecular evolution.

Let us briefly recall some of the key aspects of molecular sequence evo-
lution. First, at the level of an individual, mutations, i.e. errors in either
DNA replication or repair, may occur, leading to a sequence that is not ex-
actly identical to the one from which it was copied. Such mutations include
substitutions, i.e. the replacement of one nucleotide by another, recombina-
tions, i.e. the exchange of a piece of sequence with another, deletions, i.e.
the suppression of one or more nucleotides from the sequence, insertions,
i.e. the addition of one or more nucleotides to the sequence, and inversions,
i.e. the reversal of a piece of the sequence. When a mutation affects a germ
cell (as opposed to somatic cell), it may be transmitted and survive through
the generations, possibly up to the present. Over evolutionary time scales,
survival depends on many factors, among which the possible advantage or
disadvantage the mutated sequence may confer to individuals bearing it, and
the size of the population within which it spreads (through breeding).

Accurately modeling each of these aspects of sequence evolution, in which
complex patterns of variability in both time and space can play a role, is an
extremely difficult task, and most models use simplifying assumptions and
focus on a few specific aspects. The models we consider in the sequel describe
the evolutionary process leading to a sample of DNA sequences, using the
following elements:

• a tree which describes the ancestral relationships between the se-
quences in the sample, up to a hypothetical common ancestral se-
quence, see Fig. 1, and also Fig. 2;
• a Markov model describing the time-evolution of DNA sequences
along the edges of the tree, starting from the ancestral sequence
down to the sequences in the sample;
• a probabilistic model for the ancestral sequence.
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Figure 1. Hypothetical ancestral tree of a sample of DNA
sequences S1, . . . , S7. The ancestral sequence is denoted S0.
Edge lengths correspond to time durations.

Depending on the context, the branching events associated with internal
nodes in the tree may simply represent one parent sequence giving rise to two
offspring sequences, or to speciation events by which one species splits into
two distinct species. In the latter case, the idea is that, over evolutionary
time scales, one may neglect polymorphism, i.e. the existence of more than
one version of the sequence within species.

We also assume that, after a branching event, the two resulting sequences
evolve independently, and that a single Markov model is appropriate to de-
scribe the sequence dynamics along the whole tree and across the whole se-
quence. Moreover, we neglect mutations other than substitutions, assuming
the set of sequences in the sample to be aligned, so that nucleotide positions
in the sequences that form the sample can directly be matched to those in
the ancestral sequence.

1.2. Nucleotide substitution models. We now discuss more pre-
cisely the Markov models that are used to describe the evolution of DNA
sequences. Since we restrict ourselves to nucleotide substitutions, we have
to describe the rates at which single nucleotide changes occur along the se-
quence.

The most commonly used models describe the substitution process at a
given site by a continuous-time Markov chain on the nucleotidic alphabet
A := {A, T,C,G}. Such a Markov chain is characterized by a 4 × 4 rate
matrix, comprising 12 free parameters

(ru→v, u, v ∈ A, u 6= v) ,

describing the substitution rates between distinct elements of A. Biological
hypotheses (e.g. compatibility with DNA strand symmetry) are usually built
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(a) The tree of life as it appears in Darwin’s "On the Origin of Species"
(1859).

(b) Tree of life from the Interactive Tree of Life web-
site, inferred from molecular data consisting of com-
pletely sequenced genomes.

Figure 2. Two versions of the tree of life.

into the model to somehow constrain the parameters and have it reflect some
relevant biological features. Starting from the early one-parameter model of
Jukes and Cantor [95], in which all the substitution rates are assumed to
be equal, a whole hierarchy of models has been developed over the years
(we refer e.g. to [71] for a survey of these models and of the corresponding
assumptions). What all these models have in common is that the substitu-
tion process at a given site is assumed to be independent from substitution
processes occurring at other sites. We refer to these models as being site-
independent.
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One well-known phenomenon illustrating the inadequacy of the site-
independence assumption is the hypermutability of CpG dinucleotides1, which
is believed to be the most important context-dependent effect in mammalian
genomes. Because of cytosine methylation, the substitution rate of a CpG
dinucleotide into TpG or CpA is about 10 times higher than the overall sub-
stitution rate of a C into a T or a G into an A. A natural way of introducing
such dependencies in the evolution model is to complement the basal rates
(ru→v) with context-dependent (or neighbour-dependent) substitution rates
of the form

(ruv→uw, u, v, w ∈ A, v 6= w)

to account for the possible influence of the left neighbour, and

(ruv→wv, u, v, w ∈ A, w 6= v)

to account for the possible influence of the right neighbour. Informally, this
means that, at a site where a nucleotide b is surrounded by an a at its
left and a c at its right, the probability that b is substituted by another
nucleotide d during an infinitesimal interval of time dt, i.e. the probability
of the substitution

· · · abc · · · time t
↓

· · · adc · · · time t+ dt

is given by
rb→ddt+ rab→addt+ rbc→dcdt,

where the first term represents the basal rate of b → d substitutions, and
the second and third terms represent the additional influences of the left and
right neighbours respectively. One might consider more general combined
influences of left and right neighbours, or influences from next-to-nearest
or even further neighbours, but, since our main motivation is to take into
account CpG hypermutability, we restrict ourselves to models of the above
form.

To properly define the corresponding dynamics, consider a state space S
of the form AJ , where either J = Z or is a finite sub-interval2 of Z of the
form J = {a, . . . , b}. Given η ∈ S, x ∈ J , and u, v ∈ A such that u 6= v, let
Rx
u→v(η) denote the element of S defined by

(Rx
u→v(η)) (x) :=

{
v if η(x) = u,
η(x) otherwise,

(Ry
u→v(η)) (y) := η(y), y 6= x.

Then, given u, v, w ∈ A such that v 6= w, one defines Rx
uv→uw(η) by

(Rx
uv→uw(η)) (x) :=

{
w if (η(x− 1), η(x)) = (u, v),
η(x) otherwise,

(Ry
uv→uw(η)) (y) := η(y), y 6= x.

1The notation XpX’ is used for pairs of consecutive nucleotides where a X is followed
by a X’ in the sequence, e.g. CpG, TpA, etc.

2In this case, one has to specify boundary conditions to properly deal with influences
from the left-neighbour (resp. right-neighbour) at site a (resp. site b). We do not discuss
boundary conditions in detail here.
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Similarly, one defines Rx
uv→wv(η) by

(Rx
uv→wv(η)) (x) :=

{
w if (η(x), η(x+ 1)) = (u, v),
η(x) otherwise,

(Ry
uv→wv(η)) (y) := η(y), y 6= x.

The nucleotide substitution dynamics is then defined as a Markov process
(ηt)t≥0 on S, through the action of its infinitesimal generator on functions
depending on a finite number of coordinates (see e.g. [115]):

Gφ(η) = G∅φ(η) +G`φ(η) +Grφ(η),

where

G∅φ(η) :=
∑
x∈J

∑
u,v∈A
u6=v

ru→v (φ(Rx
u→v(η))− φ(η)) ,

G`φ(η) :=
∑
x∈J

∑
u,v,w∈A
v 6=w

ruv→uw (φ(Rx
uv→uw(η))− φ(η)) ,

Grφ(η) :=
∑
x∈J

∑
u,v,w∈A
v 6=w

ruv→wv (φ(Rx
uv→wv(η))− φ(η))

(1)

where G∅ corresponds to the basal substitution rates, and G` and Gr give
the respective contributions of influences from left and right neighbours.

At this level of generality, it seems unlikely that many interesting prop-
erties of the model can be established. For instance, in the absence of mono-
tonicity, the possible propagation of influences from site to site makes it un-
clear whether the corresponding model is ergodic under the non-degeneracy
assumption that the basal rates are positive (see [76, 85] for a discussion
of this issue in the more general context of one-dimensional interacting par-
ticle systems). Our own work revolves around a special class of nucleotide
substitution models, called RN+YpR, which is made tractable by special
structural properties it possesses.

1.3. RN+YpR nucleotide substitution models. The class of sub-
stitution models we consider, called RN+YpR, makes specific assumptions
about the substitution rates allowed in the model. To state them, let us re-
member that adenine (A) and guanine (G) are purines, generically denoted
R, while thymine (T) and cytosine (C) are pyrimidines, generically denoted
Y. A substitution that changes a purine into another purine, or a pyrimi-
dine into another pyrimidine, is called a transition. On the other hand, a
substitution that changes a purine into a pyrimidine or vice-versa is called a
transversion.

The first assumption (RN) is that the family of basal rates

(ru→v, u, v ∈ A, u 6= v)
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Figure 3. The 8 context-dependent substitutions allowed in
a YpR model

satisfies the conditions defined by Rzhetsky and Nei [139] (whence the name
"RN"), that is, the corresponding A×A matrix must have the following form

A
T
C
G

A T C G
− vT vC wG
vA − wC vG
vA wT − vG
wA vT vC −

 .

The above matrix is characterized by 8 free parameters (instead of 12 for
the most general model), and reflects the assumption that the rate of a
transversion resulting in a given nucleotide u depends only on u, and not on
the nucleotide that has just been substituted.

The second assumption (YpR) is that the only non-zero context-dependent
rates allowed in the model are those that turn a dinucleotide of the form
(pyrimidine, purine), i.e. YpR, into another dinucleotide of the same form
(whence the name "YpR" for the context-dependent part of the model). The
8 corresponding context-dependent substitutions are depicted in Fig. 3.

The combination of a family of basal rates satisfying assumption (RN)
and of context-dependent rates satisfying assumption (YpR) defines the
RN+YpR class of nucleotide substitution models. Note that the hyper-
mutability of CpG dinucleotides is covered by these assumptions, since both
CpG → CpA and CpG → TpG substitutions are of the form YpR → YpR.

2. Structural properties of RN+YpR models I

Let ρ denote the application which fuses the two purines together, and
η the application which fuses the two pyrimidines together, that is

ρ(A) := R =: ρ(G), ρ(C) := C, ρ(T ) := T,
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and
η(A) := A, η(G) := G, η(C) := Y =: η(T ).

Given a finite word u1 . . . um written in the nucleotidic alphabet, withm ≥ 2,
define the corresponding Φ−encoding by

Φ(u1 . . . um) := η(u1)u2 . . . um−1ρ(um).

Given a finite interval K := {a, . . . , b} ⊂ J , define also πK as the canonical
projection3 from S = AJ to AK , i.e.

πK((uj)j∈J) := (uk)k∈K .

Theorem 1 (B., Gouéré, Piau [29]). Given a family of pairwise disjoint
intervals K1, . . . ,Km ⊂ J , and given a fixed initial configuration η0 ∈ S, the
random processes

[Φ(πKn(ηt))]t≥0 , n = 1, . . . ,m,

are independent Markov processes.

Note that, due to the translation-invariance of the infinitesimal generator
G, the infinitesimal generator of the Markov process Φ(πK(ηt))t≥0 depends
only on |K|. We denote by Q|K| the corresponding infinitesimal generator
on the set

A|K| := {C, T,R} × {A, T,C,G}|K|−2 × {A,G, Y }. (2)

To explain Theorem 1, consider the evolution of a Φ-encoded polynu-
cleotide Zt := Φ (ηa(t) . . . ηb(t)). We want to understand why the instanta-
neous rates associated with substitutions that modify the value of Zt can all
be expressed as functions of Zt. Consider site a. By the YpR assumption,
context-dependent substitutions at site a involving ηa−1(t) can only occur
if ηa(t) ∈ {A,G}, in which case the resulting nucleotide will also belong to
{A,G}, so the value of ρ(ηa(t)), hence of Zt, is not affected by such a substi-
tution. As for basal substitutions, the (RN) assumption shows that, knowing
only ρ(ηa(t)), one can deduce the rates of substitutions to C and T. Now
consider site a+ 1. Since the only possible context-dependent substitutions
at site a + 1 involving ηa(t) occur when ηa(t) ∈ {C, T}, we see that know-
ing ρ(ηa(t)) is enough to compute the corresponding instantaneous rates. A
symmetric argument can be made at sites b and b− 1 for context-dependent
substitutions involving right neighbours, and, finally, sites a+ 2 ≤ x ≤ b− 2
do not raise any problem since the values of ηx−1(t), ηx(t) and ηx+1(t) are
part of Zt.

To state the next result, we make the non-degeneracy assumption that
all the basal rates are positive, i.e.

∀u, v,∈ A, u 6= v, ru→v > 0. (3)

3In the sequel, we often identify the sequence (uk)k∈K with the word obtained by
concatenating the successive terms of the sequence, so that πK((uj)j∈J) may also be
viewed as a word written in the nucleotidic alphabet.
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Theorem 2 (B., Gouéré, Piau [29]). Under assumption (3), the process
is ergodic, i.e. there exists a unique invariant distribution µ on S such that,
for every initial configuration η0, one has that, as t goes to infinity,

ηt
d−→ µ. (4)

Moreover, one has an exponential bound on the speed of convergence towards
the distribution µ: there exist explicit constants c1, c2 > 0 such that, for all
K ⊂ J ,

dTV (πK(ηt), πK(µ)) ≤ exp(−c1t+ c2 log |K|). (5)

Finally, the image of µ by πK can be sampled perfectly by means of an effi-
cient Propp-Wilson type algorithm.

The proof of Theorem 2 is obtained through a suitable graphical con-
struction of the dynamics based on marked Poisson processes (see [115,
116]). In view of Theorem 1, it is not too surprising that, within this con-
struction, the evolution of a Φ−encoded polynucleotide πK(ηt) is a function
only of the Poisson processes attached to the sites in K. Thus, to control the
evolution of the nucleotide at site x, one has to deal only with the graphical
construction at sites x− 1, x, x+ 1, for which one can define coupling times
with exponential tail decay, leading to the proof of Theorem 2. Doing the
graphical construction in the past leads to the Propp-Wilson type perfect
simulation algorithm. This is described in more detail in Section 5 of the
present chapter.

Another interesting consequence of Theorem 1 is the following.

Theorem 3 (B., Gouéré, Piau [29]). The finite marginals of µ solve
explicit finite-size linear systems.

Theorem 3 is just a consequence of the fact that the time-evolution of a
Φ−encoded polynucleotide can be described by a finite-state continuous-time
Markov chain: the k−dimensional marginal of µ can be obtained by com-
puting the stationary distribution of a Φ−encoded polynucleotide of length
k + 2. As an example, we explicitly computed (with the help of a symbolic
computation software) the 2−dimensional marginals of µ in the simplest
case where all basal rates ru→v are equal to 1, and where the only non-zero
context-dependent rates are rCG→CA = rCG→TG = r. Here is the list of all
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the stationary frequencies4 of dinucleotides starting with an A:

F (AA) =
1

16

(
1 +

r

32 + 10r

(
3 +

3r

96 + 19r

))
,

F (AC) =
1

16

(
1 +

r

32 + 10r

(
0− 4r

32 + 10r

))
,

F (AG) =
1

16

(
1 +

r

32 + 10r

(
1− 3r

96 + 19r

))
,

F (AT ) =
1

16

(
1 +

r

32 + 10r

(
4 +

4r

32 + 10r

))
.

Similar formulas are available for the 12 other dinucleotides. Note that, since
for general k the corresponding linear systems are of size (9 · 4k) × (9 · 4k),
it is unrealistic to use this approach for k larger than, say 6 or 7 (depending
also on whether one wants a symbolic or numeric solution), although some
tricks can be devised to alleviate the computational burden.

Theorem 1 imposes strong independence properties on µ. First, µ is
2−dependent, meaning that, if Z ∼ µ, (Zx)x∈K1 and (Zx)x∈K2 are indepen-
dent as soon as d(K1,K2) > 2. Moreover, µ is a 3−factor, meaning that
we can find i.i.d. random variables (γx)x∈Z (the marked Poisson processes
attached to the sites of Z in the graphical construction) and a measurable
function f such that the sequence (f(γx−1, γx, γx+1))x∈Z has distribution µ.
Given such properties, one may be tempted to deduce that the dependence
structure of µ must be Markov of order, say 1 or 2, which is not true. We
do not provide a proof here, but rather give a caricatural example which
illustrates why such a deduction is erroneous in general.

Let (εx)x∈Z denote an i.i.d. sequence of symmetric Bernoulli random
variables, and let ζx := g(εx, εx+1), where g(0, 1) = g(1, 0) = 0, g(0, 0) = 1,
g(1, 1) = 2. By construction, (ζx)x∈Z is a 2−factor, but it is easy to check
that, for all n ≥ 1, conditional upon (ζ−2n, . . . , ζ−1) = (1, 0, . . . , 0), the
distribution of ζ0 is 1

2δ0 + 1
2δ2, while, conditional upon (ζ−2n, . . . , ζ−1) =

(0, 0, . . . , 0), the distribution of ζ0 is 1
2δ0 + 1

2δ1. This shows that (ζx)x∈Z
cannot be a Markov chain, of any order.

Before we end this section, let us mention the works [70, 15], in which
the structural properties of RN+YpR models are used to study distance
statistics between sequences evolving from a common ancestral sequence.

3. Statistical inference I

3.1. Inference with nucleotide substitution models. Let us define
a little more precisely the statistical framework we are working with. The
data consist of a (finite) sample of DNA sequences (sα, α ∈ S ), where each
sα is an element of S = AJ . On the other hand, the model is specified by:

4Due to the invariance of the model with respect to space-translations, µ is
also translation-invariant, and one can unambiguously define the stationary frequency
F (u1 . . . um) of a given word with respect to µ. It is also easily checked (e.g. by The-
orem 1) that µ is ergodic with respect to space-translations, so that F (u1 . . . um) also
corresponds to the asymptotic empirical frequency of u1 . . . um with respect to µ.
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• a finite, rooted, bifurcating tree T , whose leaves are identified with
S ; to each edge (α, β) of T such that α is the parent of β (denoted
β ← α) is attached a positive number tα,β counting the evolutionary
time from α to β;
• families of basal and context-dependent rates (ru→v), (ruv→uw) and

(ruv→wv)
• an initial distribution ν on S describing the sequence at the root.

Of course, one is interested in inferring the model from the data, but
several scenarios exist. For instance, in [30], the topology of T is given,
and the main focus is on the estimation of numerical parameters (rates and
branch lengths). In other situations, one may be mainly interested in the
topology of T , with numerical parameters being subsidiary, or in goodness-
of-fit comparisons between distinct classes of models. Note that we do not
assume an a priori probabilistic model on T .

Among the inference methods, maximum likelihood (including variations
such as the expectation-maximization (EM) approach) plays a central role,
along with bayesian strategies. In the sequel, we mostly discuss maximum
likelihood, which is the method used in [30].

Let us collectively denote the components of the model (tree, rates, an-
cestral sequence distribution) by θ, and use the notation Pθ for the cor-
responding probability measure, which describes the evolutionary process
leading from the ancestral sequence to the sequences in the sample. Define
Sα as the random variable corresponding to the sequence attached to node α
in the model. The likelihood of the sample of DNA sequences (sα, α ∈ S )
with respect to the model θ is then defined by

L = L((sα)α∈S |θ) := Pθ(Sα = sα, α ∈ S ). (6)

3.1.1. Site-independent models. For site-independent models, computing
the likelihood of a sample of sequences with respect to the model can be done
very efficiently, using a dynamic programming algorithm known as Felsen-
stein’s tree-pruning algorithm (see e.g. [81]), which recursively computes
likelihood values associated with the nodes of the tree, starting at the leaves
and ending at the root. In accordance with the site-independence assump-
tion, the distribution of the ancestral sequence is assumed to be of a product
form, i.e. ν = ν0 ⊗ · · · ⊗ ν0, where ν0 is a probability measure on A.

Felsenstein’s algorithm goes as follows. To each node α of the tree T ,
and each site x ∈ J , is associated the map Lx,α from A to R defined by

Lx,α(u) := Pθ(Sβ = sβ, β L99 α, β ∈ S |Sα(x) = u),

where β L99 α means that β is a descendant (but not necessarily a child) of
α. One then has the key recursion identity:

Lx,α :=
∏
β←α

etα,βG0 × Lx,β, (7)

where G0 is the infinitesimal generator on A describing the Markov dynamics
of a single site. The product × denotes the action of the corresponding
Markov semi-group on real-valued functions defined on A, which in practice
means a matrix-vector product. The recursion (7) is initialized at the leaves
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of T by
Lx,α(·) := 1sα(x)(·). (8)

Finally, the likelihood for site x is obtained through

Lx :=
∑
u∈A

ν0(u)Lx,root(u), (9)

and the overall likelihood through

L :=
∏
x∈J

Lx. (10)

Given the ability to compute L with Felsenstein’s algorithm, maximum
likelihood inference of the model can be performed. Moreover, the corre-
sponding statistical framework is the simplest and best understood one (see
e.g. [148]), since the sequence of observations forms an i.i.d. sequence under
the model.

3.1.2. Context-dependent models. In the case of context-dependent sub-
stitution models, it is no longer true that the likelihood can be written under
the product form (10). One could still consider a tree recursion such as (7),
exploiting the fact that sequence evolution is a Markov process on AJ . This
would mean working with the full generator G (see (1)) on the set AJ whose
cardinality is 4|J |, instead of G0. Unfortunately, numerical computation of
the exponential of a 4|J | × 4|J | matrix is not feasible unless |J | is less than,
say 6 or 7, so this direct approach cannot be used for real data, where |J |
typically varies from a few hundreds to a few millions.

A first alternative approach consists in approximating the dependence
structure induced by the model, using various ways of neglecting dependen-
cies between non-neighbouring sites – which are generally expected to be
small – to make computations tractable. A surrogate for the original likeli-
hood of the model can thus be obtained and exploited within a maximum
likelihood or a bayesian framework, see e.g. [67, 5, 141, 117, 50, 49]. This
approach in general leads to computationally efficient algorithms, but the
reliability of the corresponding approximations is usually difficult to assess
other than empirically.

Another approach consists in using inference techniques developed for
models with latent (unobserved) variables. Here, the set of latent variables
corresponds to the full substitution history leading from the ancestral se-
quence to the sequences in the sample.

One key observation is that, due to the nearest-neighbour dependence
of substitution rates in the model, the collection of substitution histories at
sites x ∈ J possesses an explicit Markov random field structure. To state this
more precisely, introduce the notation Sα,β,t to denote the sequence that has
evolved for t units of time along the tree from α to β. The full substitution
history H (x) at site x is then defined by

H (x) := (Sα,β,t(x); β ← α, 0 ≤ t ≤ tα,β) .

The Markov random field property of H corresponds to the fact that H (x)
depends on the histories at sites distinct from x only through the histories
at neighbouring sites, which we write slightly informally as

dis. (H (x)|H (y); y ∈ J \ {x}) = dis. (H (x)|H (y); |y − x| = 1, 2) . (11)
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Moreover, the conditional distribution of H (x) given the histories at neigh-
boring sites can itself be described explicitly as a time-inhomogeneous Markov
process running along the edges of the tree T .

Thanks to this structure, it is possible to use Markov Chain Monte Carlo
techniques such as Gibbs sampling, to sample from the conditional distribu-
tion of (H (x), x ∈ J) given the data, i.e. given Sα = sα, α ∈ S . In this
setting, one can then apply inference methods developed for latent variable
models, such as Monte Carlo EM, or bayesian strategies, see e.g. [137]. This
approach is used in several works (in discrete or continuous-time settings),
see e.g. [127, 91, 88, 66, 10].

One advantage of such methods is that the context-dependent dynamics
is faithfully reflected instead of replaced by an approximation whose accuracy
is difficult to assess. On the other hand, they lead to computer-intensive
algorithms, for which convergence is an issue.

3.2. Inference for RN+YpR models (B. and Guéguen [30]).
3.2.1. Theory. In [30], we developed a maximum-likelihood type ap-

proach5 to inference, that exploits the specific properties of RN+YpRmodels.
Assuming (for the sake of simplicity) that J = {1, 2, . . . , 3q+2} for some

integer q, consider the division of the sequence ηt ∈ AJ into non-overlapping
Φ−encoded tri-nucleotides
ηt(1)ηt(2)ηt(3)︸ ︷︷ ︸ ηt(4)ηt(5)ηt(6)︸ ︷︷ ︸ . . . ηt(3q − 2)ηt(3q − 1)ηt(3q)︸ ︷︷ ︸

⇓ ⇓ ⇓
Φ(ηt(1)ηt(2)ηt(3)) Φ(ηt(4)ηt(5)ηt(6)) · · · Φ(ηt(3q − 2)ηt(3q − 1)ηt(3q))

Thanks to Theorem 1, we see that these Φ−encoded trinucleotides evolve
as independent Markov processes on the alphabet A3, with infinitesimal
generator Q3, see (2). As a consequence, letting

Y 0
α (k) := Φ(Sα(3k − 2)Sα(3k − 1)Sα(3k)),

y0
α(k) := Φ(sα(3k − 2)sα(3k − 1)sα(3k)),

we can map our our sample (sα, α ∈ S ) of DNA sequences of length
|J | = 3q, onto a sample (y0

α, α ∈ S ) of sequences of length q, written
in the alphabet A3, whose past evolutionary history is described by a site-
independent Markov model with infinitesimal generator Q3 evolving along
the tree T . The corresponding likelihood

L0
3(y0

α, α ∈ S|θ) := Pθ(Y 0
α = y0

α, α ∈ S),

can then be computed using Felsenstein’s algorithm, using the alphabet A3

instead of A and generator Q3 instead of G0. Note that, to make the above
approach work, we also have to assume that the distribution ν of the ances-
tral sequence is translation-invariant, and that, with respect to ν, Φ−encoded
polynucleotides with pairwise disjoint supports are independent. This is au-
tomatically the case if ν is e.g. assumed to be the stationary distribution of
a RN+YpR model. In the sequel, we call ν3 the distribution on A3 corre-
sponding to a Φ−encoded trinucleotide.

5More precisely, our approach belongs to the class of composite likelihood methods
(see [150, 151] for general references on the subject).
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On the practical side, the mapping we have just described makes it pos-
sible to recycle existing maximum-likelihood inference algorithms, developed
for site-independent models, with an alphabet size now |A3| = 3×4×3 = 36
instead of just |A| = 4, whence an additional but manageable computa-
tional cost. On the theoretical side, this approach automatically inherits
the properties of maximum likelihood inference based on sequences of inde-
pendent identically distributed observations, such as asymptotic consistency
and efficiency (see e.g. [148]).

However, mapping the original sequence alignment data onto the family
of Φ−encoded trinucleotides y0

α(k) leads to a substantial loss of information,
since no distinction is made between As and Gs at sites i = 3k−2, or between
Cs and T s at sites i = 3k.

To make more efficient use of the information contained in the data, one
should take into account not just one, but all three possible phases associated
with the division of the sequence into non-overlapping trinucleotides. More
precisely, one can generalize the definition of y0

α and Y 0
α by letting, for p =

1, 2,
Y p
α (k) := Φ(Sα(3k − 2 + p)Sα(3k − 1 + p)Sα(3k + p)),

ypα(k) := Φ(sα(3k − 2 + p)sα(3k − 1 + p)sα(3k + p)).

Each p = 0, 1, 2 gives rise to a different likelihood, denoted Lp, defined by

Lp3(ypα, α ∈ S|θ) := Pθ(Y p
α = ypα, α ∈ S).

The approach used in [30] consists in performing maximum-likelihood esti-
mation with respect to the averaged log-likelihood `3 defined by

`3 := 1
3

(
logL0

3 + logL1
3 + logL2

3

)
. (12)

On a purely practical side, maximum-likelihood inference with respect to
`3 can still be carried out by recycling6 algorithms devised for site-independent
models, even though overlapping Φ−encoded trinucleotides generally do not
evolve independently under an RN+YpR model.

On the other hand, the use of `3 has to be given a theoretical justification,
since it no longer corresponds to the likelihood associated with a sequence of
i.i.d. random variables, due to the dependence between distinct phases7. In
what follows, we sketch a justification based on asymptotic theory, assuming
a sample of infinitely long DNA sequences (indexed by Z), of which we study
a larger and larger part as J ↗ Z.

Let us use a J subscript to indicate dependence on J in the following,
and assume that the "true" evolutionary model describing the sequences
corresponds to the value θ = θ0. For p = 0, 1, 2, let ˆ̀p

3,J denote the random
variable obtained by computing logLp3,J using the random variables Y p

α,J as
the input data:

ˆ̀p
3,J(θ) := logLp3,J(Y p

α,J , α ∈ S|θ).

6More specifically, maximum likelihood inference with respect to `3 can be achieved by
applying a maximum likelihood algorithm that treats the whole family of (overlapping)
Φ−encoded trinucleotides as independently evolving sites governed by the infinitesimal
generator Q3.

7Note that `3, being based on mappings of the original sample, which erase some of
the information contained in the data, has no reason to be equal to the true likelihood L.
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Figure 4. Topology of the phylogenetic tree associated with
the 10 species of primates used in the alignment.

Using i.i.d.ness of the evolution of disjoint Φ−encoded tri-nucleotides, the
law of large numbers entails that, for p = 0, 1, 2, one has a.s. that

lim
J↗Z
|J |−1 ˆ̀p

3,J(θ) = `∗3(θ), (13)

where `∗3(θ) is the expected log-likelihood of the model describing a single
Φ−encoded trinucleotide evolving along T according to the infinitesimal
generator Q3 and starting with the ancestral sequence distribution ν3 speci-
fied by θ0, i.e.

`∗3(θ) := Eθ0(logL0
3,J0(Y 0

α (1), α ∈ S|θ)),

where J0 = {1, 2, 3}.
The limit (13) is the key to the consistency of the maximum likelihood

method, since, provided that the model is identifiable8, θ0 is the unique value
of θ at which `∗3(·) attains its maximum.

Now, exploiting mixing properties in a similar way as [70], one can prove
that, as J ↗ Z, the distribution of the vector

|J |−1/2
(

ˆ̀p
3,J(θ)− `∗3(θ)

)
p=0,1,2

is that of a tri-dimensional centered normal vector Z = (Z0, Z1, Z2) whose
covariance matrix is of the form

cov(Z) =

(
v c c
c v c

c c v

)
.

As a consequence, the definition of `3 through (12) provides (in the sense of
asymptotically unbiased with minimum variance) the optimal way of com-
bining the three log-likelihood values `p3, p = 0, 1, 2 to produce an estimate
of `∗3.

3.2.2. Applications. We applied our method on a data set consisting of
a portion of the human genome comprising 1,877,425 bases, aligned with
genomes from nine other species of primates, see Fig. 4.

8We do not discuss identifiability issues here, which turn out to be non-trivial, and
refer to [30] for references. Just note that only ν3 can be identified here, not ν.
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As a first application, we performed maximum likelihood computations
with `3 for various substitution models with (+CpG) and without (+0) a
context-dependent substitution rate r = rCG→CA = rCG→TG modeling CpG
hypermutability. The model describing basal (non-context-dependent) rates
goes from the simplest (Jukes-Cantor, denoted JC69) up to the most general
(Rzhetsky-Ney, denoted RN95) allowed in the RN+YpR class. The results
are shown in Table 1. One observes, among other things, that including a
context-dependent substitution rate always improves the fit in a dramatic
way. Moreover, the very basic K80+CpG model outperforms all models
with no context-dependent rates. Note that brutal comparison of likelihood
values between distinct models goes against good statistical practice. Still,
as is often the case when performing comparisons of nucleotide substitution
models on large datasets, the likelihood differences are so large that using
any of the usual criteria (classical likelihood ratio test for nested models,
AIC or BIC), would not alter the result of the comparison.

Model np `3 − `JC
3 ρ

JC69+CpG 1 132534.1 25.078
K80+0 1 118040.5
K80+CpG 2 226295.3 12.719
T92+0 2 164839.6
T92+CpG 3 234796.9 9.916
HKY85+0 4 164874.3
HKY85+CpG 5 234829.6 9.916
TN93+0 5 164901.1
TN93+CpG 6 234861.6 9.917
RN95s+0 3 169535.9
RN95s+CpG 4 237311.3 9.242
RN95+0 7 169596.7
RN95+CpG 8 237375.7 9.242

Table 1. Maximum `3 values for various models. Shown
are the differences `3 − `JC

3 , where `JC
3 is the value obtained

for the basic Jukes-Cantor (JC69+0) model. Also shown are
the estimated values of the normalized CpG hypermutability
rate ρ = rCG→CA/rC→T = rCG→TG/rC→T , with various
substitution models (np: number of free parameters).

We then performed an estimation of the CpG hypermutability rate along
the human sequence in our dataset. Since CpG hypermutability is a con-
sequence of methylation, a sufficiently low local value of this rate should
indicate the presence of what biologists call a hypomethylated island. A
more usual criterion is based on the so-called CpGo/e ratio

CpGo/e =
frequency of CpG

frequency of C × frequency of G
.

Note that the CpGo/e ratio is based solely on the composition of the human
sequence, while our approach exploits the whole phylogenetic information
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Figure 5. Top: CpG hyper-mutability rate ρ =
rCG→CA/rC→T = rCG→TG/rC→T along the human sequence,
inferred over sliding windows of length 2000 by our method.
Bottom: CpGo/e ratio on the corresponding windows.

contained in the alignment, and simulation studies (see [30]) suggest that
this might lead to more accurate results. Fig. 5 shows the value of the hy-
permutability rate along the human sequence, inferred over sliding windows
of length 2000, together with the corresponding value of the CpGo/e ratio.

4. Structural properties and statistical inference II

4.1. Likelihood computation for context-dependent nucleotide
substitution models. In general, computing the exact value of the like-
lihood of a sample of DNA sequences for a context-dependent substitution
model is an intractable problem. Inference methods either use a tractable
substitute for the likelihood (among which the one we used in [30] in the
special case of RN+YpR models), or EM/Bayes strategies in combination
with Markov chain Monte Carlo methods to sample from the distribution of
the (unobserved) substitution histories of sites conditional on the data. It
turns out that the latter approach also has the potential to produce numer-
ical estimates of the likelihood (or Bayes factor, in a bayesian framework),
using a refined importance sampling scheme, as we now explain.

Given a family of sequences s = (sα, α ∈ S ) and h = (h(x), x ∈
J) describing the substitution history at sites x ∈ J , we use the notation
L(h, s|θ) for the corresponding joint likelihood9 with respect to the model θ.

9We do not enter into technical details here. More formally, L(h, s| θ) can be defined
as the joint density of the random variables H = (H (x), x ∈ J) and S = (Sα, α ∈ S ),
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Now, for fixed s, consider the integral

Iθ2,θ1 :=

∫
L(h, s|θ2)

L(h, s|θ1)
· L(h, s|θ1)

L(s| θ1)
dh. (14)

On the one hand, Iθ2,θ1 is the integral of

gθ2,θ1s : h 7→ L(h, s|θ2)

L(h, s|θ1)
,

with respect to the conditional distribution of H given S = s. On the other
hand,

Iθ2,θ1 :=

∫
L(h, s|θ2)

L(s| θ1)
dh =

L(s| θ2)

L(s| θ1)
, (15)

so that Iθ2,θ1 is in fact the ratio between two values of the likelihood of the
data s, computed for the two sets of model parameters θ2 and θ1.

Since gθ2,θ1s admits an explicit expression, (14) allows one to numerically
compute Iθ2,θ1 , using substitution histories simulated from the conditional
distribution of H given S = s. To compute the actual likelihood (and not
just a ratio), one chooses for θ2 the set of parameters of interest, and for
θ1 a set of parameters in which context-dependent substitution rates are
zero, whence the possibility of evaluating L(s|θ1) exactly by Felsenstein’s
algorithm.

This basic idea has to be refined, however, for the variance of gθ2,θ1s with
respect to the conditional distribution of H given S = s may be infinite,
in which case the Monte Carlo estimation of the ratio Iθ2,θ1 is problematic.
One refinement consists in choosing a sequence of parameters θ1, . . . , θn in
which θi+1 is sufficiently "close" to θi so that the corresponding variance is
finite. With θn = θ being the parameter of interest, and θ1 a parameter for
which an exact computation of the likelihood is possible, one writes

L(s|θn) = L(s|θ1)× L(s| θ2)

L(s| θ1)
× · · · × L(s| θn)

L(s| θn−1)
, (16)

each likelihood ratio being estimated by Monte Carlo simulation. Pushing
this idea one step further, one may consider a smooth path in parameter
space joining θ1 to the target set of parameters θ, and replace the discrete
telescopic product (16) by a continuous analogue, leading to the so-called
thermodynamic integration approach (see [83, 112]).

4.2. Likelihood computations for RN+YpR models using se-
quential Monte Carlo methods (B. and Huet [31]). The approach de-
veloped in [31] is an alternative to thermodynamic integration for RN+YpR
models, which consists in applying sequential Monte Carlo methods, see e.g.
[48, 4, 64, 57], and more precisely particle approximation algorithms devel-
oped for the filtering of hidden Markov models. We first describe the hidden
Markov structure of RN+YpR models, then the corresponding particle ap-
proximation algorithm.

We have seen (see (11)) that, for general context-dependent substitution
models with nearest-neighbour interaction, the family of full substitution
histories (H (x), x ∈ J) has an explicit Markov random field structure (which

with respect to a suitable product reference measure (just the counting measure for S, and,
for H , the Lebesgue measure on Rk on the subspace where H has exactly k substitutions).
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can be exploited to sample from the conditional distribution of these histories
with respect to the sequences in the sample, using Markov chain Monte Carlo
methods). The one-dimensional Markov random field structure implies that
(H (x), x ∈ J) is in fact a Markov chain (of order 2). Thus, calling O(x) the
family of nucleotides at site x in the DNA sequences that form the sample,
i.e.

O(x) := (Sα(x), α ∈ S ),

the pair (H (x),O(x))x∈J can be viewed as a hidden Markov chain. However,
unlike the Markov random field structure, the Markov chain structure of
(H (x), x ∈ J) cannot be described explicitly in general (to describe the
transition from x to x+ 1, one has to integrate over all possible transitions
from x to x + 1 to x + 2 etc.). However, in the case of RN+YpR models,
an explicit Markov structure can be obtained for a slight modification of
(H (x),O(x)) that uses the ρ and η encoding. Let

H ′(x) := (ρ(H (x)), η(H (x+ 1)),

O′(x) := (ρ(O(x)), η(O(x+ 1))).

It can be proved that (H ′(x), x ∈ J) has a Markov chain structure (of
order 1), and that the corresponding transition kernel admits an explicit
description in terms of a time-inhomogeneous Markov process running along
the edges of the tree T . Thus, a simulation procedure can be developed for
this kernel, allowing the application of sequential Monte Carlo algorithms to
the hidden Markov chain

(H ′(x),O′(x))x∈J .

We now describe the kind of sequential Monte Carlo algorithm we use
to compute the likelihood. Define the event Ax by Ax := {O′(x) = o′(x)},
where o′(x) := ((ρ(sα(x)), η(sα(x + 1))), α ∈ S ). Then define the condi-
tioned transition probability kernel Q̃ by

Q̃(ξ, ·) := Pθ(H ′(x+ 1) ∈ ·|H ′(x) = ξ, Ax+1),

and
wx(ξ) := Pθ(Ax+1|H ′(x) = ξ).

Among several possible variants, the algorithm we use, known in [48]
as the sequential i.i.d. algorithm, consists in simulating for each x ∈ J , a
population (ξix, 1 ≤ i ≤ N), with the iteration leading from x to x+ 1 being
of the following form:

• choose I ∈ {1, . . . , N} according to the distribution∑N
i=1wx(ξix)δξix∑N
i=1wx(ξix)

,

• simulate ξix+1 according to the probability distribution Q̃(ξI , ·).
As a result, for large N , (ξix, 1 ≤ i ≤ N) forms a particle approximation of
the filtering distribution at x, i.e.

1

N

N∑
i=1

δξix ≈ Pθ(H ′(x) ∈ ·|O′(y) = o′(y), y ≤ x).
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To compute an approximation of the likelihood, one writes,

L((sα, α ∈ S )|θ) = c1 ×
c2

c1
× · · · × cm

cm−1
, (17)

where, for x ∈ J ,
cx := Pθ(O′(y) = o′(y), y ≤ x),

and where we have assumed (without loss of generality) that J = {1, . . . ,m}.
Using the particle approximation, one then has that, for large N ,

cx+1

cx
≈

N∑
i=1

wx(ξix),

and the overall likelihood can be estimated from (17).
Note that (17) shares some similarities with (16), and that, in both cases,

we use Monte Carlo simulation to estimate individual factors in a product
decomposition of the likelihood. However, here, we are using the sequential
structure of the data, instead of relying on a sequence (or a path) of successive
models. Moreover, the strong mixing properties of RN+YpR models make
them especially nice candidates for sequential Monte Carlo algorithms.

Given the ability to obtain accurate numerical approximations of the
likelihood, one can numerically investigate several interesting questions.

Validity of likelihood approximations. Several approaches to inference are
based on neglecting some aspects of the dependence structure of the model to
produce computationally tractable approximations of the likelihood. These
can in turn be compared to the numerical estimates produced by the se-
quential Monte Carlo method. For instance, we have studied the validity of
an approach where the sequence O′(x) is approximated by a Markov chain,
showing that, on simulated data, the approximation can be both very accu-
rate or very inaccurate, depending on the sample and on the region of the
model’s parameter space.

Loss of accuracy of `3−based inference. Since inference based on `3 does
not use the true value of the likelihood, one expects inference based on `3 to
be less accurate than inference based on the actual likelihood. However, in
the examples we investigated, the difference between the estimates produced
by both methods is negligible, compared to the fluctuations around the true
value of the parameter that are due to the finite-size of the sample (the true
value is known since we use simulated data).

Model comparisons. Using `3 does not allow us to perform likelihood-
based comparisons with models outside the RN+YpR class. This is the case
even for site-independent models that do not belong to the RN class, for
which exact likelihood computations are nevertheless possible. Sequential
Monte Carlo methods lead to numerical estimates that are accurate enough
to detect likelihood differences between such models.

Accuracy of ancestral sequence reconstruction. Consider the problem of
inferring the site-by-site conditional distribution of nucleotides in the ances-
tral sequence, conditional upon the data. Using Φ−encoded polynucleotides,
the distribution of the nucleotide at site x in the ancestral sequence can be
inferred conditional upon truncated data, where only sites close to x (say at
distance less than 2 or 3) are taken into account. On the other hand, the
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sequential Monte Carlo algorithm we use automatically provides an estima-
tion of this distribution, taking into account all the data. It turns out that,
depending on the sample and of the region of the model’s parameter space,
the influence of non-nearest neighbours may or may not be negligible.

5. Perturbations

Our work on RN+YpR models exploits the specific structural properties
of these models, which themselves depend crucially on the special assump-
tions on the rates that characterize the RN+YpR class. From a modeling
perspective, one does not expect these special assumptions to hold exactly,
but rather to provide, at best, a reasonably accurate approximation to the
real substitution dynamics. Thus, one is naturally led to study perturba-
tions of the RN+YpR class, where these assumptions are not met exactly.
This question is also natural from a more mathematical perspective, where
one would like to know how the specific dependence structure of RN+YpR
models is transformed under slight perturbations of the assumptions.

Motivated by these questions, in [32], we proved general results on per-
turbations of particle systems, first developed for the case of RN+YpR mo-
dels in the preliminary work [33]. These results deal with the existence
of coupling from the past (CFTP) times for the dynamics, named after the
seminal paper by Propp and Wilson [131].

The key idea of CFTP, formulated originally in the context of finite state-
space Markov chains, is to simulate coupled trajectories of the process from
further and further into the past, until eventually the present state of the
Markov chain is the same for all these trajectories, regardless of their starting
point. One then obtains an exact realization of the stationary distribution
of the Markov chain, and, under a certain monotonicity condition on the
transitions of the chain, CFTP leads to a practical algorithm for sampling
from the stationary distribution. Many extensions of this scheme have been
developed since, notably to include processes on more general state-spaces,
and situations where the monotonicity condition is not met (see the online
bibliography maintained by Wilson [153]).

In the context of interacting particle systems in the sense10 of [115],
a natural coupling of the trajectories of the system is provided by the so-
called graphical construction of the dynamics, based on Poisson processes
(see below). Within this framework, the analog of CFTP is that, for any
finite set of sites, the state of the system restricted to these sites does not
depend on the initial configuration if one starts the dynamics far enough in
the past. If such a property holds, we say that the particle system possesses
a CFTP time.

The existence of a CFTP time is not only useful for simulation purposes,
but leads to important theoretical properties of the particle system. Indeed,
the existence of a CFTP time automatically implies that the interacting
particle system is ergodic, and estimates on the tail of the CFTP time lead to
bounds on the speed of convergence to the stationary distribution. Similarly,

10That is: continuous-time Markov processes which describe the evolution of a system
of states attached to the sites of the lattice Zd and such that the evolution at any site is
governed by local transition rates involving the states of the neighboring sites.
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estimates on the range of the space-dependence of the CFTP time yield
bounds on the decay of spatial correlations for the stationary distribution.

Our main result is a general perturbation theorem, which can be stated
informally as follows. Start with an interacting particle system possessing
a CFTP time whose definition involves the exploration of an exponentially
integrable number of points in the graphical construction, and which satisfies
the positive rates property. Consider a perturbation obtained by adding new
transition rates to the original dynamics. Then, provided that the pertur-
bation is based on small enough rates, our result states that the perturbed
interacting particle system possesses a CFTP time as well (with nice prop-
erties such as an exponentially decaying tail).

In the following, we give a more precise statement of this result, explain
how it applies to RN+YpR models and other examples, and discuss its proof,
which is based on the notion of coupling time with ambiguities.

5.1. A general perturbation theorem (B. and Piau [32]). The
framework we consider is a natural extension of the one used to define
context-dependent substitution models in Section 1. The four-letter nucleo-
tidic alphabet A is replaced by a general finite alphabet A , and the set of
sites is Zd for an arbitrary d ≥ 1 instead of just Z. Moreover, instead of
the three transformations Ru→v, Ruv→uw and Ruv→wv, we consider general
transformation rules of the form R = (f,A, r), where A is a finite subset of
Zd, f : A A → A is a map, and r ≥ 0 is a non-negative real number. Given
a configuration of the system η = (η(z))z∈Zd in A Zd and a site x in Zd, we
denote by Rxη the configuration such that

(Rxη)(x) = f((η(x+ y))y∈A),

(Rxη)(z) = η(z), z 6= x.

(Our convention when A is empty is that A A is a singleton on which f takes
a single well-defined value.)

The interacting particle system dynamics is defined by a finite list of
such transition rules

{Ri ; i ∈ I}, Ri = (fi, Ai, ri),

through the infinitesimal generator G defined on functions that depend only
on a finite number of coordinates by

Gφ(η) =
∑
x∈Zd

∑
i∈I

ri · (φ(Rx
i η)− φ(η)) . (18)

In the sequel, we assume that the dynamics is in fact built through the
so-called graphical construction associated with the list of rules (Ri)i∈I (see
Liggett [114] for examples of this construction). Specifically, we consider a
Poisson point process P on Zd × I × R, whose intensity is the product of
counting (on Zd and I) and Lebesgue (on R) measures, and whose realization
prescribes the dynamics of the particle system as follows. First, for every x,
(ηt(x))t is a jump process whose state may change only at times t for which
there exists an (almost surely unique) index i such that (x, i, t) belongs to
P. Second, for every such time t,

ηt = Rx
i (ηt−). (19)
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Through the graphical construction, P induces a stochastic flow F =

(F t2
t1

)t1≤t2 on A Zd , defined by the fact that, for t1 ≤ t2 and ξ in A Zd ,
F t2
t1

(ξ) is the configuration of the system at time t2 obtained by starting in
configuration ξ at time t1−, and using the transitions specified by P through
(19).

The notion of CFTP time is defined in this context: we say that a
negative and almost surely finite random variable T is a CFTP time (for
site x = 0) if the following property holds:

for all ξ1 and ξ2 in A Zd , [F 0−
T (ξ1)](0) = [F 0−

T (ξ2)](0) on {T > −∞}. (20)
To formalize the notion of perturbation, we first consider a particle sys-

tem whose dynamics is defined by a list of rules

Ru = {Ri ; i ∈ Iu}.
This corresponds to the original, unperturbed, particle system. The per-
turbed dynamics is defined by a list of rules of the form

Ru ∪Rp = {Ri ; i ∈ Iu ∪ Ip}, Iu ∩ Ip = ∅.
Our result provides general conditions under which the existence of a

CFTP time T u for the unperturbed particle system leads to the existence of a
CFTP time for the perturbed particle system, provided that the perturbation
is small enough.

The first condition is that the unperturbed dynamics possesses the pos-
itive rates property. This means that, for every v ∈ A , there exists a rule
with index ιv ∈ Iu whose application unconditionally leads to the value v.

The second condition is that the definition of T u involves the exploration
of an exponentially integrable number of points in P. To make this condition
precise, we introduce the notion of an exploration process associated with
T u. This is a sequence (Xn)n≥0 of subsets of P, obtained by exploring the
graphical construction further and further into the past. One starts with
X0 := ∅, and a current time value t = 0. From Xn, a set of active sites
θ(Xn) is defined, and the graphical construction is searched for points that
occur at active sites prior to the current time. The most recent such point
is then added to Xn to form Xn+1, and its time coordinate defines the new
current time value. The process stops when the set of active sites is empty,
in which case one sets X∞ := Xn. We say that such an exploration process
is associated with T u if T u is precisely the time coordinate of the last point
added to the process, and if, on {T u > −∞}, the value of [F 0−

Tu (ξ)](0), which
is the same for every ξ in A Zd , is measurable with respect to X∞.

Finally, the smallness of the perturbation is measured through two pa-
rameters ε and κ that admit explicit definitions in terms of Ru and Ru∪Rp,

ε = sup
v∈A

 ∑
j∈Ip; v∈fj(Aj)

rj

 (rιv)
−1, κ =

(∑
i∈Ip
|Ai|ri

)(∑
i∈I

ri

)−1

.

(21)
We can now give a precise statement of the main theorem.

Theorem 4 (B., Piau [32]). Consider unperturbed dynamics Ru with
the positive rates property, and possessing a CFTP time T u associated with
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an exploration process (Xn)n such that |X∞| has a finite exponential moment,
i.e. for some λ > 0, one has E(eλ|X∞|) < +∞. Then, for any perturbation
with small enough parameters ε and κ, there exists a CFTP time T ∗ for the
perturbed dynamics, which moreover possesses a finite exponential moment.

Additional results on the range of the space-dependence of T ∗ with re-
spect to the graphical construction are also obtained, see [32]. Although we
do not discuss this question, non-asymptotic bounds (on the smallness of ε
and κ, or on the exponential moment of T ∗) can be derived from the proofs
given in [32]. Also, let us point out again that the existence of a CFTP time
with a finite exponential moment implies ergodicity of the particle system,
with exponential bounds on the speed of convergence comparable to the one
stated in Theorem 2.

Finally, note that, although [32] does not explicitly address issues re-
lated to the practical implementation of CFTP, the definition of T ∗ in terms
of (T,H) makes it clear that T ∗ yields an actual CFTP algorithm for the
perturbed particle system, provided that T u and the associated exploration
process are compatible with an actual algorithmic implementation.

5.1.1. Applications. We now discuss how Theorem 4 can be applied to
RN+YpR models. In view of the positive rates assumption, we assume
that all the basal substitution rates are positive, see (3), and re-express the
dynamics of the model with the help of the following list of rules, each rule
being of the form (f,A, r):

• Unconditional rules (denoted ιv): for each v in A, consider A = ∅,
r > 0 and f ≡ v;
• Transversion rules: for each v in A, consider A := {0} and f(w) = v
if v and w are not both Y or both R, f(w) = w otherwise;
• Transition rules: for each v in A, consider A = {0} and f(w) = v
if v and w are either both Y or both R, f(w) = w otherwise;
• Left-dependent rules: for each u in Y , v in R, v′ in R, consider
A = {−1, 0}, f(w−1, w0) = v′ if (w−1, w0) = (u, v), f(w−1, w0) =
w0 otherwise;
• Right-dependent rules: for each u in Y , v in R, u′ in Y , consider
A = {0, 1}, f(w0, w1) = u′ if (w0, w1) = (u, v), f(w0, w1) = w0

otherwise.

The key property is the following finite factor property of the dynamics,
which holds for a similar reason as Theorem 1: the value of

[
F 0−
t (ξ)

]
is

measurable with respect to the points in the graphical construction whose
space coordinates lie in {−1, 0, 1}, and to (ξ(x), x ∈ {−1, 0, 1}). To explain
how this property is used, introduce the notations

Px := P ∩ ({x} × I × R), Pxs,s′ := P ∩ ({x} × I×]s, s′[).

Say that a triple (t−1, t0, t1) of negative times such that t0 > t1 and t0 > t−1

is a locking triple if

• for all x ∈ {−1, 0, 1}, one has that (x, ιvx , tx) ∈ Px for some vx ∈ A;
• P−1

t−1,t0
= P1

t1,t0 = ∅.
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From the definition of the dynamics, one then has that, for all x ∈ {−1, 0, 1},
and all ξ,

[F t0
min(t−1,t1)(ξ)](x) = vx.

As a consequence of the finite factor property of the dynamics, this in turn
implies that [F 0−

min(t−1,t1)(ξ)](0) takes the same value for all ξ. Thus, to define
a CFTP time for the dynamics, one only has to run an exploration process
on the graphical construction at sites {−1, 0, 1} that looks for locking triples.
From the independence properties of Poisson processes, it is easily seen that
the time to wait before a locking triple appears possesses a finite exponential
moment, and this is enough to ensure that |X∞| has a finite exponential
moment.

One of the limitations of the above definition is that, when context-
dependent substitutions rates are large compared to the basal rates, locking
triples are rare due to the second requirement in their definition. Accordingly,
E(eλ|Ξ∞|) is finite only for small values of λ, and, as a result, the range of
values of ε and κ for which Theorem 4 holds becomes small too. Using an
alternative definition of locking triples, one gets a definition that is insensitive
to large values of context-dependent rates, so that the magnitude of the
perturbation allowed in Theorem 4 can be made independent of these rates.
Alternative locking triples can e.g. be defined by

• for all x ∈ {−1, 0, 1}, one has that (x, ιvx , tx) ∈ Px for some vx ∈ A
such that v−1 ∈ R and v1 ∈ Y ;
• P−1

t−1,t0
and P1

t1,t0 contain context-dependent rules only.
Note that Theorem 4 can be applied as soon as a finite factor property

comparable to that of RN+YpR models hold, see [32]. However, RN+YpR
models are by far our best motivated examples of interacting particle systems
with such a property. Other examples of interacting particle systems to
which Theorem 4 can be applied, and where the finite factor property does
not hold, include one-dimensional noisy voter models, which are variants of
the classical voter model (see [114]) in which unconditional rules are added.
Two versions are considered in [32], one in which the simplest version of the
voter model is considered, and another version we call the voter model with
asymmetric polling. We refer to [32] for a discussion of these examples.

5.2. Proofs.
5.2.1. Coupling times with ambiguities. The proof of Theorem 4 uses as

an intermediate step the notion of CFTP time with ambiguities. This is a
weakening of the notion of CFTP time, in which property (20) holds only
when some so-called "ambiguities" associated with the rules attached to a
specific random subset H of P, are resolved. To give a precise definition,
let us consider, for each point α = (x, i, t) in P and time s < t, the random
variable e(α, ξ, s) defined as the value at site x produced by the application
of the rule attached to α when starting in state ξ at time s−. More formally:

e(α, s, ξ) = [F t
s(ξ)](x). (22)

When there exist some states ξ1 and ξ2 such that e(α, s, ξ1) 6= e(α, s, ξ2), we
say that there is an ambiguity concerning the rule attached to α, starting at
time s−.
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Let us introduce the notation Pt = P ∩ (Zd × I × [t, 0[). A CFTP time
with ambiguities consists of a negative almost surely finite random variable
T , together with a random subset H of PT , finite on the event {T > −∞},
such that the following modification of (20) holds:

for all ξ1 and ξ2 in A Zd , [F 0−
T (ξ1)](0) = [F 0−

T (ξ2)](0) (23)
provided that e(α, T, ξ1) = e(α, T, ξ2) for all α in H.

Note that, when H is empty, (23) is identical to (20). In addition, we require
thatH has the stopping property in the sense thatH∩Pt is σ(Pt)-measurable
for all t.

Our first result is that, starting from a CFTP time with ambiguities
(T,H), one can build an actual CFTP time T ∗, provided that H contains
few enough points on average. To give a precise statement, introduce the
parameter

g(T,H) = E

 ∑
(x,t,i)∈H

|Ai|

 .

Theorem 5 (B., Piau [32]). If there exists a CFTP time with ambiguities
(T,H) such that g(T,H) < 1, then there exists a CFTP time T ∗.

Additionally, estimates on the tail of T ∗ and on the range of its space-
dependence (in terms of bounds on exponential moments) can be derived
from analogous properties for T and H, see [32].

Here is an informal description of the construction of T ∗. One recursively
defines a sequence (Ambn)n≥0 of random subsets of Zd × R whose elements
are called ambiguities, in the following way. Let Amb0 = {(0, 0)} and fix
n > 0. First apply the CFTP time with ambiguities (T,H) at each space-
time point in Ambn. This generates a set of elements of P, with respect to
which ambiguities have to be resolved. Then Ambn+1 is the set of space-time
points upon which the resolution of these ambiguities directly depends or, in
other words, for α = (x, i, t), the set {(x+ y, t) ; y ∈ Ai}. The overall set of
points generated by this process is Amb∞ =

⋃
n≥0

Ambn and T ∗ is the lowest

value of T obtained when applying the CFTP time with ambiguities (T,H)
to the space-time points in Amb∞.

The idea which underlies the construction is that, when Amb∞ is finite,
we can resolve every ambiguity in a step-by-step manner, starting from the
points in Amb∞ that are furthest in the past and thus associated with an
empty set of ambiguities, down to the origin where we can determine the
value of [F 0−

T ∗ (ξ)](0). The almost sure finiteness of Amb∞ is obtained by
a first-moment argument which allows us to essentially bypass the analysis
of dependencies which would otherwise be required to study the sequence of
ambiguity sets (Ambn)n≥0.

5.2.2. Proof of Theorem 4. The proof of Theorem 4 consists in construct-
ing a CFTP time with ambiguities (T,H) for the perturbed dynamics, start-
ing from the CFTP time T u for the unperturbed dynamics. One then uses
Theorem 5 to deduce the existence of a CFTP time for the perturbed dy-
namics.
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The construction of (T,H) relies on what we call the exploration pro-
cess with locking of perturbative ambiguities, attached to the perturbed
dynamics. Informally, the construction can be described as follows. Run the
exploration process associated with the unperturbed dynamics on P. Each
time a point α = (x, i, t) corresponding to a perturbative rule, in the sense
that i belongs to Ip, is encountered, split the exploration process into |f(Ai)|
exploration processes evolving in parallel, one for each v in f(Ai), in which
(x, i, t) is replaced by (x, ιv, t).

Assuming that this process stops, one defines T as the lowest time-
coordinate of a point encountered during the exploration, while H is defined
as the set of such points that correspond to perturbative rules.

The fact that (T,H) is a CFTP time with ambiguities for the perturbed
dynamics is a consequence of the fact that T u is a CFTP time for the un-
perturbed dynamics. Informally, the idea is that fixing the ambiguities in
H in a given way amounts to replacing the corresponding (x, i, t) with un-
conditional rules of the form (x, ιv, t). The definition of the exploration
process associated with T u then guarantees that the value of [F 0−

T (ξ)](0)
is the same for the perturbed dynamics whose ambiguities are fixed and for
the unperturbed dynamics that uses the graphical construction in which the
perturbative rules are replaced in the way described above.

The proof that the exploration process with locking of perturbative am-
biguities almost surely stops is where the assumption that the perturbation
is small enough and the exponential moment condition on |X∞|, are needed.
These conditions allow a change-of-measure argument relating the perturbed
and unperturbed graphical constructions to be made, which, in combination
with a first-moment argument, leads to the desired result.

5.3. Discussion. For ergodic particle systems satisfying a monotonicity
condition similar to the condition used by Propp and Wilson in [131], CFTP
is always possible, as shown by van den Berg and Steif in [145]. For systems
lacking this monotonicity condition, CFTP algorithms have been developed
under so-called "high-noise" or "weak interaction" type assumptions, mean-
ing that the strength of the interaction between neighboring sites has to be
sufficiently small. In other words, the particle system under consideration
must be a sufficiently small perturbation of a system in which distinct sites
do not interact. An example is given by Haggström and Steif [86], where
the authors use a bounding set approach to control the coalescence of trajec-
tories (see also De Santis and Piccioni [56] for some refinements). Another
example is given by Galves et al. [77] (see also Galves and al. [78] and
Galves et al. [79]), who use a branching construction of which the approach
we have developed can be seen as a generalization11.

One interesting aspect of Theorem 4 is that it provides a general crite-
rion under which small perturbations of an interacting particle system retain
some of the CFTP properties of the original unperturbed system, allowing
us to go beyond the weakly interacting case. Indeed, Theorem 4 can be

11A construction very similar to the one by Galves et al. [77] was already used in
Ferrari et al. [73] to devise CFTP algorithms in a different framework. In fact, various
other constructions of this kind appear in the literature, though not explicitly in the
context of CFTP, see Ferrari [72] or the book edited by Dobrushin et al. [61] for examples.
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applied to RN+YpR models that include arbitrarily strong interactions be-
tween neighbouring sites.

It would be interesting to find new examples of strongly interacting parti-
cle systems that satisfy the assumptions of Theorem 4, beyond those consid-
ered in [32]. Natural candidates are exponentially ergodic particle systems
with a monotonicity property such as those considered in [145], but naive
upper bounds do not seem sufficient to prove that the finite exponential
moment condition holds in general for these systems.

Finally, let us mention that some of our applications overlap with the re-
cent paper by Mohylevskyy et al. [121], where a special kind of perturbation
of noisy voter models is considered and ergodicity is proved for sufficiently
small perturbations.

6. Perspectives

To account for the variability of substitution rates with respect to both
site and time, several extensions of the nucleotide substitution models de-
scribed in Section 1 have been developed (see e.g. [82] Chap. 3). These
include mixture models in which each site is assumed to have its own over-
all substitution rate, typically assuming an i.i.d. distribution of these rates
across sites, chosen among a parametric family of distributions. These also
include models in which substitution rates themselves evolve along the tree,
e.g. according to a Markov process, leading to a Markov-modulated Markov
process at the level of the sequence. A possible direction for extending the
approach of [30] is to include such refinements.

One important point we have not discussed is the distinction between
coding/non-coding parts of a DNA sequence. Due to the tri-nucleotide codon
structure of the genetic code, the effect of a substitution on an organism’s
fitness can be dramatically different according to whether it occurs at the
first, second or third position in a codon. To take this effect into account,
substitution models which include a penalty for non-synonymous substitu-
tions12 are used. Unfortunately, adding such penalties to RN+YpR models
seems to destroy some of their nice structural properties. We are currently
working with L. Guéguen on the use of such models on coding sequences.

Another issue is that the models we have studied do not explicitly take
into account the existence of insertions/deletions, but rather ignore the prob-
lem by using already aligned sequences. Adding an explicit stochastic model
for insertions/deletions would clearly be an improvement over the present
methodology.

Finally, one interesting perspective would be to develop computational
methods that are able to deal with perturbations of RN+YpR models by
taking advantage of their structural properties. This may enlarge the scope
of the computational approach developed in [30] by allowing the inclusion
of more realistic substitution models for which the restrictive assumptions
of the RN+YpR class are not met exactly.

12A mutation on the DNA sequence is called synonymous if it does not alter the
resulting amino-acid sequence.





CHAPTER 2

Interacting particle systems of the X + Y → 2X type

1. Introduction

1.1. The model(s). In this chapter, we consider interacting particle
systems with two types of particles moving on the lattice Zd, denoted X
and Y , with a local interaction rule modeling the irreversible autocatalytic
reaction X + Y → 2X. These particle systems have been introduced in the
physical literature as microscopic stochastic models which, in the limit of
a large average number of particles per lattice site, yield reaction-diffusion
equations describing the propagation of a front, the prototypical example be-
ing the Fisher-Kolmogorov-Petrovsky-Piscounov equation. We refer to [126]
for an extensive review of the subject from a theoretical physics perspective.
In the models we consider, particles of both types move on Zd by perform-
ing independent nearest-neighbour random walks in continuous time, with
two possibly distinct jump rates DX ≥ 0 (for X particles) and DY ≥ 0
(for Y particles). The reaction X + Y → 2Y is modeled by the following
simple interaction rule: upon contact with an X particle, Y particles are
instantaneously turned into X particles. Moreover, no particle (of either
type) is injected into the system beyond those already present in the initial
configuration, and no particle is ever removed from the system.

Typically, an initial configuration consists of a "gas" of Y particles spread
over Zd, with constant or i.i.d. Poisson numbers of Y particles at each site,
and a finite (nonzero) total number of X particles (this corresponds to the
"small N" case in the terminology of [126], meaning that the average num-
ber of particles per lattice site has a fixed value, rather than a large one with
respect to which a limit is taken). One is then interested in characterising
how the cluster formed by X particles gradually spreads into the space ini-
tially occupied by Y particles. Specifically, one would like to describe the
large-time asymptotic shape of the set Bt formed by the sites that have been
visited by an X particle prior to time t, i.e.

Bt := {x ∈ Zd; ∃s ∈ [0, t] such that x bears an X particle at time s}.

In the one-dimensional (d = 1) setting in which our own results have been
obtained, we consider a slightly different kind of initial configuration, with
constant or i.i.d. Poisson numbers of Y particles at sites located at the right
of the origin, while all the particles at the left of the origin are assumed
to be X particles. Figure 1 shows a simulation of the model in such a
situation. One is then interested in characterising how the front separating
X and Y particles moves towards +∞. Specifically, one wants to describe
the large-time asymptotic behaviour of the right-most position occupied by

35
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Figure 1. Time-evolution with d = 1, DX = DY = 1, and
i.i.d. Poisson numbers of mean 2. Red (resp. blue) trajecto-
ries correspond to particles of type X (resp. Y ).

an X particle up to time t, i.e.

rt := sup{x ∈ Z, ∃s ∈ [0, t] such that x bears an X particle at time s}.

To our knowledge, the first mathematical papers dealing with such par-
ticle systems, where both X and Y particles may have a non-zero jump rate,
are [100, 103] by Kesten and Sidoravicius. The interpretation suggested
in [100, 103] is that these particle systems can be viewed as microscopic
stochastic models for the spread of a rumor or of an infection, where X par-
ticles represent informed/infected individuals, while Y particles represent
ignorant/healthy individuals. Hence we use the generic term KS infection
model to refer to them in the sequel. The special case where DX > 0 and
DY = 0 can also be interpreted as modeling the burning of a homogeneous
solid, where X and Y particles correspond to heat packets and inert com-
bustible molecules respectively, see [134] and the references to the physical
literature therein. Therefore we use the term stochastic combustion model
to refer to this case. Note that a fancier interpretation in terms of bounc-
ing frogs can be found in [1], leading to the somehow enigmatic name "frog
model" that we chose not to use here.

One variation of the KS infection model we consider consists in making
the infectious power of X particles remanent, in the sense that a Y particle
turns into an X not only when it is in contact with a Y particle, but as
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soon as it is located at a site that has previously been occupied by an X
particle. We refer to this case as the remanent KS infection model. Other
variations that we shall only briefly discuss include: the activated random
walk model, where, in addition to the X+Y → 2X reaction, X particles turn
to Y particles at a positive rate; the modified DLA model, where DX = 0
and where the transition from Y to X happens when a Y particle attempts
to jump to a vertex bearing an X particle, the jump then being cancelled.

1.2. Presentation of the results. We now proceed to the presenta-
tion of our results, with a short exposition of the relevant literature to put
them into context. We refer to the survey paper by Kesten, Ramírez and
Sidoravicius [99] for a more thorough discussion. The stochastic combustion
case, i.e. the case DX > 0 and DY = 0, is discussed first, then the general
case where both DX > 0 and DY > 0.

1.2.1. Stochastic combustion model. The first result we quote is an as-
ymptotic shape theorem for Bt, due to Ramírez and Sidoravicius. An analo-
gous result for a discrete-time version of the model can be found in the paper
[1] by Alves, Machado and Popov. We use the notation [[B]] := B ∩ Zd for
subsets B ⊂ Rd.

Theorem 6 (Ramírez, Sidoravicius [134]). Consider the stochastic com-
bustion model on Zd starting with an initial configuration consisting of one
X particle at the origin, and one Y particle at every other site. There exists
a closed convex bounded subset Bd ⊂ Rd, symmetric with respect to permu-
tations of the coordinate axes, and with non-empty interior, such that, for
all ε > 0, almost surely for large enough t, one has

[[(1− ε)tBd]] ⊂ Bt ⊂ [[(1 + ε)tBd]].

In view of Theorem 6 above, the next natural question to ask is that
of the fluctuations of t−1Bt around the limiting shape Bd. In dimension
d ≥ 2, there is no known answer, even at the level of a rough order of
magnitude. On the other hand, in dimension d = 1, a central limit theorem
with t−1/2 scaling for the position of the front at time t has been obtained
by Comets, Quastel and Ramírez [53], and we now describe this result in
detail. The system is assumed to start in an initial configuration comprising
a fixed number a ≥ 1 of Y particles at each site x ≥ 1, while all the particles
initially at sites x ≤ 0 are X particles (we assume that there is at least one
such particle). For x ≤ 0, we denote by η(x) the number of particles at
site x in the initial configuration, and make the assumption that, for a small
enough θ (depending on a), the following condition is satisfied∑

x≤0

η(x)eθx < +∞. (24)

We first state the analog of Theorem 6 in the slightly different context
we are now studying.

Theorem 7 (Comets, Quastel, Ramírez [53]). For the stochastic com-
bustion model on Z, there exists 0 < v < +∞ such that, for any initial
configuration with a particles of type Y at each site x ≥ 1, satisfying the
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growth condition (24), one almost surely has that

lim
t→+∞

t−1rt = v.

The fluctuations are then characterised by the following result.

Theorem 8 (Comets, Quastel, Ramírez [53]). For the stochastic com-
bustion model on Z, there exists 0 < σ2 < +∞ such that, for any initial
configuration with a particles of type Y at each site x ≥ 1, satisfying the
growth condition (24), one has that, as ε goes to zero,

ε1/2
(
rε−1t − ε−1vt

)
, t ≥ 0,

converges in distribution on the Skorohod space to a Brownian motion with
variance σ2.

We now describe the results we have obtained on the probabilities of large
deviations for the front. We assume that the initial configuration satisfies
the following condition:

for all θ > 0,
∑
x≤0

η(x)eθx < +∞, (25)

which is a strengthening of condition (24) above. With this assumption, we
have the following large deviations principle.

Theorem 9 (B., Ramírez, [36]). For the stochastic combustion model
on Z, there exists a rate function I : [0,+∞[→ [0,+∞[ such that, for any
initial configuration with a particles of type Y at each site x ≥ 1, satisfying
the growth condition (25), one has that

lim sup
t→+∞

1

t
logP

[rt
t
∈ C

]
≤ − inf

b∈C
I(b), for C ⊂ [0,+∞[ closed,

and

lim inf
t→+∞

1

t
logP

[rt
t
∈ G

]
≥ − inf

b∈G
I(b), for G ⊂ [0,+∞[ open.

Furthermore, I is identically zero on [0, v], while I is positive, convex and
increasing on ]v,+∞[.

More precise estimates for the probabilities of slowdown large deviations
are available. To state them, let

U := lim sup
x→−∞

1

log |x|
log

 x∑
y=0

η(y)

 , u := lim inf
x→−∞

1

log |x|
log

 x∑
y=0

η(y)

 ,

and
s := min(1, U).

Theorem 10 (B., Ramírez, [36]). Consider the stochastic combustion
model on Z, and an initial configuration with a particles of type Y at each
site x ≥ 1, satisfying the growth condition (25). Then the following results
hold true.
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(a) For all 0 ≤ c < b < v, as t goes to infinity,

P
[
c ≤ rt

t
≤ b
]
≥ exp

(
−ts/2+o(1)

)
. (26)

(b) In the special case where η(x) ≥ a for all x ≤ 0, one has that, for
every 0 ≤ b < v, as t goes to infinity,

P
[rt
t
≤ b
]
≤ exp

(
−t1/3+o(1)

)
. (27)

(c) When u < +∞, as t goes to infinity,

exp
(
−tU/2+o(1)

)
≤ P [rt = 0] ≤ exp

(
−tu/2+o(1)

)
. (28)

1.2.2. KS infection model with DX > 0 and DY > 0. We now turn to
the more general case where both DX and DY are non-zero. We first quote
an asymptotic shape theorem similar to Theorem 6, which is due to Kesten
and Sidoravicius and holds for the case where DX = DY .

Theorem 11 (Kesten, Sidoravicius [103]). Consider the KS infection
model on Zd with DX = DY , starting with an initial configuration consisting
of i.i.d. Poisson numbers of Y particle at each site, and a finite (positive)
number of X particles. There exists a closed convex bounded subset Bd ⊂ Rd,
symmetric with respect to permutations of the coordinate axes, and with non-
empty interior, such that, for all ε > 0, one has almost surely that, for large
enough t,

[[(1− ε)tBd]] ⊂ Bt ⊂ [[(1 + ε)tBd]].

As is already the case for the stochastic combustion model, in dimension
d ≥ 2, no result concerning the fluctuations around the limiting shape Bd

is available. However, in dimension d = 1, we have obtained a central limit
theorem with t−1/2 scaling, that we now describe. The system is assumed to
start in an initial configuration comprising i.i.d. Poisson numbers of particles
at each site, with every particle at the right of the origin being of type Y ,
while every particle at the left of the origin is of type X. In this context,
Theorem 11 above shows that there exists 0 < v < +∞ such that a.s.,

lim
t→+∞

t−1rt = v. (29)

Fluctuations around the limiting speed v are then described by the following
theorem.

Theorem 12 (B., Ramírez [35]). For the KS infection model on Z with
DX = DY , starting with i.i.d. Poisson numbers of X (resp. Y ) particles at
the left (resp. right) of the origin, there exists 0 < σ2 < +∞ such that, as ε
goes to zero,

Bε
t := ε1/2

(
rε−1t − ε−1vt

)
, t ≥ 0,

converges in law on the Skorohod space to a Brownian motion with variance
σ2.

The KS infection model is not well-understood when DX 6= DY , even in
dimension d = 1. One still has the following upper bound showing that Bt
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spreads at most linearly in time, but it is not known whether a matching
(i.e. growing linearly with time) lower bound holds1.

Theorem 13 (Kesten, Sidoravicius [100]). Consider the KS infection
model on Z, starting with an initial configuration consisting of i.i.d. Poisson
numbers of Y particle at each site, and a finite (positive) number of X par-
ticles. There exists a constant C > 0 such that almost surely, for all large
enough t, one has that

Bt ⊂ [[t[−C,C]d]]

For the remanent KS model however, the following result shows that
both a law of large numbers and a central limit theorem hold, under the
assumption that DX ≥ DY .

Theorem 14 (B., Ramírez [35]). Consider the remanent KS infection
model on Z, with DX ≥ DY , starting with i.i.d. Poisson numbers of X (resp.
Y ) particles at the left (resp. right) of the origin. There exists 0 < v < +∞
such that one almost surely has that

lim
t→+∞

t−1rt = v.

Also, there exists 0 < σ2 < +∞ such that, as ε goes to zero,

Bε
t := ε1/2

(
rε−1t − ε−1vt

)
, t ≥ 0,

converges in law on the Skorohod space to a Brownian motion with variance
σ2.

1.3. Organization of the chapter. The rest of this chapter is orga-
nized as follows. Sections 2 and 3 describe the various approaches leading
to the proofs of the results quoted above, in the stochastic combustion case
(Section 2), and in the general case where DX > 0 and DY > 0 (Section 3).
Finally, Section 4 discusses open questions and perspectives, and contains
additional comments and references to the literature.

2. Proofs: stochastic combustion model (DX > 0, DY = 0)

Since, for the stochastic combustion model, changing the value of DX

amounts to rescaling time by a constant factor, we assume in the following
discussion that DX = 2, which corresponds to the choice made in [53, 36].

2.1. Sub-additivity. The approach used by Ramírez and Sidoravicius
in [134] to prove Theorem 6 (and also by Alves, Machado and Popov in [1])
is based on a sub-additivity property of hitting times, which can be stated
as follows. Assign to each site x ∈ Zd a random walk path W (x) in an i.i.d.
manner. Then, for every u, v ∈ Zd, define T (u, v) as the first hitting time of
v by an X particle, i.e.

T (u, v) := inf{t ≥ 0; v bears an X particle}, (30)

1One can still prove a lower bound of the form [[t(log t)−p[−c, c]d]] ⊂ Bt for some
constants p, c > 0, see [100].
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where the initial configuration consists of one X particle at site u, and one
Y particle at every other site, and where, for every x, the particle initially
located at x moves according to the random walk W (x) as soon as it is
turned into an X particle (which means at time zero for the particle initially
at u). Then, for all u, v, w ∈ Zd, one has a.s. that

T (u,w) ≤ T (u, v) + T (v, w). (31)

Having established (31), the proof then mainly consists in checking the other
assumptions of Kingman’s sub-additive ergodic theorem (see e.g. [114]),
which is by no means an easy task. In fact, most of the work in [134] and
[1] is devoted to proving that the random variables T (u, v) have a finite
expectation.

2.2. Regeneration structure. On the other hand, the approach used
by Comets, Quastel and Ramírez in [53] to prove Theorems 7 and 8 is
based on a completely different idea, which consists in introducing a renewal
structure for the stochastic combustion model, yielding a sequence of a.s.
finite random times 0 =: κ0 < κ1 < κ2 < . . . such that

(i) the r.v.s (κn+1 − κn, rκn+1 − rκn)n≥0 are independent,
(ii) the r.v.s (κn+1 − κn, rκn+1 − rκn)n≥1 are identically distributed,
(iii) E(κ2 − κ1)2 < +∞ and E(rκ2 − rκ1)2 < +∞.
Given such a renewal structure, Theorems 7 and 8 can be derived in

a standard way, applying to rκn the law of large numbers and the central
limit theorem for sums of i.i.d. square-integrable random variables, then
approximating rt by rκs(t) , where s(t) := sup{n ≥ 1; κn ≤ t}. In fact,
the core of the work lies in finding an appropriate definition for the renewal
structure, and then proving the required tail-estimates.

Broadly speaking, the idea is to define κn in such a way that the history of
the front after time κn does not depend (up to translation) on the trajectories
of particles located below rκn at time κn. This is achieved by considering
times after which the front remains forever above a (space-time) straight line,
while particles lying below the front at these times remain forever below the
straight-line. Specifically, given a slope parameter α, let us say that a time
t at which the front jumps is a forward super-α time if, for every s ≥ t, one
has rs ≥ rt + bα(s− t)c, and a forward sub-α time if, for any particle whose
location at time t is ≤ rt − 1, the corresponding random walk trajectory,
denoted (Ws)s≥0, satisfies Ws ≤ rs − 1 + α(s− t) for all s ≥ t. If t is both a
forward super-α time and a forward sub-α time, let us say that t is a forward
α time. These definitions are illustrated in Fig. 2, 3, 4. What makes the
existence of forward α times plausible for small enough α is the fact that the
front rt moves ballistically, while any individual particle trajectory moves
diffusively. It turns out that the sequence defined by2 κ0 := 0 and, for all

2This is not the way the random variables (κn)n are defined in [53]. Indeed, the
definition given in [53] includes several additional conditions that are used later in the
proof of the tail-estimates for the renewal structure, but are not necessary to establish the
basic structural properties (i)-(ii) of independence and identity of distributions. Moreover,
the tail-estimates proved in [53] imply the square integrability property (iii) for the random
variables (κn)n as defined by (32). We chose to present this definition instead of the
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Figure 2. A realization of the stochastic combustion model
with a forward α time t. Red (resp. blue) trajectories corre-
spond to particles of type X (resp. Y ). The line of slope α
associated with the forward α time is drawn in black.

n ≥ 0,
κn+1 := inf{t > κn; t is a forward α time}, (32)

provides a.s. finite random variables enjoying the required properties (i)-(ii)-
(iii), for a suitable choice of the slope parameter α.

To explain why (i) and (ii) hold (leaving aside the fact that one must
also prove that the κns are a.s. finite), let us observe that the two conditions
involved in the definition of a forward α time ensure that, for n ≥ 1, the
particles located strictly below rκn at time κn cannot possibly touch the front
after time κn, so we may as well remove them at time κn without altering
the future evolution of the front.

Moreover, the value of (κn+1 − κn, rκn+1 − rκn) is identical to the value
of (κ1, rκ1) that would be obtained if we shifted the origin of space and time
to (rκn , κn) after removing these particles. Now the configuration of the re-
maining particles, i.e. those above rκn at time κn, is completely determined,
with exactly a particles of type Y particles at each site x ≥ rκn + 1, and
a + 1 particles of type X at site rκn (the a particles of type Y originally
at site rκn , plus the single particle of type X that reaches rκn at time κn
and instantaneously turns them into particles of type X). Moreover, the

original one because it is simpler to state, and also because it makes the comparison with
the renewal structure used for the KS infection model, defined in Section 3 below, easier.
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Figure 3. Same realization of the stochastic combustion
model as in Fig. 2. Red (resp. blue) trajectories correspond
to particles of type X (resp. Y ), except that, posterior to
the forward α time t, green is used instead of red to draw the
trajectories of particles that lie below rt at time t.

conditioning induced on the future of the trajectories of these particles by
the definition of κn reduces3 to the fact that, posterior to time κn, one must
have rt ≥ rκn + bα(t− κn)c for all t. As a consequence, one finally has that,
for n ≥ 1, almost surely

P((κn+1 − κn, rκn+1 − rκn) ∈ ·|Fκn) = P0((κ1, rκ1) ∈ ·|A), (33)

where Fκn denotes the σ−algebra generated by κn, rκn , and the history of the
process up to time κn, P0 denotes the probability describing the stochastic
combustion model when one starts with a particles of type Y at each x ≥ 1,
and a + 1 particles of type X at x = 0, and A is the event corresponding to
the fact that t = 0 is a forward super-α time.

The next step is to prove tail bounds leading to the almost sure finiteness
of the (κn)s, and the square-integrability property (iii). Although we do not
give a detailed account of how these bounds are obtained, we briefly describe
the two key ingredients that are used in the proofs.

The first one is the so-called auxiliary front r̃t, which provides a ballistic
lower bound for the position of the real front. The auxiliary front starts with

3This is not obvious. For instance, one has to check that the conditions contained in
the definitions of κ1, . . . , κn−1, which bear upon the whole future of the process, reduce to
this single condition as far as the behaviour of trajectories posterior to κn is concerned.
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Figure 4. Compared to the realization of the stochastic
combustion model depicted in Fig. 2 and 3, particles that
lie below rt at the forward α time t have been removed. Red
(resp. blue) trajectories correspond to particles of type X
(resp. Y ), and one can check that the evolution of the front
posterior to the α separation time t is unaffected by this re-
moval.

r̃0 := 0, and its subsequent evolution is defined through the random variables
νk that count the time it takes for r̃t to climb from level k to level k + 1.
The definition of νk involves only the trajectories of the particles initially
located at sites k −M + 1 ≤ x ≤ k, where M ≥ 1 is an integer parameter.
Specifically, consider the time it takes for a Y particle initially located at a
site x, to first hit site k+1, counted from the instant it was turned into an X
particle. One defines νk as the infimum of these hitting times over all the Y
particles initially located at sites x satisfying k−M + 1 ≤ x ≤ k. Thanks to
the fact that the auxiliary front involves only delayed trajectories of a subset
of the X particles present in the actual stochastic combustion process, one
has for all t that

r̃t ≤ rt. (34)

On the other hand, r̃t behaves mostly like a sum of i.i.d. random variables,
since, for each 1 ≤ j ≤M−1, the random variables (νMk+j)k≥1 form an i.i.d.
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sequence, whose tail4 decays at least as fast as t−aM/2, leading to a finite
expectation whenM ≥ 3. As a consequence, provided thatM is chosen ≥ 3,
the law of large numbers implies that

lim
t→∞

r̃t/t =: αaux > 0. (35)

The second ingredient is the use of an exponential normMt, in combi-
nation with martingale arguments. More precisely, one defines

Mt :=
∑

x≤rt−1

ηt(x)e−θ(x−rt), (36)

where ηt(x) denotes the number of X particles at site x and time t. To each
random walk (Wt)t≥0 describing a particle trajectory, one can associate the
exponential martingale

Mt := eθWt−2(cosh(θ)−1)t,

and these martingales can in turn be used to control the probability for
particles that are currently located below the front, to hit in the future a
straight line of slope α starting at the current location of the front. The
norm Mt then appears as a key quantity in these martingale bounds. For
instance, one has that the probability that any particle whose location at
time 0 is ≤ r0 − 1, will lie above r0 − 1 + αs at some later time s ≥ t, is
bounded above byM0e

−µt, where

µ := αθ − 2(cosh θ − 1). (37)

The argument developed in [53] combines these two ingredients to pro-
duce tail estimates on the renewal structure. One chooses α < αaux, so that
the auxiliary front can be used to show that the front typically moves at a
speed faster than α. One then chooses θ small enough so that µ > 0, to
have exponential decay in martingale bounds involvingMt, and control the
probability for particles below the front to hit straight lines of slope α in the
future. At the core of the argument is a sequence of stopping times, which
correspond to as many attempts at producing a forward α time. The above
two ingredients are used to control the probability of success of each attempt,
as well as the time between two consecutive attempts. We do not go into
the details here, but a precise discussion of the corresponding problem in the
context of the renewal structure defined for the KS infection model is given
in Section 3.

2.3. Large deviations. We now describe how our results on large de-
viations are derived.

First, the existence of the limiting rate function in Theorem 9 essentially
follows from a soft argument based on the sub-additivity of hitting times,
yielding the fact that, for initial configurations consisting of a single X par-
ticle at the origin and a particles of type Y at every site x ≥ 1, for all b ≥ 0,
the limit

lim
t→+∞

t−1 logP(rt ≥ bt) (38)

4The hitting time of a site by a single symmetric random walk has a tail decaying
roughly as t−1/2. Taking into account aM independent such random walks yields a tail
decaying as t−aM/2.
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exists.
The more difficult part of Theorem 9 is the characterisation of the zero

set of the rate function, especially the proof that the rate function does not
vanish on the interval ]v,+∞[. In fact, it is not difficult to show that, for
all large enough b, P(rt ≥ bt) decays exponentially fast as t goes to infinity.
However, showing this for b arbitrarily close to, but larger than, the speed
v is a subtler problem. Indeed, one cannot apply standard large deviations
theory to the regeneration structure, since e.g. the random variables κ1 and
rκ1 fail to have finite exponential moments.

Instead, working with a homogeneous initial configuration containing
exactly a particles per site, we apply the renewal structure to a perturbation
of the original model, in which the random walks have a small bias ε > 0 to
the right. Denoting by rεt the position of the front for this perturbed model,
one has again a law of large numbers:

lim
t→∞

t−1rεt = vε, P− a.s. and in L1(P). (39)

The interest of introducing a bias to the right is that, reworking the estimates
of [53] in this context, we can show that the random variables in the renewal
structure do indeed have finite exponential moments (the key point being
that the time it takes the auxiliary front to climb from level k to level k+ 1
now has an exponential tail, as opposed to polynomial for the original model).
As a consequence, one can apply standard large deviations arguments to the
regeneration structure, and prove that, for any b > vε,

lim sup
t→+∞

t−1 logP(rεt ≥ bt) < 0. (40)

On the other hand, biasing the random walks to the right cannot decrease
the position of the front, so that at each time t, a comparison holds between
the position of the front in the original model and in the model with a bias,
so that for all t and x,

P(rt ≥ x) ≤ P(rεt ≥ x). (41)

Combining (40) and (41) is enough to prove that the rate function I must
be positive on every interval of the form ]vε,+∞[, for ε > 0. To prove that I
is positive on the whole interval ]v,+∞[, noting that vε is a non-decreasing
function of ε, we should prove in addition that

lim
ε→0+

vε = v. (42)

It is indeed reasonable to expect such a continuity property to hold, but
proving it seems to require substantial work. Indeed, write

vε = lim
t→+∞

t−1E(rεt). (43)

v = lim
t→+∞

t−1E(rt).

For fixed t, it is possible (using the dominated convergence theorem) to prove
that

lim
ε→0+

E(rεt) = E(rt). (44)
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Hence, to prove (42), it is enough to prove that

lim
ε→0+

lim
t→+∞

t−1E(rεt) = lim
t→+∞

lim
ε→0+

t−1E(rεt). (45)

Our strategy for proving (45) is to prove that the convergence in (43) is
uniform with respect to (small enough) ε, which implies that the limits with
respect to ε → 0+ and to t → +∞ in (45)) can be exchanged. To prove
this uniformity, we use the renewal structure once again, showing that the
estimates on the second moments of the random variables in the renewal
structure obtained in [53] lead to uniform upper bounds with respect to ε,
which is enough to prove the required uniformity in (43).

We now give a brief sketch of the proof of Theorem 10 (which in par-
ticular implies that the rate function I vanishes on [0, v]). We start with
Theorem 10 (c). The fact that rt = 0 means that no particle in the initial
configuration hits 1 before time t. Both the upper and lower bounds can then
be understood heuristically as follows. Since we consider simple symmetric
random walks, for large t, the constraint of not hitting 1 before time t has
a cost only for particles within a distance of order t1/2 of the origin. Now
these particles perform independent random walks, and their number has an
order of magnitude lying between tu/2 and tU/2. Turning this argument into
a proper proof involves only elementary diffusive estimates and the reflection
principle.

As for Theorem 10 (a), the idea of the proof when s(η) = 1 is to combine
the following two arguments. First, for b > 0, it costs nothing to prevent
all the particles in the initial condition from hitting bbtc up to time t. Intu-
itively, this result comes from the fact that hitting bbtc before time t has an
exponential cost for any particle in the initial condition within distance O(t)
of the origin, and, due to (25), there is a subexponentially large number of
such particles. Second, in the worst case where all the particles attached to
sites 1 ≤ x ≤ bt are turned into X particles instantaneously at time zero,
the cost of preventing all these particles from hitting bt up to time t is of
order exp(−t1/2+o(1)), due to the lower bound in Theorem 10 (c) discussed
above. The actual proof is in fact more complex since we want to consider
probabilities of the form P(ct ≤ rt ≤ bt), and not only P(rt ≤ bt), and deal
also with the case s(η) < 1.

By far the more difficult part of Theorem 10 is (b). The proof strategy
is based on the sub-additivity property of the hitting times T (u, v) stated in
(31). Given m ≥ 1, let χj := T (mj,m(j + 1)). By sub-additivity, we have
that

T (0, n) ≤
bn/mc∑
j=0

χj ,

so that

P(T (0, n) ≥ cn) ≤ P

bn/mc∑
j=0

χj ≥ (mc)bn/mc

 . (46)

Now, by translation invariance, for all j ≥ 0, χj and χ0 = T (0,m) have the
same distribution, and it can be shown that

lim
m→+∞

m−1E(T (0,m)) = v−1.
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Hence, given c > v−1 we can always find m ≥ 1 such that mc > E(χ0), so
that the r.h.s. of (46) is the probability of a large deviation above the mean
for the sum

∑bn/mc
j=0 χj . We then seek to apply large deviations bounds for

i.i.d. variables in order to estimate this probability. Of course, the random
variables (χj ; j ≥ 0) are not independent, but the dependency between
(χj ; j ≤ j1) and (χj ; j ≥ j2) is weak when j2 − j1 is large. Indeed, for
given j, χj mostly depends on the behavior of the random walks with initial
locations close to mj. We implement this idea by using a technique already
exploited in [134] in a similar context. Given ` ≥ 1, we define a family
(χ′j ; j ≥ 0) of hitting times as follows: χ′j uses the same random walks as χj
for particles initially located at sites x with mj −m` < x < m(j + 1), but
uses fresh independent random walks for particles initially located at sites x
with x ≤ mj −m`. We can then prove that the following properties hold:

(a) For all j ≥ 0, the family (χ′j+p(`+1); p ≥ 0) is i.i.d.;
(b) when ` is large, the probability that χ′j = χj is close to 1.

We can thus obtain estimates on the r.h.s. of (46) by estimating separately
the probability that χ′j = χj for all 0 ≤ j ≤ bm/nc, and the probability

that
∑bn/mc

j=0 χ′j ≥ (mc)bn/mc. Now, thanks to property (a) above, this
last sum can be split evenly into ` + 1 subsums of i.i.d. random variables
distributed as χ0 = T (0,m). Controlling the tail of T (0,m) then allows us to
apply large deviation bounds for i.i.d. variables separately to each of these
subsums. One of the issues is that, for fixed m, the tail of T (0,m) does not
decay exponentially fast, but satisfies P(T (0,m) ≥ t) = e−O(t1/2) instead, so
that non-standard large deviations estimates have to be used. Another issue
is that, if one applies the above approach naively, optimizing the choice of
` as a function of n leads to a bound of order e−n2/7+o(1) . To achieve the
e−n

1/3+o(1) bound stated in the Theorem 10, one has to use a slightly more
subtle argument, involving a positive association property between the large
deviation event we consider and a suitable piece of the event that χ′j = χj
for all j.

3. Proofs: KS infection model (DX > 0, DY > 0)

When both DX and DY are non-zero, the KS infection model is much
more complicated to deal with than the stochastic combustion model, one
reason being the absence of an exact sub-additivity property comparable to
the one that holds for the stochastic combustion model, which is stated in
(31).

3.1. The shape theorem when DX = DY . The proof of Theorem
11 by Kesten and Sidoravicius involves two major steps. The first one,
developed in [100], consists in establishing ballistic upper and lower bounds
for Bt.

The upper bound, quoted above as Theorem 13, and which is also valid
when DX 6= DY , is obtained through a kind of Peierls argument. To an X
(infected) particle present at time t, one associates the so-called genealogical
path describing the succession of contacts betweenX and Y particles that led
to this particle being infected, all the way back to the initial configuration.
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One then computes the expected number of genealogical paths that may lead
to X particles outside t[−C,C]d at time t, for C large enough.

We now quote the lower bound:

Theorem 15 (Kesten, Sidoravicius [100]). Consider the KS infection
model on Z with DX = DY , starting with an initial configuration consisting
of i.i.d. Poisson numbers of Y particles at each site, and a finite (positive)
number of X particles. There exists a constant c > 0 such that for all K > 0,
and all large enough t,

P
(

[[t[−c, c]d]] 6⊂ Bt

)
≤ t−K .

Unlike the upper bound, the proof of this result is very involved, using,
at its core, a multi-scale renormalisation argument. To explain what the
problem is, let us consider the case d = 1. Define Rt as the position of the
right-most particle of type X at time t, i.e.

Rt := sup{x; x bears a type X particle at time t}. (47)

When there is a single particle located at Rt at time t, the instantaneous
drift of Rt is zero, since the particle has an equal probability to jump to the
right or to the left, while, when there is more than one particle, this drift is
to the right. In fact, even if there is a single particle located at Rt at time t,
the presence of particles (of either type) "close to" Rt is enough to ensure a
drift to the right, since these have a positive probability to reach Rt within
a fixed amount of time. Thus, to prove a ballistic lower bound on Rt, one
should prove that, with high probability, there are particles "close" to Rt for
a positive fraction of time. The difficulty then lies in the complex interaction
between Rt and the nearby particles, which destroys the homogeneity of the
initial Poisson distribution of particles. The approach developed in [100]
consists in studying not the specific path (Rt)t≥0 followed by the right-most
X particle, but every possible path (with mild constraints), showing that,
with high probability, any such path will have some particle close to it most
of the time. This is where a percolation-type argument is used, based on
a partitioning of Z × [0,+∞[ into space-time blocks at various scales. The
assumption DX = DY is important here, since it allows one to consider the
path followed by a particle as a standard random-walk path with jump rate
DX = DY , regardless of the type of the particle.

The second step of the proof of the shape theorem, developed in [103], is
based on an approximate sub-additivity property of the so-called half-space
processes. Such approximate sub-additivity is enough to prove that, for each
unit vector u ∈ Rd, there exists a constant λ(u) such that, almost surely,

lim
t→+∞

t−1H(t, u) = λ(u),

where H(t, u) is (up to some modification of the initial configuration) the
maximum of x ·u > over all sites x ∈ Bt. One then deduces the convergence
of t−1Bt towards an asymptotic shape.

3.2. Fluctuations of the front in dimension one when DX = DY .
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3.2.1. Renewal structure. We now discuss the proof of Theorem 12. As
in [53], the proof is based on a renewal structure, and we look for a.s. finite
random times 0 =: κ0 < κ1 < κ2 < . . . such that

(i) the r.v.s (κn+1 − κn, rκn+1 − rκn)n≥0 are independent,
(ii) the r.v.s (κn+1 − κn, rκn+1 − rκn)n≥1 are identically distributed,
(iii) E(κ2 − κ1)2 < +∞ and E(rκ2 − rκ1)2 < +∞.

However, it is not possible to use the same definition of (κn)n≥0, since, due
to the fact that both X and Y particles move, the distribution of Y par-
ticles located above rt at a time where the front jumps, is not fixed, and
depends upon the whole past of the process. To solve this problem, we have
to consider a modified version of the renewal structure, where conditions on
the past of the process are added to the conditions contained in the defini-
tion of a forward α time. In fact, we extend the random walk trajectories
of the particles infinitely far into the past, which is possible thanks to the
reversibility property of the initial Poisson distribution of particles with re-
spect to systems of independent random walks. Thus, every particle in the
process is considered to have a random walk trajectory (Ws)s∈R (note that
we do not attempt to define the infection dynamics for negative times).

We now introduce a bit of notation. For t > 0, introduce the set X(t)
formed by the trajectories of particles that are of typeX at time5 t. Similarly,
introduce the set Y (t) formed by the trajectories of the particles that are of
type Y at time t. We extend the definition6 by letting X(0) (resp. Y (0))
denote the set of trajectories of particles initially located at sites x ≤ −1
(resp. x ≥ 0).

Then let us say that a time t at which the front Rt performs an upward
(i.e. +1) jump is a backward sub-α time if Rt > αt and if, for all 0 ≤ s < t,
one has Rs < Rt − α(t − s). Say that t is a backward super-α time if, for
any particle in Y (t), the corresponding trajectory, denoted (Ws)s∈R, is such
that, for all s ∈]−∞, t], one has Ws ≥ Rt−α(t− s). If t is both a backward
sub-α and super-α time, we say that t is a backward α time. We also redefine
the notion of a forward super-α and sub-α time, adding extra conditions for
merely technical reasons. In this section, we say that t is a forward super-α
time if, for every s ≥ t, one has Rs ≥ Rt + bα(s− t)c and if, moreover, there
exists a particle in Y (t) such that Ws = Rt for all s ∈ [t, t + α−1]. We say
that t is a forward sub-α time if, for any particle whose location at time t is
≤ Rt−1, the corresponding random walk trajectory, denoted (Ws)s, satisfies
Ws ≤ Rs−1+α(s−t) for all s ≥ t, and if, in addition, the trajectory, denoted
W ∗, of the particle that makes the front jump at time t, satisfies W ∗s = rt
for s ∈ [t, t+ α−1], and then satisfies the inequality W ∗s ≤ rt − 1 + α(s− t)
for all s ≥ t+α−1. We extend the definition of a backward super-α time and
of a forward super-α by allowing t = 0 in the above definitions. As before,
we say that t is a forward α time if it is both a forward sub-α and super-α
time. Finally, we say that t is an α separation time if t is both a forward

5By convention, we consider that a particle of type Y whose first contact with an X
particle is at time t, turns into type X at time t+; this means that we exclude from X(t)
those particles that may be turned from type Y to type X precisely at time t.

6With this definition, particles initially at site 0 start to be considered X particles at
time 0+.
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Figure 5. A realization of the KS infection model with an α
separation time t. Red (resp. blue) trajectories correspond to
particles of type X (resp. Y ). The line of slope α associated
with the forward α time is drawn in black, with a triangle
showing the location of (t,Rt).

and backward α time. Note that, in the above definitions, we work with
(Rs)s instead of (rs)s, which is more convenient since it is the trajectory of
Rt which defines the boundary that Y particles must avoid in order not to
get infected (i.e. turned into X particles). As in the stochastic combustion
case, what makes plausible the fact that α separation times exist is the fact
that individual particles move diffusively (in both time directions) while the
front moves ballistically. Figures 5 and 6 illustrate these definitions.

One can then define the renewal structure by κ0 := 0 and

κn+1 := inf{t > κn; t is an α separation time}. (48)

The first observation is that, as in the stochastic combustion case, the
definition of a forward α time implies that the particles in X(κn) cannot
have any influence upon the front posterior to κn, so that all the evolution
of the front posterior to κn is due to the particles in Y (κn). Moreover, the
value of

(κn+1 − κn, rκn+1 − rκn)

is identical to the value of (κ1, rκ1) that would be obtained if we shifted the
origin of space and time to (rκn , κn), keeping only the particles in Y (κn).
Then, the key point leading to properties (i) and (ii) is that, conditional upon
the past history of the particles that are of type X at time κn, the distribution
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Figure 6. Same realization of the KS infection model as in
Fig. 5. Red (resp. blue) trajectories correspond to particles
of type X (resp. Y ), except that, posterior (resp. prior) to
the forward α time t, green (resp. purple) is used instead of
red (resp. blue) to draw the trajectories of particles that lie
below (resp. above) rt at time t.

of the trajectories in Y (κn) is completely determined, up to translation:

P(τκn,rκn (Y (κn)) ∈ ·|FXκn) = P0(Y (0) ∈ ·|A) a.s., (49)

where τt,x denotes the space-time shift acting on trajectories, i.e. τt,x(W )s :=
Ws−t − x, FXκn denotes the σ−algebra generated by κn, rκn , and the past
history up to time κn of the particles that are of type X at time κn, P0

denotes the probability describing the KS infection model starting with i.i.d.
numbers of Poisson particles at sites x ≥ 0 and no particles at sites x < 0,
while A denotes the event that t = 0 is a backward and forward super-α
time.

The proof of (49) mainly relies on a time-reversal argument that we now
sketch. Consider t > 0. Using the reversibility of the Poisson initial distri-
bution of particles with respect to systems of independent random walks, we
may consider building the trajectories of the particles in our model – regard-
less of the evolution of their type – by first putting i.i.d. Poisson numbers
of particles at each site of Z at time t−, and then building random walk
trajectories that extend in both time directions, starting from the positions
of each of these particles (see Fig. 7). One can then construct the infection
dynamics from these trajectories in the usual way (see Fig. 8).
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Figure 7. A stationary set of random walk trajectories on
the interval [0, t[, with i.i.d. Poisson numbers of particles at
each given time. One may obtain it by putting i.i.d. Poisson
numbers of particles at time zero, then running independent
random walks from time 0 to time t for each of these particles,
or by putting i.i.d. Poisson numbers of particles at time t−,
then running independent random walks in the reverse time
direction, from time t− to time 0.

We now want to understand the effect of conditioning this construction
by the history up to time t, of the particles that are of type X at time t.
Denote by H the specific7 realization of the history under consideration, and
by (qs)0≤s≤t the corresponding history of the front (note that knowing H
uniquely determines the history of the front up to time t). Assume moreover
that t is an upward jump time8 for the front, i.e. qt = qt−+1. In our context,
the particles that are of type X at time t are precisely those whose location
at time t− is ≤ qt− 1, and their trajectories up to time t correspond exactly
to H , see Figures 9, 10. On the other hand, the particles whose location at
time t− is ≥ qt coincide with the particles that are of type Y at time t, and

7For the sake of simplicity, we chose to ignore the technical difficulties associated with
conditioning in the present context, and work as if the random variables involved were
discrete.

8This is where the distinction between t− and t becomes relevant in the discussion.
H is equivalent to the history of particles up to time t− except for the jump at time t of
the particle that makes the front climb precisely at time t. This is the only particle whose
location at time t differs from its location at time t−.
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Figure 8. Realization of the KS infection model on the in-
terval [0, t], based on the trajectories shown on Fig. 7. Red
(resp. blue) trajectories correspond to particles of type X
(resp. Y ).

their trajectories from time 0 to time t must avoid the front (qs)0≤s≤t and
have a location at time 0 that is > 0 (for otherwise they would be of type
X at time t). It turns out that these properties are enough to characterize
the history being H , i.e. the fact that H is the history up to time t of the
particles that are of type X at time t is equivalent to having the intersection
of the following two events:

(a) for every particle whose location at time t− is ≥ qt, the correspond-
ing trajectory W is such that Ws > qs for all s < t, and W0 > 0;

(b) the history up to time t of the particles whose location at time t−
is ≤ qt − 1, is given by H .

Figure 12 illustrates what (a) means for particles whose location at time t−
is ≥ qt, while Figure 10 shows how (b) specifies the history up to time t of
the particles whose location at time t− is ≤ qt − 1.

One key property is now that, prior to conditioning by (a) and (b),
the two sets of trajectories whose locations at time t− are ≤ qt − 1 and
≥ qt respectively, are independent. As a consequence, one sees that the
conditional distribution of the trajectories of particles in Y (qt) given H
corresponds to the one obtained by putting i.i.d. Poisson numbers of particles
at each site x ≥ qt, building random walk trajectories starting from their
positions, and then conditioning all these random walks W by W0 > 0 and
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Figure 9. Same realization as in Fig. 8. Pink trajectories
correspond to particles that are of type X at time t, while
blue trajectories correspond to particles that are of type Y at
time t. The trajectory of the front is drawn in red.

Ws > qs for all s < t. If t is a backward sub-α time (which can be told
from H ), condition (a) is implied by the fact that t is a backward super-α
time, since then, before time t, the trajectories of particles in Y (t) must lie
above a straight line which itself lies above (qs)0≤s≤t. One deduces that the
conditional distribution of the trajectories of particles in Y (qt) given H , and
given the fact that t is a backward α time, corresponds to the one obtained
by putting i.i.d. Poisson numbers of particles at each site x ≥ qt, building
random walk trajectories starting from their positions, and then conditioning
all these random walks W by Ws > qt − α(t− s) for all s < t.

To complete the proof of (49), it remains to check that9 as far as the
trajectories of particles in Y (κn) are concerned, the definition of κn does
not induce extra conditions beyond being a backward and a forward super
α−time.

3.2.2. Tail estimates on the renewal structure. To prove condition (iii)
(together with a.s. finiteness) and thus complete the proof of the central limit

9This is not immediate, since, as in the stochastic combustion case, one has to take
care of the conditions on the indefinite future contained in the definitions of κ1, . . . , κn.
Here, we also have to deal with the fact that, for 1 ≤ i ≤ n− 1, κi contains conditions on
the past of the trajectories in Y (κi), which has a non-empty intersection with Y (κn).
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Figure 10. Same realization as in Fig. 8. Only the history
H of particles that are of typeX at time t is shown, with tra-
jectories drawn in pink. The trajectory of the corresponding
front is drawn in red.

theorem, one relies, as in [53] on a sequence of stopping times corresponding
to successive attempts at producing α-separation times, that we now define10.

We first introduce the following refinement of the notion of backward
sub-α time: given 0 ≤ s < t, we say that t is an (s, α)−crossing time if there
exists k ∈ {1, 2, . . .} such that Rv < Rs + k + α(v − s) for all v ∈ [s, t[ and
Rt ≥ Rs + k + α(t− s). Note that if s is a backward sub-α time and if t is
an (s, α)−crossing time, then t is also a backward sub-α time.

We now define by induction the sequence of stopping times on which
our estimates on the renewal structure are based. Besides α, the definition
involves two integer parameters C ≥ 1 and L ≥ 1. Let D0 := 0 and Υ0 := ∅.
For n ≥ 1, assume that the random variables Dn−1,Υn−1 have already been
defined, and let S′n be the infimum of the t > Dn−1 such that

• t is a backward sub-α time;
• Υn−1 ⊂ X(t);
• Y (t) contains at least C particles located at Rt at time t.

Then define Sn as the infimum of the t > S′n such that
• t is a backward sub-α time;

10The definition is slightly different from [35], due to the use of labels for particle
trajectories, which we do not discuss here.
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Figure 11. Same realization as in Fig. 8. The usual rep-
resentation of the process (red for type X, blue for type Y ),
when only particles in H are present.

• ]S′n, t[ contains a number of (S′n, α)−crossing times at least equal
to L;
• Bt contains at least C particles located at Rt at time t.

We use the notation W ∗n for the trajectory of the particle that makes
the front jump at time Sn, and define the subset X(Sn)∗ := X(Sn)\{W ∗n}.
If Sn is a backward super-α time, then Υn := ∅ and Dn is defined as the
infimum of the t > Sn such that at least one of the following five conditions
holds:

(1) Rt < RSn + bα(t− Sn)c
(2) t ≤ Sn +α−1 and there is no particle in Y (Sn) whose trajectory W

satisfies WSn = RSn and remains at RSn during [Sn, Sn + t],
(3) Wt > RSn − 1 + α(t− Sn) for some particle in X(Sn)∗,
(4) t ≤ Sn + α−1 and W ∗nt 6= RSn ,
(5) t > Sn + α−1 and W ∗nt > RSn − 1 + α(t− Sn),

On the other hand, if Sn is not a backward super-α time, consider the set
of particles in X(Sn) whose trajectories W are such that there exists a time
t < Sn for which Wt < RSn − α(Sn − t). Among these particles, choose the
one whose trajectory has the lowest coordinate at time Sn (breaking ties in an
arbitrary manner), and, denoting its trajectory by W (n), let Υn := {W (n)}
and Dn := Sn.
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Figure 12. Same realization as in Fig. 8. The history of
particles that are of type Y at time t, drawn in blue. The
front is drawn in red.

The above set of definitions is a bit technical, so we now give a few
explanations about the underlying ideas. The stopping times Sn defined
above are our successive candidates to produce α separation times. Since by
definition Sn is a backward sub-α time, one has to check whether, in addition,
Sn is indeed a backward super-α time, a forward super-α time, and a forward
sub-α time. When either of these properties fails, Dn is the earliest time at
which such a failure can be detected. Indeed, Sn = Dn when Sn fails to be
a backward super-α time, this condition bearing only on the history of the
process prior to time Sn. When Sn is a backward super-α time, conditions
(1) and (2) in the definition of Dn detect the potential failure of Sn to be
a forward super-α time, while (3)-(4)-(5) detect the potential failure of Sn
to be a forward sub-α time. After time Dn, one has to wait until suitable
conditions are met again, leading to the next candidate time Sn+1. These
conditions include that Sn+1 be a backward super-α time, but also that the
number of particles located at RSn+1 is large enough, and that a sufficient
number of α crossings have been performed since time Dn. In addition, when
Sn fails to be a backward super-α time, a suitably chosen "witness" W (n)

has to be absorbed into the set X(Sn+1). Fig. 13, 14, 15, 16 illustrate these
definitions in the main cases.

Introducing

K := inf{n ≥ 1; Dn = +∞},
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Figure 13. From Sn to S′n+1 when Sn fails to be a backward
super-α time (in this case Dn = Sn). Only the most relevant
portions of trajectories are shown. The trajectory of the front
Rt is depicted in red, while blue is used for particles of type
Y , except for the "witness" trajectory W (n), which is drawn
in green. Circles are used at locations where the number of
particles is assumed to be ≥ C .

we see that, when K < +∞, SK is an α separation time, so the goal is to
prove that K < +∞ a.s., with also E(S2

K) < +∞ and E(R2
SK

) < +∞, in
order to prove the desired estimates on the random variables κn. We do not
go into the technical details here, but at least give a overview of the proof
strategy.

Our estimates make use of three main ingredients that we now describe.
The first ingredient is a description of the conditional distribution of

Y (Sn) with respect to11 FXSn , based on the fact that Sn is a backward sub-α
time, and obtained by exploiting a time-reversal argument similar to the one

11Here FXSn
is the σ−algebra generated by Sn, RSn , and the trajectories up to time

Sn of the particles that are of type X at time Sn
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Figure 14. From Sn to S′n+1 when Sn is a backward super-α
time but condition (1) is realized first. Only the most relevant
portions of trajectories are shown. The trajectory of the front
Rt is depicted in red, except for the part causing condition
(1), which is drawn in green. Otherwise, blue (resp. red) is
used for particles of type Y (resp. X). Circles are used at
locations where the number of particles is assumed to be ≥ C .

leading to the proof of (49). Specifically, we have an identity of the form

P(τSn,rSn (Y (Sn)) ∈ ·|FXκn) = P0(Y (0) ∈ ·|B), (50)

where B is a random event depending on FXκn satisfying

B ⊃ B0 := {t = 0 is a backward super α time} ∩ {Ξ0 = 1}, (51)

where Ξ0 is the indicator function of the event that there are at least C
particles at site 0 at time t = 0. In words, (50) and (51) show that the
conditional distribution of Y (Sn) with respect to FXSn can be compared (up to
a translation) to the distribution obtained by putting i.i.d. Poisson numbers
of particles at sites x ≥ 0, conditioned by the event B0, whose probability
with respect to P0 is strictly positive. Note that this is to ensure such a
property that the sets Υk have been introduced. Indeed, for each k ≤ n− 1



3. PROOFS: KS INFECTION MODEL (DX > 0, DY > 0) 61

time

p
o
si
ti
on

Sn Dn S′
n+1

Figure 15. From Sn to S′n+1 when Sn is a backward super-α
time but condition (3) is realized first. The trajectory of the
front Rt is depicted in red, which is also used for particles
of type X, except the trajectory causing condition (3), which
is drawn in green. Otherwise, blue is used for particles of
type Y . Circles are used at locations where the number of
particles is assumed to be ≥ C .

such that Sk fails to be a backward super-α time, Υk contains a "witness"
of this failure that is later absorbed in the set X(Sn), so that, using only the
information available in FXSn , we can e.g. tell which of the Sks are backward
super-α times, and which are not.

Another ingredient is a ballistic lower bound for the front after time Sn.
Remember that, in the stochastic combustion case, one could rely on the
auxiliary front to provide such bounds, while in the present case, the only
available bound is the one by Kesten and Sidoravicius (quoted earlier as
Theorem 15). Despite the fact that this bound is stated only for a homo-
geneous initial configuration comprising i.i.d. Poisson numbers of particles
both at the left and at the right of the origin, it is possible to derive from
it (using coupling and a symmetrization trick) a version that works for the
kind of initial condition we have here, i.e. with a control bearing only on the
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Figure 16. From S′n+1 to Sn+1 when Sn fails to be an α
separation time. The trajectory of the front Rt is depicted in
red, and light blue lines illustrate the successive α-crossings
performed by the front. Circles are used at locations where
the number of particles is assumed to be ≥ C .

distribution of particles at the right of the origin (given by (50) and (51)).
This is where the condition that there are at least C particles plays a role,
and, specifically, we can prove that there exists β > 0, and c1, c2 > 0, where
c1 depends on C , such that, for every t > 0,

P(RSn+t ≤ RSn + βt|FXSn) ≤ c1t
−c2·C a.s. (52)

Finally, as in [53], an important tool to control the behaviour of particles
located to the left the front, is the exponential norm

Mt :=
∑

x≤Rt−1

ηt(x)e−θ(x−Rt), (53)

where ηt(x) denotes the number of particles (which must be of type X)
located below Rt at time t, used in combination with martingale estimates.
Although we do not enter into the details, let us point out that the way we
handle Mt differs substantially from [53], where a very involved inductive
scheme is used to control the time it takes for Mt to get below a specific
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threshold. Using a softer and hopefully more transparent argument (where
(50) and (52) play a key role), we are able to prove an estimate of the form

Eν(MSn+11(Dn < +∞)|FXSn) ≤ c3e
−θLMSn + c4, (54)

where c3 is a strictly positive constant depending on C , and c4 is a strictly
positive constant depending on C and L. This is where the choice of a large
enough L plays a role, since we can then use (54) to obtain a uniform bound
on the expectation ofMSn conditional upon the fact that K ≥ n.

With the three above ingredients, one can then prove that K < +∞
a.s., with also E(S2

K) < +∞ and E(R2
SK

) < +∞, leading to the desired
estimates for the random variables κn. Broadly speaking, (50), (52), and
(54) respectively help bounding from below the probability that, conditional
upon K ≥ n, Sn is a backward super-α time, a forward super-α time, and a
forward sub-α time. When either of these properties fail, they also lead to
bounds on the tail of W (n)

Sn
−RSn (when Sn fails to be a backward super-α

time), or Dn−Sn (when Sn fails to be a forward α time), from which bounds
on the tail of S′n+1−Sn, then Sn+1−Sn follow, using ballisticity of the front.

3.3. Extension to the case DX > DY . The proof of Theorem 14
consists in an extension of the arguments leading to the proof of Theorem
12. To this end, we consider a construction of the dynamics with DX > DY

that uses random walk trajectories with a constant jump rate equal to DY .
As long as a particle is of type Y , it follows the corresponding trajectory
in the usual way, while, as soon as it is turned into a particle type X, it
starts following the trajectory with a speed multiplied by a factor DX/DY .
As before, we denote by (Ws)s the actual trajectory followed by a particle,
while the trajectory with constant jump rate equal to DY from which this
trajectory is constructed is denoted (Ws)s. Figures 17 and 18 illustrate this
construction.

Remember that the first key element of the proof in the case DX = DY

is a description of the conditional distribution of the trajectories of particles
that are of type Y at time t, given the past history of the particles that are of
type X at time t, which is itself based on a time-reversal argument. We now
explain how a similar point can be made in the case where DX > DY . Let us
redo the time-reversal argument, putting i.i.d. Poisson numbers of particles
on the sites of Z at time t−, running for each particle an independent random
walk trajectory with constant jump rate equal to DY , extending in both time
directions. Again we want to understand the impact on this construction of
conditioning by the past history up to time t of the particles that are of
type X at time t. Let us consider an even more general problem, that of
conditioning by the full history (i.e. (Wt)t∈]−∞,+∞[) of the particles that are
of type X at time t. Note that it is equivalent to condition by the full history
of the trajectories (Wt)t∈]−∞,+∞[ associated with the same particles, since
we can infer the history of the front up to time t, hence of the individual
jump rates of the particles, starting from any of these two sets of trajectories.
Call H ′ the specific history of the W trajectories by which we condition,
and (qs)0≤s≤t the corresponding history of the front. We assume not only
that qt = qt− + 1, but also that t is in fact a record time for the front, i.e.
qt > sup0≤s<t qs. By definition, particles that are of type X at time t are
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Figure 17. Comparison of (Ws) (above) and (Ws) (below).
Blue (resp. red) correspond to type Y (resp. X).

those for which Wt− < qt, while particles that are of type Y at time t are
those for which Wt− ≥ qt. For particles that are of type Y at time t, one
has by definition Wt =Wt, so that all particles that are of type Y at time t
satisfy Wt− ≥ qt. It turns out that it is also true that particles that are of
type X at time t satisfy Wt− < qt, despite the fact that in general Wt 6= Wt

for these particles. Indeed, particles that are of type X at time t must have
been turned into X particles strictly prior to time t, so that, for each such
particle, Wt− = Ws for some s that is both < t and posterior to the time at
which the particle was turned into an X particle, whence Wt− ≤ Rs < Rt,
where we have used the fact that t is assumed to be a record time for the
front. With these observations, we can redo exactly the same argument as
in the case DX = DY , and conclude that the conditional distribution of
the trajectories of particles in Y (qt) given H ′ and given the fact that t is a
backward α time, corresponds to the one obtained by putting i.i.d. Poisson
numbers of particles at each site x ≥ qt, building random walk trajectories
starting from their positions, and then conditioning all these random walks
W by Ws ≥ qt − α(t− s) for all s ≤ t.

Another key element of the proof in the case DX = DY is the ballistic
lower bound, deduced from that obtained in [100]. Unfortunately, we are
not able to prove such a bound for the original KS infection model with
DX > DY . However, for the remanent version of the model, it is easily
checked that Rt ≥ Řt, where Řt is the position of the right-most X particle
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Figure 18. Realization of the KS infection model with
DX = 2 and DY = 1. The actual evolution of the pro-
cess is shown in (a), where the trajectories (Ws) are drawn
with the usual convention that red (resp. blue) is for type X
(resp. type Y ). The corresponding evolution of the trajecto-
ries (Ws)s is shown in (b).

for the infection dynamics whose particle trajectories are given by (Ws)s
instead of (Ws), which corresponds to the original KS infection dynamics in
which both particle types have jump rate DY . The ballistic lower bound of
[100] then applies to Řt, yielding the required ballisticity bound on Rt.

The proof of Theorem 14 then follows that of Theorem 12, with rather
minor changes.
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4. Discussion

Condition (25) in Theorem 9 is sharp in the sense (see Theorem 3 in
[36]) that, if it fails for some θ > 0, one cannot have I ≡ 0 on [0, v], while,
if it fails for a sufficiently large θ, the law of large numbers with limiting
speed v breaks down in such a way that one cannot have I > 0 on ]v,+∞[.
Anyhow, every "physically reasonable" initial configuration of X particles
should satisfy condition (25).

On the other hand, the assumption that the initial configuration of Y
particles consists of a fixed number a of Y particles per site seems restrictive.
In fact, most available results for the stochastic combustion model do assume
such an initial configuration (one exception is [2], which proves a shape the-
orem for general random i.i.d. initial configurations, in the discrete-time
case). Nevertheless, it is quite likely that the approach of [53], based on a
renewal structure, can be extended without too many difficulties to random
initial configurations, say containing i.i.d. Poisson numbers of Y particles at
each site, which would lead to a central limit theorem for the front compa-
rable to Theorem 8. The study of large deviations probabilities for the front
starting with random initial configurations may however reveal interesting
new phenomena, since one then has to take into account the contribution of
very unlikely but very inhomogeneous initial configurations.

For the stochastic combustion model, the exact order of magnitude of
slowdown large deviations probabilities, i.e. probabilities that are of the
form P

[
rt
t ≤ b

]
, where 0 ≤ b < v, is not known. Indeed, Theorem 10 shows

that, for homogeneous initial configurations, this probability lies between
exp(−t1/2+o(1)) and exp(−t1/3+o(1)) for large t, but it is unclear whether
one of these bounds is sharp, or whether the true order of magnitude lies
strictly between them. On the one hand, for extreme slowdown events,
i.e. rt ≤ 0, Theorem 10 shows that exp(−t1/2+o(1)) is the correct order
of magnitude. On the other hand, the exp(−t1/3+o(1)) order of magnitude
for slowdown probabilities is reminiscent of the behaviour observed for one-
dimensional random walk in random environment with positive or zero drift
in the annealed case, see [130, 58], which clearly has some similarities with
the stochastic combustion model (in our model, the position of the right-
most X particle has positive or zero drift, depending on whether there is
more than a single particle at its current location). One may note that the
proof strategy consisting in bounding large deviations of T (0, n) by large
deviations of

∑bn/mc
j=0 T (mj,m(j+1)) (thanks to sub-additivity) for fixed m,

cannot in any case deliver a smaller order of magnitude than exp(−t1/3+o(1)).
Theorems 12 and 14 are established for an initial condition consisting of

i.i.d. Poisson particles, of type Y (resp. X) to the right (resp. to the left)
of the origin, and it is natural to ask whether more general conditions can
be considered. However, as in [100, 103], the i.i.d. Poisson distribution of
particles plays a central role in the arguments, so it is unclear whether the
result can be generalized beyond easy extensions, such as conditioning the
configuration of X particles by a non-zero probability event.

As noted in Section 3, the missing element that would be needed to
apply the proof of Theorem 14 to the original (non-remanent) KS infection
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model, is a ballistic lower bound comparable to Theorem 15. Unfortunately,
we do not see at the moment how to obtain such a bound. One frustrating
aspect of the problem is that bounds that are just slightly sub-ballistic are
available, showing that with large probability one must have rt ≥ t(log t)−p

for some p > 0. This indicates that the front moves much faster than the
particles surrounding it at any given time, so that some sort of renewal should
occur for the configuration of particles surrounding the front, from which a
truly ballistic lower bound should follow. Despite the intuitive appeal of this
idea (see also Chapter 3), we could not adapt the definition of the renewal
structure to accommodate for sub-ballistic lower bounds: the use of straight
lines seems hard to circumvent, and straight lines (if only in the definition of a
backward sub-α time) make it necessary to use a priori ballistic bounds, not
just slightly sub-ballistic ones. On the other hand, in theDX = DY case, one
may note that, since the proof of Theorem 14 uses only the upper and lower
bounds proved in [100] (Theorems 13 and 15), not the full asymptotic shape
theorem (Theorem 11) proved in [103], our approach gives an alternative
way to derive the d = 1 case of Theorem 11 from the results of [100].

Clearly one of the most important questions surrounding X + Y → 2Y
models is the behaviour of fluctuations in dimensions d ≥ 2. One might
speculate that, for d = 2, these fluctuations are described by the KPZ equa-
tion, which would lead to an order of magnitude of t−1/3, instead of the
t−1/2 observed in dimension d = 1, but we know of no reasonably detailed
heuristic argument supporting such a conjecture. We have not yet tried to
apply the renewal structure idea to dimensions d ≥ 2, but clearly this cannot
be done through a simple generalization of what has been developed in the
d = 1 case. The problem is that, in contrast with the d = 1 case, and in
contrast also with multi-dimensional situations where renewal methods have
proved useful, such as the study of random walk in random environments or
self-interacting random walks, one does not have to keep track of just a single
trajectory (that of the front for X+Y → 2X models when d = 1, that of the
particle for random walk models), but of the whole interface between X and
Y particles. Note that, for a different growth model based on random walk
trajectories on Zd, namely the internal diffusion-limited aggregation (IDLA)
model, several results on the fluctuations around the asymptotic shape have
been obtained when d ≥ 2, see [6, 8, 7, 94].

Variations upon the stochastic combustion model have been considered,
which contain additional interaction rules between particles. For instance,
[93] considers the case where X particles no longer move independently of
each other, but according to a simple exclusion process, and use the renewal
structure approach to establish a central limit theorem for the initial position
of the front (see also [52], where another kind of saturation mechanism is
considered). It would be interesting to extend the results obtained for the
KS infection model with DX = DY to such situations (e.g. by imposing
exclusion or zero-range interaction between particles).

A combination of theoretical arguments and numerical evidence, see
[118] suggests that, for a given density of Y particles in the initial condition,
the asymptotic speed of propagation of the front (whose very existence is not
proved mathematically) in the KS infection model should have the simple
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expression
v = c ·DX (55)

for some constant c, which has the remarkable feature of not depending on
DY . Proving such a result seems out of reach (at the moment) of renewal
methods, which succeed in proving the existence of an asymptotic speed, but
do not provide an explicit formula for it, leading merely to the fact that

v =
E0(rκ1 |A)

E0(κ1|A)
. (56)

Still, (56) may provide interesting insights into the dependence of v with
respect to the model parameters, and such fascinating conjectures as (55),
even if only approximately true, certainly make a case for devoting more
efforts towards a rigorous understanding of the value of v.

One key object in the study of random walks in random environment and
tagged particle processes, is the environment viewed from the particle. For
one-dimensional X+Y → 2Y models, the natural analog is the environment
viewed from the front, i.e. the Markov process (Zt) defined by

Zt := (ηt(x− rt))x∈Z. (57)

Note that the renewal structure can be used to prove e.g. the ergodicity of
(Zt) (see [53] for the stochastic combustion case). On the other hand, it
is natural to ask whether it is possible to bypass the renewal structure and
directly analyse the environment viewed from the front, to prove e.g. the
central limit theorem via a Kipnis-Varadhan type approach (see [104, 106]).
To our knowledge, this approach has not been brought to fruition, one first
obvious problem being that no explicit form of the invariant distribution is
available.

For the one-dimensional modified DLA model, which is a slight variant of
the case DX = 0, DY > 0 aimed at producing a spatially growing cluster of
X particles, a phenomenon which is not expected to hold when both DX > 0
and DY > 0 appears, namely, a phase transition with respect to the density
of particles in the initial configuration. Indeed, Kesten and Sidoravicius
proved in [102] that, if one starts with i.i.d. Poisson numbers of Y particles
of mean 0 < µ < 1, one does not have that rt ∝ t for large t, but rather
that rt ∝ t1/2. When µ > 1, it is expected, based on theoretical arguments
and numerical evidence, that rt ∝ t if µ > 1. More generally, in the whole
parameter space where DX > 0 and DY > 0, it is expected that a behaviour
similar to the case DX = DY > 0 holds, i.e. positive asymptotic speed, and
gaussian t−1/2 fluctuations. Under the remanent assumption, Theorem 14
shows that it is indeed the case when DX > DY . However, we have no idea
of how to attack the case where DX < DY .

In the context of random walks in a random environment created by an
interacting particle system, general laws of large numbers have recently been
obtained, see [9, 59], using renewal techniques which bear some resemblance
to the ones we used (see also [136] and the references therein). It is unclear
whether an approach similar to the one developed in [9, 59] can be applied
to the context we have studied, due to the rather poor mixing properties of
the particle environment.
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We conclude with a variation of the KS infection model for which a
different kind of question has been investigated. The variation consists in
adding to the reaction X + Y → 2X a recovery reaction (from infected to
healthy)X → Y with constant rate λ > 0. In the caseDX = DY , [101] show
that there is a critical value 0 < λc < +∞ such that X particles disappear
when λ > λc, while they survive if λ < λc. In the stochastic combustion
case, the situation is more complex, since it depends on the density µ of Y
particles in the initial condition. Indeed, [101] proves that for large enough
µ (depending only on the dimension), X particles do survive regardless of
the value of λ. In the one-dimensional case, [138] more precisely prove that,
given λ, there exists µc ∈ [λ/(1 + λ), 1] such that X particles survive locally
when µ > µc, while they locally disappear when µ < µc (i.e. any finite
subset of Z a.s. does not contain X particles after a certain time).





CHAPTER 3

Excited random walks

1. Introduction

1.1. Model(s). A discrete-time homogeneous Markov chain (Xn)n≥0

on a discrete set V is characterized by the fact that, given the history of the
chain up to time n – i.e. given the sequence X0, . . . , Xn –, the step leading
from Xn to Xn+1 is described by a probability distribution on V of the form

P(Xn+1 = ·|X0, . . . , Xn) = ω(Xn, ·), (58)

which depends exclusively on Xn. Excited random walks, also known as
cookie random walks, are a class of self-interacting random walks in which,
in addition to the dependence on the current location of the walk Xn, the
probability distribution of the next step is allowed to depend on the number
of times the current location of the walk has been visited in the past. In
other words, (58) is replaced by

P(Xn+1 = ·|X0, . . . , Xn) = ω(Xn, Ln(Xn), ·), (59)

where Ln denotes the local time of the walk up to time n, i.e.

Ln(x) :=

n∑
k=0

1(Xn = x). (60)

In the sequel, we deal almost exclusively with nearest-neighbour random
walks on Zd, with d ≥ 1, so we can use the additive structure of Zd to label
the random walk steps. Indeed, denoting by (ei)1≤i≤d the canonical basis of
Zd, and by E the family of unit vectors of Zd, i.e. E := {±ei; 1 ≤ i ≤ d}, we
can write the transition probabilities of the walk under the form

(ω(x, `, e); x ∈ Zd, ` ∈ {0, 1, 2, . . .}, e ∈ E),

with the following version of (59):

P(Xn+1 = x+ e|X0, . . . , Xn) = ω(Xn, Ln(Xn), e). (61)

The original excited random walk model, introduced by Benjamini and
Wilson in [19], corresponds to the case where the random walk has a fixed
positive bias (excitation) in the e1 direction when it first hits a site, but no
bias in the other directions, while it behaves like a simple symmetric random
walk on Zd when it hits a previously visited site. In other words, there is a
parameter 0 < p ≤ 1/2 such that

ω(x, `, e) =


1+p
2d if ` = 1 and e = +e1,

1−p
2d if ` = 1 and e = −e1,
1
2d otherwise.

71
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(b) Excited random walk, first 105 steps

Figure 1. Realization of the original excited random walk
model on Z2 with bias parameter p = 0.2.

To allow for a more general type of directional bias, consider a non-zero
vector u ∈ Rd, and say that ω(x, `, ·) is:

• u−positive if
∑

e∈E ω(x, `, e)e · u ≥ 0,

• u−strictly positive if
∑

e∈E ω(x, `, e)e · u > 0,

• balanced if ω(x, `, e) = ω(x, `,−e) for all e ∈ E .
For instance, the multi-dimensional excited random walk considered in by
Menshikov, Popov, Ramírez and Vachkovskaia in [120] corresponds to the
case where there exists a vector u such that, for all x ∈ Z, ω(x, 1, ·) is
u−strictly positive, while ω(x, `, ·) is balanced, for all ` ≥ 2.
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The term "cookie random walk" was introduced by Zerner [156] in the
context of excited random walks on Z for which ω(x, `,+1) ≥ 1/2 (i.e.
ω(x, `, ·) is 1-positive) for all x, `. This rather enigmatic name is explained
by a colourful description of the corresponding model, which goes as follows.
Initially, each site x ∈ Z bears a (possibly) infinite stack of cookies. Then,
each time the random walk hits a site x, and if the corresponding stack is
non-empty, the walker eats the cookie lying on the top of the stack, which
provides her/him with a bias to the right for the next step. In the absence of
cookies at site x, a simple symmetric random walk step is performed. Note
that, by allowing cookies to produce negative or zero bias as well, one may
always assume that each site bears a countably infinite stack of cookies.

Using this cookie terminology (in dimension d ≥ 2), the original excited
random walk model of Benjamini and Wilson corresponds to the case where
there is one cookie per site x ∈ Zd, each cookie producing a fixed positive bias
in the e1 direction. In the sequel, we use the term positive cookies random
walk to refer to the case where, for some fixed u, ω(x, `, ·) is u−positive for all
x, `, while we use the term boundedly many cookies random walk for the case
where there exists anM ≥ 1 such that, for all ` ≥M+1, ω(x, `, ·) is balanced.
The family (ω(x, `, e); x ∈ Zd, ` ∈ {0, 1, 2, . . .}, e ∈ E) is called the cookie
environment, and we consider the case where the cookie environment is either
deterministic and translation-invariant, i.e. ω(x, `, ·) = ω(0, `, ·), or drawn
at random, under the assumption that the cookie environments at distinct
sites form an i.i.d. family. When we speak of positive cookies random walk
or boundedly many cookies random walk in random environment, we always
assume that one can choose u and M deterministically in such a way that
the corresponding properties hold for almost every environment.

1.2. Results. Most available results have been obtained for nearest-
neighbour excited random walks on Z, thanks to the existence of an al-
ternative representation of the walk in terms of branching processes with
immigration. Our own work deals with the case of excited random walks
on Zd for d ≥ 2, which, due to the unavailability of the branching process
representation, turns out to be rather remote from the d = 1 case. As a
consequence, our emphasis in the sequel is on the multi-dimensional case,
and we content ourselves with a brief overview of the one-dimensional case,
which includes only partial results and does not do justice to the large body
of work devoted to the subject. Also, we do not discuss walks on other types
of graphs such as trees (see [122, 152, 14]), strips (see [157, 63]), nor ex-
cited Brownian motions (see [133, 132]). For a more thorough exposition,
we refer to the very nice recent review paper by Kosygina and Zerner [108].

1.2.1. Case d = 1. Over the years, a fairly detailed picture of the be-
haviour of the boundedly many cookies random walk on Z in either deter-
ministic or i.i.d. environment has emerged, and we quote the main results
below. Note that the theorems quoted in the sequel under a general form
have often been established first in special cases, e.g. under the assumption
of positive cookies, or with respect to a deterministic environment. Since
we do not discuss the details of these successive improvements, we quote the
authors of the partial results along those of the final one.
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The key quantity to characterize the behaviour of the model is the aver-
age drift over the whole sequence of cookies at a site, i.e.

δ := E

∑
`≥1

ω(0, `, 1)− ω(0, `,−1)

 . (62)

where E refers to the joint probability measure describing both the possibly
random environment and the random evolution of the walk conditional upon
the realization of the environment. We also introduce the following weak
ellipticity assumption:

P(∀` ≥ 0, ω(0, `, 1) > 0) > 0 (63)

We start with a recurrence/transience criterion. Here, recurrence means
that each site x ∈ Z is visited P−almost surely an infinite number of times,
while transience to the right (resp. to the left) means that P−almost surely,
limn→+∞Xn = +∞ (resp. −∞).

Theorem 16 (Zerner [156], Kosygina and Zerner [109]). For the bound-
edly many cookies case in i.i.d. random environment, under the ellipticity
assumption (63), the random walk is

• recurrent if −1 ≤ δ ≤ 1,
• transient to the right if δ > 1,
• transient to the left if δ < −1.

Then one has the following law of large numbers.

Theorem 17 (Zerner [156], Mountford, Pimentel, Valle [122], Basde-
vant and Singh [12], Kosygina and Zerner [109]). For the boundedly many
cookies case in i.i.d. random environment, under the ellipticity assumption
(63), one has a law of large numbers with deterministic speed v:

lim
n→+∞

n−1Xn = v, P− a.s.

Moreover, one has that
• v = 0 if −2 ≤ δ ≤ 2,
• v > 0 if δ > 2,
• v < 0 if δ < −2.

We then describe the remarkably rich range of possible behaviours for
the fluctuations of the model, mentioning only the order of magnitude of the
fluctuations and the type of the limiting distribution.

Theorem 18. For the boundedly many cookies case in i.i.d. random
environment, under the ellipticity assumption (63), the various fluctuations
regimes of the random walk are described by Table 1 below.

1.2.2. Case d ≥ 2. We now discuss the (comparatively) far less complete
results available in the d ≥ 2 case, starting with the recurrence/transience
question.

Theorem 19 (Benjamini, Wilson [19]). For the original excited random
walk model in dimension d ≥ 2, the walk is transient in the +e1 direction,
i.e.

lim
n→+∞

Xn · e1 = +∞ P− a.s.
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Range Order of magnitude Limiting distribution Reference(s)
0 ≤ δ < 1 Xn ∝ n1/2 Brownian motion per-

turbed at extrema
[63, 62]

δ = 1 Xn ∝ n1/2 log n running max. of Brow-
nian motion

[62]

1 < δ < 2 Xn ∝ nδ/2 stable, α = δ/2 [13, 107]
δ = 2 Xn − γn ∝ n(log n)−2,

γn ∝ log n
stable, α = 1 [13, 107, 108]

2 < δ < 4 Xn − vn ∝ n2/δ stable, α = δ/2 [107]
δ = 4 Xn − vn ∝ (n log n)1/2 stable, α = 2 (Gauss-

ian)
[107]

δ > 4 Xn − vn ∝ n1/2 stable, α = 2 (Gauss-
ian)

[109]

Table 1. Fluctuation regime of the one-dimensional excited
random walk as a function of δ.

To state the next result, introduce the analog of the quantity δ defined
in the case d = 1, which is the average drift vector defined as

δ := E

(∑
e∈E

ω(0, 1, e)e

)
. (64)

Introduce also the uniform ellipticity assumption that, for some ε > 0,

P
(

inf
e∈E

ω(0, 1, e) ≥ ε
)

= 1. (65)

Theorem 20 (Zerner [157]). Consider the positive cookies model in i.i.d.
random environment, under the uniform ellipticity assumption (65). Then
the fact that δ · u > 0 implies that the walk is transient in direction u, i.e.

lim
n→+∞

Xn · u = +∞ P− a.s.

An important consequence of Theorem 20 (and of Theorem [19] in the
less general case of the original excited random walk model) is the existence,
when δ 6= 0, of an almost surely finite renewal structure for the walk, similar
to the one used in the context of random walks in random environments (see
[144]). A precise definition of the renewal structure in the present context is
given in Subsection 2.3. In turn, the very existence of this renewal structure
is enough (see e.g. [155]) to prove a law of large numbers of the form

lim
n→+∞

n−1Xn = v, P− a.s. (66)

and the relevant question is then whether v 6= 0, i.e. whether the random
walk is ballistic.

For the original excited random walk model in dimension d ≥ 4, ballis-
ticity is easily proved, as noted by Benjamini and Wilson in [19]. Proofs of
ballisticity for d = 3, then d = 2, were then given by Kozma in two so far
unpublished manuscripts [110, 111]. Using a different approach, we suc-
ceeded [34] in obtaining (stretched exponential, see (74)) tail estimates for
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the renewal structure in all dimensions d ≥ 2, leading to an alternative proof
of ballisticity.

Theorem 21 (Kozma [110, 111], B. and Ramírez [34]). For d = 2 and
d = 3, the original excited random walk model is ballistic in the e1 direction.

Another consequence of the tail bounds proved in [34] on the renewal
structure, is the following central limit theorem.

Theorem 22 (B., Ramírez [34]). Consider the original excited random
walk model. For all d ≥ 2, there exists a non-degenerate d × d covariance
matrix C, such that

t 7→ n−1/2(Xbntc − vbntc),
converges in law as n→ +∞ to a Brownian motion with covariance matrix
C, with respect to the Skorohod topology on the space of càdlàg functions.

Note that, using a completely different approach based on the lace ex-
pansion technique, van der Hofstad and Holmes [147] also proved a central
limit theorem for the original excited random walk model, valid for dimen-
sions d ≥ 8 and sufficiently small excitation parameter p (depending on the
dimension). One of the interests of the lace expansion approach is that it
allows one, see [146], to prove that the asymptotic speed in the e1 direction,
i.e. v · e1, is a monotonic increasing function of the excitation parameter p,
provided that d ≥ 9.

Recently, Menshikov, Ramírez, Popov and Vachkovskaia [120] found a
way of extending the estimates on the renewal structure to a more general
class of excited random walks. Specifically, they consider an i.i.d. cookie
environment for which the first cookie satisfies an assumption of uniform
u−strict positivity, i.e. there exist u and ε > 0 such that

P

(∑
e∈E

ω(0, 1, e)e · u ≥ ε

)
= 1. (67)

The subsequent cookies are assumed to be balanced, i.e.

P (ω(0, `, ·) is balanced) = 1 for all ` ≥ 2. (68)

Theorem 23 (Menshikov, Popov, Ramírez and Vachkovskaia [120]).
Assuming (67), (68), and the uniform ellipticity assumption (65), one has
that, for all d ≥ 2, the excited random walk is ballistic, with asymptotic speed
v 6= 0, and there exists a non-degenerate d × d covariance matrix C, such
that, with respect to P,

t 7→ n−1/2(Xbntc − vbntc),
converges in law as n→ +∞ to a Brownian motion with covariance matrix
B, with respect to the Skorohod topology on the space of càdlàg functions.

So far, we have only discussed the positive cookies case. The general
case where cookies may produce both positive and negative drift in a given
direction is not well understood, especially in low dimensions.

The following example, given in [109], illustrates that the situation is
more complex than in the one-dimensional case, where a simple classification
of the possible behaviours can be given, based solely on the value of δ. In the
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example, each site bears two cookies, the first one with bias ε > 0 in the e1

direction, the second one with an opposite bias −ε in the same direction. For
this example, δ = 0, but it can be shown with a specific argument that, for
d ≥ 4, a law of large numbers holds with a limiting speed satisfying v ·e1 > 0.
Moreover, by symmetry, reversing the order of the two cookies has the effect
of turning v into −v, while keeping δ = 0.

For large values of d, it is possible to adapt the argument – based on
the so-called cut-times of the simple symmetric random walk – given by
Bolthausen, Sznitman and Zeitouni [39] in the context of random walks
in random environment. A law of large numbers for the excited random
walk can thus be proved in high enough dimensions (at least 6), without
u−positivity assumptions, see [89]. Combined with lace expansion estimates,
this approach was used in [90] to show that, in dimension d ≥ 9, a sufficiently
large drift in the e1 direction provided by the first cookie cannot be offset
by drifts in the opposite direction provided by later cookies, no matter how
large their drift.

Finally, let us mention [3], where in dimension d = 3, the excitation
provides a drift towards a reflecting "wall" formed by a plane, making the
walk recurrent, and [18], where, in dimension d = 4, the effect of the cookies
is not to produce bias, but a balanced step restricted to dimensions e1, e2,
while, in the absence of cookies, the steps of the walks are restricted to
dimensions e3, e4 (and balanced too), making the walk transient.

2. Proofs

2.1. The approach of Benjamini and Wilson [19]. In [19], Ben-
jamini and Wilson observed that a key quantity in the study of the excited
random walk model is the number of distinct sites visited by the walk before
time n, i.e.

Rn := #{Xk; 0 ≤ k ≤ n− 1}.

Indeed, call I(1)
n the sum of the Rn steps performed before time n by the

walk, which start from a site visited for the first time. Call I(2)
n the sum of

the remaining n−Rn steps, so that one has

Xn = I(1)
n + I(2)

n .

Since the steps that define I(1)
n are positively biased in the e1 direction, the

law of large numbers shows that, when Rn is large,

I(1)
n · e1 ∼ cRn,

where c is a positive constant. On the other hand, the steps defining I(2)
n are

unbiased, and their number is at most n, so that one has that1, at most,

I(2)
n · e1 ∝ n1/2.

1We are not cheating here. On the one hand, the event that the first visit of Xk by
the walk happens precisely at time k, is measurable with respect to the past history of
the walk up to time k. On the other hand, conditional upon this past history, the step
leading from Xk to Xk+1 is either biased or unbiased, depending on whether Xk has been
visited prior to time k or not.
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As a consequence, if one can show that, for large n, one typically has that

Rn >> n1/2,

the contribution of I(2)
n to Xn · e1 is negligible compared to that of I(1)

n , so
that

Xn · e1 ∼ cRn.
In dimension d ≥ 3, one can use the fact that the projection of the walk

on the directions (e2, . . . , ed) is2 a simple symmetric random walk on Zd−1 to
provide lower bounds on the order of magnitude of Rn. Indeed, the number
R′n of distinct sites visited by the projection up to time n, is a lower bound
for Rn. Moreover, the large n behaviour of the number of distinct sites
visited before time n by a (d − 1)−dimensional simple symmetric random
walk is a well-studied object.

Specifically, we have that R′n ∝ n when d ≥ 4, while R′n ∝ n(log n)−1

when d ≥ 3. This is enough to show ballisticity when d ≥ 4, and transience
in the e1 direction (but not ballisticity) when d = 3. On the other hand,
when d = 2, one has that R′n ∝ n1/2, so the order of magnitude of R′n
is comparable to that of I(2)

n , and the above argument does not lead to a
definite conclusion regarding Xn.

To deal with the d = 2 case, Benjamini and Wilson [19] devised a clever
argument based on a natural coupling of the excited random walk with a
simple symmetric random walk, and the notion of tan points. The coupled
random walk (Zn) performs exactly the same steps as the excited random
walk (Xn) in direction e2, while, for steps in direction e1 it only satisfies the
inequality (Zn+1 − Zn) · e1 ≤ (Xn+1 −Xn) · e1. Such a coupling is possible
since the excited random walks steps in direction e1 always have zero or
positive bias. An illustration of the coupling is given in Figure 2.

It seems rather reasonable to expect that (Xn)n tends to visit more sites
than (Zn)n, since the occasional biased steps experienced by (Xn)n should
help it spread its trajectory into space. Unfortunately, it is not clear how to
make this into a rigorous argument. For instance, it is not true that, if the
first visit of site Zn by the coupled simple random walk occurs at time n,
then the first visit of site Xn by the excited random walk occurs at time n.
However, the corresponding property is true if one restricts attention to the
so-called tan points, that we now define.

Say that m is a tan point for (Zn)n if

Zm · e1 > Zk · e1

for all 0 ≤ k ≤ m− 1 such that

Zk · e2 = Zm · e2.

An illustration of the definition is given in Fig. 3. One similarly defines the
notion of tan point for (Xn)n. The terminology is explained by the following
picture: imagine the Sun being placed infinitely far in the +e1 direction.
Then, if m is a tan point, the past history of the random walk up to time m

2This is true up to a non-problematic time-change.
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Figure 2. Joint realization of the first 1000 steps of an ex-
cited random walk with p = 0.4 (blue) and the coupled simple
random walk (green).

does not shield the point Zm from sunbeams parallel to the e1 axis. Since
by construction the sequence

(Xn · e1 − Zn · e1)n≥0

is non-decreasing, it is easily checked that a tan point for (Zn) must also be
a tan point for (Xn), see Fig. 4. Calling Nn the number of tan points of
(Zk)k that appear before time ≤ n, one thus has that

Rn ≥ Nn.

To obtain a lower bound on the order of magnitude of Nn for large n,
Benjamini and Wilson exploited a combinatorial result by Bousquet-Mélou
and Schaeffer [40]. Their conclusion is that the number of tan points of a
simple random walk on Z2 between its first entrance to, and its first exit
from, a horizontal strip of height r, has a probability of being of order r4/3

that is bounded from below when r is large. Since typically Zn · e2 ∝ n1/2,
the number of disjoint such strips crossed by the walk up to time n is of
order n1/2, whence an overall number of tan points of order(

n1/2
)4/3

= n2/3 >> n1/2.

As in the d = 3 case, this is enough to prove transience in the e1 direction,
but not ballisticity.
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(a) The end-point is a tan-point.
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(b) The end-point is not a tan-point

Figure 3. Two pieces of trajectories of a simple random walk
illustrating the notion of a tan point. The end-point of each
trajectory is circled.

2.2. Transience for the general positive cookies walk (Zerner
[157]). In [157], Zerner developed a nice approach to the proof of the tran-
sience of the positive cookies excited random walk when δ · u > 0, quoted
as Theorem 20. Unlike the approach of Benjamini and Wilson [19], which
involves precise estimates and an explicit connection to the simple random
walk, the approach of [157] is exclusively based on soft arguments combin-
ing martingale techniques and properties of the environment viewed from
the particle. Here is an admittedly very rough sketch of the corresponding
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Figure 4. Joint realization of an excited random walk with
p = 0.4 (blue) and the coupled simple random walk (green),
where the end-point of the simple random walk is a tan point.
The end-points of both trajectories are circled.

argument. Introduce the drift accumulated by the walk up to time n, i.e.

Dn :=
n−1∑
k=0

∑
e∈E

ω(Xk, e, Lk(Xk))e, (69)

and introduce the (vector-valued) martingale (Mn)n≥0 defined by

Mn := Xn −Dn.

A key object in the proof is the (scalar) martingale (Mn · u)n≥0, which is
especially useful here since, due to the assumption of u−positivity of the
cookies, one always has that Dn · u is non-negative. Introducing

Tx := inf{n ≥ 0; Xn · u ≥ x},

one can show with the help of this martingale that P(Tx < +∞) = 1 for all
x ≥ 0.

One then "stationarizes" the problem by showing, using only minimal
regularity properties of the model, that a stationary distribution exists for
the Markov chain describing the cookie environment viewed from the parti-
cle at the successive times T1, T2, . . ., with the additional property (P) that,
starting from this distribution, the cookie environment viewed from the par-
ticle at time T1 restricted to the half space {x ∈ Zd; x ·u ≥ 0} has the same
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distribution than when starting with the original distribution of the cookie
environment.

Using again the u−positivity of cookies in combination with the mar-
tingale (Mn)n and stationarity, one shows that P̃ (Au) = 1, where Au :=

{limn→+∞Xn · u = +∞} and P̃ is obtained by using the stationary cookie
environment. An elementary argument then implies that P̃ (Au ∩Bu) > 0,
where Bu := {∀n ≥ 1 Xn · u > 0}. Thanks to property (P), P(Au ∩ Bu) =

P̃ (Au ∩Bu), so we have that P̃ (Au ∩Bu) > 0. Finally, a classical argument
shows that P(Au) can only be equal to 0 or 1, whence the conclusion that
P(Au) = 1.

2.3. The renewal structure. We now give the precise definition of the
renewal structure used for the excited random walk. Note that the definition
is the exact counterpart of the one used for multi-dimensional random walks
in random environment, see [144] (which itself is a generalization of the one
appearing in the one-dimensional case [97, 96]), and here, as opposed to
the case discussed in Chapter 2 for interacting particle systems, finding a
definition with the right structural properties is not difficult. We give the
definition in the general case of a vector u for which δ ·u > 0. For the original
excited random walk model, one takes u := e1.

We say thatm ≥ 1 is a renewal time for the walk if the following condition
is satisfied

sup
0≤k≤m−1

Xk · u < Xm · u ≤ inf
k≥m+1

Xk · u, (70)

and define the sequence (κn)n≥0 by κ0 := 0 and

κn+1 := inf{m > κn; m is a renewal time}. (71)

The almost sure finiteness of the κns is a direct consequence (see e.g.
[157]) of transience in direction u, and one then has that

(i) the r.v.s (κn+1 − κn, rκn+1 − rκn)n≥0 are independent,
(ii) the r.v.s (κn+1 − κn, rκn+1 − rκn)n≥1 are identically distributed,
To prove tail estimates on κ, one introduces the following sequence of

stopping times, starting with D0 := 0. For n ≥ 1,

Sn := inf{m > Dn−1; Xm · u > sup
0≤k≤m−1

Xk · u}, (72)

Dn := inf{m > Sn; Xm · u < XSn · u}. (73)

One then lets
K := inf{n ≥ 1; Dn = +∞},

and observe that κ1 = SK (the really important point is that SK is a renewal
time so that κ1 ≤ SK).

These definitions are illustrated in Fig. 5 and 6.

2.4. Estimates on the renewal structure I: original excited ran-
dom walk model (B., Ramírez [34]). We now describe the argument
developed in [34] to prove tail estimates on the renewal structure, leading to
the following bound, which is (more than) sufficient to establish finiteness of
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Figure 5. Position on the e1 axis vs. time plot of an excited
random walk on Z2 with p = 0.1. The sequence of stopping
times S1, D1, . . . is shown on the horizontal axis, while the
successive values of XSi · e1 are shown on the vertical axis.

the second moment and thus derive the law of large numbers and the central
limit theorem (Theorem 22):

P(κ1 ≥ t) = e−t
−1/19+o(1)

. (74)

The key idea is to exploit the directional super-diffusive lower bounds of
the type obtained3 in [19], which show that Xn · e1 & cna, for some a > 1/2
and c > 0. Specifically, a general argument shows that, as soon as one has
that, for some ψ > 0,

P(Xn · e1 ≤ na) ≤ exp
(
−nψ+o(1)

)
, (75)

which is the form under which these bounds are proved and used in [34], a
bound similar to (74) follows.

3We have seen that such bounds can be obtained by counting the number of distinct
sites visited by the projected walk when d ≥ 3, or by using estimates on the number of
tan points when d = 2.
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Figure 6. Trajectory of an excited random walk on Z2.
Some (but not all, for the sake of readability) of the renewal
times κi are shown by means of vertical straight lines with e1

coordinate Xκi · e1.

Here is a description of the three ingredients used in the proof, in addition
to the super-diffusive lower bound (75).

The first ingredient is a bound on XSn · e1 in terms of the time intervals
Dk − Sk for 1 ≤ k ≤ n. Start with the following decomposition:

XSn · e1 = XS1 · e1 +
n−1∑
k=1

(XSk+1
· e1 −XSk · e1) (76)

Then, by definition of the random variables Sn and Dn (see Fig. 6), we have
that XS1 · e1 = 1 and that

XSk+1
· e1 = max

Sk≤i≤Dk
Xi · e1 + 1 ≤ XSk · e1 + (Dk − Sk + 1), (77)

where the inequality in (77) is due to the fact that the walk has nearest-
neighbour steps. Plugging this inequality in (76), one has that

XSn · e1 ≤ 1 +
n−1∑
k=1

(Dk − Sk + 1). (78)
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The second ingredient is a bound on the tail of the random variablesDk−
Sk appearing in (78). By definition of Sk and Dk, the cookie environment
seen by the walk between time Sk and time Dk − 1 consists of exactly one
cookie per site, so that, conditional on Sk being finite, and on the past of the
walk up to time Sk, the distribution of Dk−Sk is exactly the distribution of

D := inf{k ≥ 0; Xk · e1 = −1}

with respect to P. We can then use the directional super-diffusive lower
bound (75) to control the tail of D, since P(D = k) ≤ P(Xk · e1 = −1),
leading to the bound

P(k ≤ D < +∞) ≤
+∞∑
m=k

P(Xm · e1 = −1) ≤ exp
(
−kψ+o(1)

)
. (79)

The third ingredient just consists in the observation that, since the suc-
cessive finite values of Sn are as many attempts at producing a renewal time,
each of which has a conditional probability of success given the past equal
to P(∀k ≥ 0 Xk · e1 ≥ 0) > 0, the tail of K is geometric.

We now want to bound the tail of κ1. To this end, write t = vw, for
a pair of integers v, w ≥ 1, and observe that, for κ1 to be larger than t, at
least one of the following three events must happen

A := {Xt · e1 ≤ vw}, B := {K > v}, C :=
v⋃
i=1

{w < Di − Si + 1 < +∞}.

Indeed, if, for instance, neither B or C holds, (78) shows that Xκ1 · e1 =
XSK ·e1 must be ≤ vw, so that κ1 cannot be larger than t unless Xt ·e1 ≤ vw,
i.e. A, holds. Then the individual probabilities of the events A,B,C can
be controlled, respectively with another use of the directional super-diffusive
lower bound (75) for A, the geometric bound on the tail of K for B, and
the bound (79) on the tail of Dk − Sk (with a basic union bound) for C.
Choosing v ∼ tα and w ∼ tβ with α, β > 0 such that α+ β < a (where a is
the exponent in (79)), one obtains a bound of the form

P(κ1 ≥ t) ≤ exp(−nψ′), (80)

with ψ′ > 0. The precise value of ψ′ obtained in [34] after a little optimiza-
tion over the various bounds is ψ′ = 1/19, but any bound such as (75) with
a positive value of ψ would lead to a tail bound like (80) with a positive ψ′.

In our opinion, one of the nice features of the above argument is that it
allows one to lift a directional super-diffusive but sub-ballistic lower bound
into a proof of ballistic behaviour (and more), thanks to the exploitation
of the space-homogeneity of the model, which is reflected by the existence
of the renewal structure. In fact, few special properties of the excited ran-
dom walk model are used in the above argument: beyond the directional
super-diffusive bound (75), all that is needed4 is that the initial environ-
ment is space-homogeneous and that the interaction between the walk and
its environment is local (which here corresponds to the fact that the cookie

4It seems that we also need the fact that P(∀k ≥ 0 Xk · e1 ≥ 0) > 0, but this also can
be obtained as a consequence of (75).
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environment at a site is modified only when the walk hits this site), along
with bounded steps. A (shamelessly vague) formulation could be stated5 as:

directional super-diffusivity+local interaction+homogeneous environmentwww� renewal

ballisticity, CLT, etc.

2.5. Estimates on the renewal structure II: general multidimen-
sional model (Menshikov, Popov, Ramírez, Vachkovskaia [120]). To
apply the argument described in the previous subsection, a directional lower
bound comparable to (75) is needed, and the methods used to prove such es-
timates for the original excited random walk seem difficult to adapt to more
general models. In [120], a completely different approach was developed,
leading to super-diffusive lower bounds in a much more general setting.

The key result proved in [120] is the following (Proposition 4.1 in [120]
is actually more general, but we quote only the version corresponding to the
context discussed here). For the excited random walk with one u−positive
cookie per site in dimension d ≥ 2, under the uniform ellipticity assumption
(65), there exists b > 1/2 and φ > 0 such that

P(Rn ≤ nb) ≤ exp
(
−nφ+o(1)

)
, (81)

where Rn denotes the number of distinct points visited by the walk up to
time n. This is enough to derive a result analogous to (75) once uniform strict
u−positivity of the cookies is added, which in turn implies a tail bound on the
renewal times thanks to the argument described in the previous subsection.
Note that it is not necessary to assume u−strictly positive cookies for (81)
to hold.

At the heart of the proof of (81) is a combination of martingale argu-
ments, whose main steps we now briefly sketch. Remember the definitions
of the accumulated drift Dn and martingale Mn from (69) and (70):

Dn :=
n−1∑
k=0

∑
e∈E

ω(Xk, e, Lk(Xk))e, Mn := Xn −Dn,

and the fact that, from u−positivity, one always has that Dn · u ≥ 0.
A first estimate controls the tail of the time spent by the walk in a given

strip of the form Sm := {x ∈ Zd; m ≤ x · u < m+ 1} up to time n. Broadly
speaking, each time the walk lies in Sm, ellipticity combined with a gambler’s
ruin type estimate obtained via Mn, yields a lower bound on the probability
that the walk will hit a strip Sq with q >> m before hitting Sx again. An
upper bound on the probability for the walk to go back from Sq to Sm before
timem is then provided by applying Azuma’s inequality for martingales with
bounded increments.

On the other hand, if one restricts attention to time intervals [n1, n2]
during which the walk does not visit any new site, (Xn)n itself behaves
as a martingale, and an argument similar in spirit to the one above, using

5In fact, it is not really necessary to have a > 1/2 in a bound of the type of (75), any
a > 0 would do.
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||Xn−Xn1 ||b for a suitably chosen b < 1 instead ofMn ·u, allows one to show
that, if n2 − n1 is large, any given set of points which covers a sufficiently
large fraction of a large ball centered at Xn1 , will be visited with probability
close to 1.

The argument then goes as follows. Divide Zd into disjoint strips of the
form Hj := {x ∈ Zd; (j−1)h ≤ x ·u < jh}. Strips into which the walk visits
more than r sites up to time n are called traps. When there are many traps,
the number of visited sites is large, which is precisely what one wants to
prove, so one may restrict attention to situations where the number of traps
is small. Then the first estimate shows that the total time spent by the
walk in traps cannot be too large. On the other hand, the second estimate
shows that, whenever the walk is not in a trap, it must soon hit a previously
unvisited site, since the walk is surrounded by a large proportion of them.

3. Perspectives

As mentioned above, we only have a limited understanding of multi-
dimensional excited random walks where cookies can produce both positive
and negative bias in a given direction. Finding reasonably general criteria
for recurrence/transience or ballisticity is thus a challenging open problem.

More generally, one may combine the idea of an excited random walk
with more general processes than classical random walks, such as random
walks in a random potential, or persistent random walks.

One more specific interesting open question about excited random walks
in dimension d ≥ 2 is that of large deviations, even in the context of the
original model (see [129] for a treatment of the large deviations in the case
d = 1). A general large deviations argument due to Rassoul-Agha [135],
extending previous work by Varadhan [149] on random walks in random
environment, shows that a large deviations principle indeed holds for Xn,
with a convex lower semi-continuous rate function. However, this result is
not explicit, and, in particular, it does not allow one to determine the zero
set of the rate function.

The following elementary argument shows that slowdown probabilities
for the walk are actually on a subexponential scale. Consider the event that
|Xk| ≤ λ for all 0 ≤ k ≤ n. If the walk were an ordinary simple random
walk, the corresponding probability would be (roughly) of order e−nλ−1/2 .
Now one can ask the cookies in [−λ, λ]d to have no effect on the walk. To
make this idea precise, assume that, when the random walk hits site x for
the first time and chooses to move in the e1 direction, the corresponding step
∆x is specified by a uniform random variable Ux according to

∆x = 21(Ux < (1 + p)/2).

Conditioned upon the event that Ux > p for all x ∈ [−λ, λ]d, the random
variables ∆x are symmetric, so the evolution of the walk is identical to that
of a simple random walk as long as it remains in [−λ, λ]d. We deduce that
the probability of having Xk ∈ [−λ, λ]d for all 0 ≤ k ≤ n is at least of order
e−λ

d−nλ−1/2 . Optimizing over λ, we see that we can achieve a probability of

order e−n
d

d+1/2 . Finding the exact order of magnitude of the slowdown large
deviations is an open question.
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As far as speedup large deviations are concerned, one might expect that
the cost is always non-zero on an exponential scale (it is trivially so for
speed values larger than p/d by comparison with a simple random walk with
bias p in the e1) direction. If it were possible to couple two versions of the
excited random walk in a non-decreasing way with respect to the cookie
environment6, a rather direct argument based on sub-additivity would do
the job. Unfortunately, except in dimension 1, where it is e.g. a consequence
of the branching process representation, it is not clear that such a coupling
exists, even though it seems intuitively clear that putting more cookies in
the environment tends to push Xn further in the e1 direction.

6More precisely, starting from two cookie environments ω1 and ω2 such that, at each
site, ω2 has a cookie whenever ω1 has one, we would like to find a coupling between two
versions (X

(1)
n )n and (X

(2)
n )n of the excited random walk, with respective initial cookie

environments ω1 and ω2, such that X(1)
n · e1 ≤ X(2)

n · e1 almost surely.



CHAPTER 4

Branching-Selection dynamics

Natural selection is believed to be one of the fundamental processes shap-
ing the evolution of life on Earth. It is an extremely complex process, due to
the interplay of a very large number of factors over a huge variety of scales of
time and space. The mathematical modeling of selection processes started
with the work of the founding fathers of population genetics, such as Fisher
[74], Haldane [87] and Wright [154], and is still an active field of research
(see e.g. [140]). Most often, models focus on a few specific aspects, making
rather drastic simplifying assumptions on the other features of the process,
and the models we discuss here are no exception.

1. Model(s)

In the models we consider, the main focus is the joint effect of the popu-
lation size and the distribution of mutations, on the speed of evolution. One
first assumption we make is that of a constant population size N . In other
words, the number of individuals in the population under study is kept to a
constant value N over the generations. Another assumption is that individ-
uals can be described by a single numerical fitness value, regardless of the
complex type differences that may exist between them. Finally, we assume
an asexual population, in which single individuals give birth to children,
and we make the assumption that the effect of mutations simply consists in
shifting the fitness value of a child from the fitness value of its parent by a
random amount. To simplify the terminology, we speak of the location of an
individual on the real line to refer to the value of its fitness.

Various approaches can be used to model the gradual replacement of
individuals by their children, and the effect of selection. The first model
we consider is the discrete-time N−branching random walk, abbreviated
discrete time N−BRW in the sequel. At each discrete time n = 0, 1, . . ., we
have a population of N particles with fitness-values in R, representing the
n−th generation. The population of particles evolves through the repeated
application of branching and selection steps defined as follows (see Fig. 1):

• Branching: each of the N particles is replaced by two new children
particles, whose positions are shifted from that of the original parti-
cle by independently performing two random walk steps, according
to a prescribed distribution µ;
• Selection: only the N right-most particles, i.e. those with the N
highest fitness values, are kept among the 2N particles obtained at
the branching step, to form the new population.

An alternative model is the continuous-time N−BRW, that describes a
population of N particles in which the replacement of individuals by their

89
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Figure 1. Realization of the discrete-time N−BRW model
with µ = N (0, 1). Red (resp. blue) lines connect parents
with selected (resp. eliminated) children.

children occurs in continuous – rather than discrete – time. At rate 1, each
particle produces a new particle, whose position is shifted from its parent by
performing one random walk step according to the distribution µ. Immedi-
ately after such a branching event, only the N right-most particles are kept
among the N + 1 particles present in the population.

Yet another model is the N−branching Brownian motion, abbreviated in
the sequel as theN−BBM. As in the N−BRW, each particle branches at rate
1, but particles positions evolve in continuous-time according to independent
Brownian motions.
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Note that one may imagine plenty of other ways of introducing selection
in the model. The selection mechanism used above has the advantage (as far
as the theoretical analysis of the models is concerned) of not introducing ad-
ditional randomness beyond that due to mutations. In other, less unrealistic
models, selection would be modeled by the fact that an individual produces
a random number of children, whose expected value increases in proportion
of the individual’s fitness. For instance, in a population described by a list of
N (positive) fitness values (x1, . . . , xN ), the distribution of the numbers of
children of individuals 1, . . . , N , denoted (n1, . . . , nN ), would be multinomial
with parameters N and (p1, . . . , pN ), where

pi :=
xi∑N
j=1 xj

.

2. Results

Our primary motivation for studying branching-selection dynamics is
that they provide (extremely simplified) models of the process of natural
selection. However, it turns out that the specific models we consider are
also related to a more general theory of stochastic fronts, developed by the-
oretical physicists Brunet and Derrida, with applications in other fields (e.g.
stochastic models of polymers). Before stating precise mathematical results,
we give a brief description of the main predictions of this theory.

2.1. Brunet-Derrida theory. The F-KPP equation, named after Fisher
[75] and Kolmogorov, Petrovsky and Piscounov [105], is one of the classical
PDE models of front propagation, whose salient feature is that is leads to
traveling wave solutions. In its simplest form, the equation reads

∂u

∂t
=
∂2u

∂x2
+ u(1− u),

where u = u(x, t), x ∈ R, t ≥ 0.
The equation possesses one stable equilibrium u ≡ 1 and one unstable

equilibrium u ≡ 0. Typically, one considers an initial condition satisfying
limx→−∞ u(x, 0) = 1 and limx→+∞ u(x, 0) = 0, and, under generic assump-
tions, the corresponding solution u converges, for large times, towards a
traveling wave solution ũ describing the invasion of the 0 phase by the 1
phase, at a constant velocity. More precisely, ũ is of the form

ũ(x, t) = g(x− vt),
where v ∈ R is the wave speed, while g(x), x ∈ R describes the wave shape,
and satisfies limx→−∞ g(x) = 1 and limx→+∞ g(x) = 0. Such traveling wave
solutions exist for every v above a critical speed v∗. For localized initial
conditions, i.e. u(x, 0) = 1 for all x ≤ a and u(x, 0) = 0 for all x ≥ b, u is
attracted towards the traveling wave solution associated with the minimal
speed value v∗.

The results of Brunet and Derrida deal with systems described by F-
KPP like equations perturbed by small stochastic noise terms. One example
is the stochastic F-KPP equation

∂u

∂t
=
∂2u

∂x2
+ u(1− u) +

√
εu(1− u)Ẇ , (82)
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Figure 2. Numerical simulations from Brunet and Derrida
[46]. Circles show the estimated values of v∗ − vN for values
of N ranging from 106 to 10150, while the solid line shows the
value of C

(logN)2
. (Here v∗ is vmin and C is Kapprox.)

where Ẇ is a standard space-time white-noise.
For this model, Brunet and Derrida predicted that, to the first order, the

effect of the noise term is to shift the velocity of the limiting traveling wave
solution by an amount which, in the limit where ε → 0, goes to zero at an
extremely slow rate. Specifically, starting with a localized initial condition,
the solutions of (82) converge to traveling waves with speed vε, with

v∗ − vε ∼
π2

(log ε)2
. (83)

For N−branching-selection processes, a prediction similar to (83) holds:

v∗ − vN ∼
C

(logN)2
, (84)

where vN is the large-time asymptotic velocity of the particle system with
N particles, and v∗ is the N → +∞ limit of the speed, which coincides with
the maximum speed of the corresponding branching model (BRW or BBM)
without selection.

To explain the connection of N−branching selection processes with the
F-KPP equation, denote by XN (t) the population of particles in the process
at time t, and, for x ∈ R, define

FN (x, t) :=
number of particles in XN (t) whose position is > x

N
,

and
F (x, t) := lim

N→+∞
FN (x, t).

For theN−BRW in continuous time, Durrett and Remenik rigorously proved,
see [69], that, under generic regularity assumptions, F (x, t) is well-defined
and satisfies the following equation
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Figure 3. The successive graphs of x 7→ FN (x, t) for a re-
alization of the discrete-time N−BRW with µ = N (0, 1),
N = 10000, and t = 5, 10, 15, . . . , 40. The traveling wave
behaviour is clearly visible.


∂F
∂t = (F (·, t) ? µ) (x), x > γ(t),

F (x, t) = 1, x ≤ γ(t).
(85)

where γ is a continuous increasing function1. To emphasize the analogy with
the F-KPP equation, one may rewrite the r.h.s. of (85) as

(F (·, t) ? µ) (x) = (F (·, t) ? µ) (x)− F (x, t)︸ ︷︷ ︸
! ∂2F

∂x2

+F (x, t).

Thus, (85) means that, above γ(t), F satisfies a linear equation similar to
the F-KPP equation without the saturation term (1−u), while a saturation
mechanism is added below γ(t) to ensure that F does not exceed 1. Similar
equations can be written for the N−BRW in discrete time, or the N−BBM,
although the corresponding results have not been formally proved. Fig. 3
illustrates the corresponding traveling-wave behaviour in the N−BRW case.

1Note that γ is not specified a priori, so that finding γ is part of solving the equation.
In this sense, (85) constitutes a free boundary problem.
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Note that F describes the model in the infinite-population limit N →
+∞. The dynamics of the actual finite-population particle system XN is de-
scribed by FN , which only satisfies an approximation of (85), where stochas-
tic fluctuations have to be added to account for the fact that the population
size N is large but finite. For instance, FN cannot take any intermediate
value between 0 and 1/N , so that FN cannot be described by (85) with a
higher "resolution" than 1/N . Remarkably, Brunet and Derrida could pro-
duce an argument successfully predicting (83) or (84) based on barely more
that this rather qualitative remark.

A very rough sketch of their argument is as follows. For solutions u of
the stochastic F-KPP equation perturbed by stochastic noise such as (82),
at every time t > 0, x 7→ u(x, t) continuously connects 1 at x = −∞ to 0 at
some random x = r(t) defining the position of the front, right of which u(·, t)
is identically zero. Looking at the equation (82), one can see that stochastic
effects due to the noise term counterbalance the u(1−u) creation term when
u is of order ε. To find the asymptotic speed of propagation of the front, one
should thus look for traveling waves obeying the F-KPP equation at the left
of the front, taking values of order ε near the front, and which are identically
equal to zero at the right of the front. To study these traveling waves, one
replaces the F-KPP equation by a linear approximation, for which explicit
solutions can be found – these solutions should be approximately valid for the
original equation, thanks to the fact that the values of u are small near the
front. One can then check that the speed of these traveling waves must satisfy
(83). The same kind of argument is used to derive (83) for the branching-
selection particle system, with ε replaced by 1/N – at a heuristic level, the
only relevant properties are that the equation is similar to the linearized F-
KPP equation for small values of u, has a saturation mechanism preventing
the occurrence of large values of u, and that fluctuations lead to a cut-off
for values of u of order ε. This heuristic picture describing the first-order
correction to the limiting velocity was developed (and also compared with
numerical simulations, see Fig. 2) in [44, 45, 46].

Refining this approach, Brunet and Derrida (also with Mueller and Mu-
nier) could give a much more detailed description of the behaviour of the cor-
responding stochastic models, see [42, 41, 43]. For N−branching-selection
processes, their finding is that the relevant time-scale to study the process is
(logN)3. Broadly speaking, the heuristic picture with 1/N cut-off used to
study the first-order correction to the velocity, describes a meta-stable state
in which the process spends most of its time. However, on the (logN)3 time
scale, perturbations due to the appearance of particles far to the right of the
front appear, whose impact is to shift the position of the front by an amount
of order log logN , before it returns to the next (suitably shifted) meta-stable
state. This leads, among other things, to the second-order correction for the
velocity shift:

v∗ − vN −
C

(logN)2
∼ −C ′ log logN

(logN)3
, (86)

but also to estimates on the asymptotic diffusion constant of the process,
and to the conclusion that, on the (logN)3 time scale, the genealogy of the
process is described by a Bolthausen-Sznitman coalescent, as opposed to
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the classical Kingman coalescent appearing in population genetics models
without selection.

2.2. First-order correction to the velocity shift. We now describe
rigorous mathematical results that confirm Brunet and Derrida’s predictions
concerning the first-order velocity shift for various models.

The following result shows the correctness of Brunet and Derrida’s con-
jecture for the stochastic F-KPP equation with noise (see also the earlier
work [54], where only partial results were obtained).

Theorem 24 (Mueller, Mytnik, Quastel [124, 123]). For the stochastic
F-KPP equation with space-time white noise

∂u

∂t
=
∂2u

∂x2
+ u(1− u) +

√
εu(1− u)Ẇ ,

starting with a localized initial condition, the asymptotic velocity of the front
vε satisfies

v∗ − vε ∼
π2

(log ε)2
.

Note that Theorem 24 holds under more general assumptions (on the
form of the equation and on the initial condition) that we do not quote here.
Also, the conclusion can be strengthened by showing that

v∗ − vε −
π2

(log ε)2
= O

(
log | log ε|
| log ε|3

)
, (87)

which gives an upper bound on the same order of magnitude as the conjec-
tured behaviour (86).

We now describe assumptions under which we have obtained the corre-
sponding result for the N−BRW in discrete time.

We consider binary branching with i.i.d. random walk steps whose com-
mon distribution is denoted µ. Introduce

Λ(t) := log

∫
exp(tx)dµ(x).

Here are the assumptions on µ:
(1) There exist σ, ζ > 0 such that Λ(t) < +∞ for all t ∈ [−σ, ζ].
(2) There exists t∗ ∈]0, ζ[ such that t∗Λ′(t∗)− Λ(t∗) = log 2.

Under these assumptions, it can be shown (see [27]) that, for all N ≥ 1,
there exists an asymptotic speed for the interacting particle system in the
sense that, almost surely, one has that

lim
t→+∞

t−1 max(XN (t)) = lim
t→+∞

t−1 min(XN (t)) = vN ∈ R.

The main result on the velocity shift is that

Theorem 25 (B., Gouéré [27]). Under assumptions (1)-(2) above, one
has that, as N → +∞,

v∗ − vN ∼
C

(logN)2
, (88)

where
C := π2

2 t
∗Λ′′(t∗), v∗ := Λ′(t∗).
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Note that, under assumptions (1)-(2), v∗ is the asymptotic speed of the
right-most position of a binary branching random walk with step distribution
µ, i.e. almost surely

v∗ = lim
t→+∞

t−1 maxY(t),

where Y(t) denotes the population of particles in the t−th generation of
the branching random walk. In fact, there exists a close relation between
the velocity shift described by Theorem 25 and the survival probability of
the branching random walk killed below a linear space-time boundary, and
estimates on this survival probability are crucial to the proof of Theorem 25.

We now describe this model in more detail. Consider a fixed speed
v ∈ R, and for each time t, kill every particle in Y(t) whose location lies
strictly below vt (here, killing means that not only the particle, but also
all its descendants, are removed from the process). Then define ρ(v) as the
probability that the branching random walk survives, i.e. that, after killing,
the process still contains particles for every time t ≥ 0. When v ≥ v∗, one
has that ρ(v) = 0, while ρ(v) > 0 when v < v∗. The following theorem
characterizes the speed at which ρ(v) goes to zero when v approaches the
critical speed v∗, starting from a single particle at the origin at time 0.

Theorem 26 (Gantert, Hu, Shi [80]). Assume (1)-(2). For v < v∗, one
has the following asymptotic behavior as v ↗ v∗:

log ρ(v) ∼ −π

√
Λ′′(t∗)t∗

2(v∗ − v)
. (89)

Using a completely different approach, we obtained an alternative proof
of Theorem 26, under more stringent assumptions on µ, and with a strength-
ening of the control upon the error term.

Theorem 27 (B., Gouéré [28]). Under the assumption that µ has bounded
support and that assumption (2) above holds, one has that, as v ↗ v∗,

log ρ(v) = −π

√
Λ′′(t∗)t∗

2(v∗ − v)
+O(log(v∗ − v)).

Combined with the approach of [27], this strengthening leads to an im-
proved bound for the velocity shift that matches (87), i.e.

v∗ − vN −
C

(logN)2
= O

(
log logN

(logN)3

)
. (90)

Finally, we mention [65, 17, 16], where a Brunet-Derrida velocity shift
is proved for for F-KPP type equations with small deterministic cut-off.

2.3. Higher-order results. In this section, we quickly mention results
connected with the higher-order description of branching selection systems
(as opposed to the first-order correction results discussed above).

In [37], Berestycki, Berestycki and Schweinsberg studied the BBM with
killing at the nearly critical speed

γN :=

√
2− π2

a2
N

,
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where
aN :=

1√
2

(logN + 3 log logN).

Remarkably, they succeeded in giving, in the framework of this model, a
rigorous content to the heuristic picture obtained by Brunet and Derrida,
with perturbations of the metastable state of the system occurring on a
(logN)3 time scale and at a distance of order log logN of the front. In
particular, this led to the proof that the genealogy of this model is described,
on the (logN)3 time scale, by the Bolthausen-Sznitman coalescent.

In [38], the same approach was used to obtained refined estimates on
the survival probability of the BBM killed at a nearly critical speed, yielding
precise higher-order asymptotics that refine the analog for BBM of Theorems
26 and 27.

Finally, very recently, Maillard ([119]) succeeded in adapting the ap-
proach of [37] to the N−BBM (by making use of killing at a suitably defined
random barrier instead of a linear deterministic one), leading to a very pre-
cise description of the N−BBM on (logN)3 time scales that we now quote.

To precisely locate the population of particles in XN (t), one introduces
the median position of the particles defined by

mN (t) := inf{x ∈ R; XN (t) ∩ [x,+∞[ contains less than N/2 particles}.

Theorem 28 (Maillard, [119]). Assume that the initial distribution con-
sists of N particles drawn in an i.i.d. way according to the density defined
(up to normalization) by sin(πx/aN )e−

√
2x1[0,aN ](x). Then the finite dimen-

sional distributions of the process

(mN ((logN)3t)− aN (logN)3t)t≥0

converge, as N → +∞ to those of a Lévy process (Lt + x1/2)t≥0, where
L0 := 0 and

E(eiλL1) = iλc+ 2π2

∫ +∞

0

(
eiλx − 1− iλx1(x ≤ 1)

)
dΛ(x),

where c is a constant and Λ is the image of the measure x−21(x > 0)dx by
the map x 7→ 1√

2
log(1 + x).

2.4. Proportional selection scheme. Here, we give a very brief de-
scription of results on branching-selection models obtained in our PhD the-
sis. These results deal with discrete-time models using a proportional se-
lection scheme. Specifically, from a population of N individuals at time t
XN (t) := (X1(t), . . . , XN (t)), a new population of N individuals is created
by letting each individual yield ni(t) copies of itself, where (n1(t), . . . , nN (t))
follows a multinomial distribution with parameters N and (p1(t), . . . , pN (t)),
with

pi(t) :=
Xi(t)∑N
j=1X

j(t)
.

Then the fitness of each individual in the new population is shifted by a
random amount with distribution µ := 1

2δ−1+1
2δ+1. A truncation mechanism

(e.g. reflection at zero) is added so as to keep fitness values positive.
Our main result is the following:
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Theorem 29 (B., Bienvenüe [23]). For all N ≥ 1, one has the following
convergence in distribution on the Skorohod space:(

XN (bsT c)√
T

)
s≥0

−−−−−→
T→+∞

(1, . . . , 1)(Zs)s≥0,

where (Zs)s≥0 is a Bessel process of dimension 2N − 1.

Additional results (e.g. a description of the asymptotic distribution of
fitness differences within the population) are also available on this model,
see [23].

Note that, as opposed to the N−BRW case, the effect of mutations
becomes smaller and smaller as the overall fitness of the population increases,
explaining the T 1/2 scaling of the speed of evolution, as opposed to the linear
speed observed in the N−BRW case.

An extension of Theorem 29 was obtained in [22], to deal with the case of
inhomogeneous mutations. There, an individual with fitness x leads to a child
with fitness x+ζxα, where 0 < α < 1 and where ζ is a centered random vari-
able with finite moments of all order. (A truncation mechanism again forces
fitness values to remain positive). In this case, the proper normalization is
T β , where β := 1

2(1−α) , and the convergence is to the 2β−th power of a Bessel
process of dimension (2N − 3)(1 − α)−1 + 2. One interest of this extension
is that, in the absence of selection, the model experiences a phase transition
from positive recurrence when α < 1/2 to null-recurrence/transience when
α ≥ 1/2.

For the sake of completeness, let us mention that, in [26], we obtained
results on a different kind of branching-selection dynamics in random en-
vironment, where the fitness landscape is either given by a supercritical
Galton-Watson tree conditioned upon non-extinction, or a branching ran-
dom walk on the binary tree. Although related to the branching-selection
models described here, the perspective is rather different, and we do not
elaborate on these results in this manuscript.

3. Proofs

3.1. Proof of Theorem 25. The main tool used in [27] to prove
(88) is a comparison of the N−BRW with the BRW killed below a near-
critical space-time boundary. Indeed, there is a natural coupling between
the N−BRW and a system of N independent branching random walks: if
we suppress the selection steps in the definition of the N−BRW and let every
particle survive and branch at each step, we obtain a system of N indepen-
dent classical BRWs. The idea is to compare the N−BRW with this system
of BRWs killed below a space-time boundary moving at a speed w such that

ρ(w) ≈ 1

N
,

which, from (89), must satisfy

v∗ − w ∼ C

(logN)2
.
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Two distinct comparison arguments are used to prove that

v∗ − vN .
C

(logN)2
(91)

and
v∗ − vN &

C

(logN)2
. (92)

Let us start with (91). Choosing a small φ1 > 0 and

w1 := v∗ − C + φ1

(logN)2
, (93)

we see that, by (89), one has

ρ(w1) >>
1

N
.

As a consequence, if we use speed w := w1 to kill the BRWs, there is a
probability close to 1 that, among our system of N independent BRWs, at
least one survives. Now consider

w2 := v∗ − C + φ2

(logN)2
, (94)

where φ2 > φ1, and assume that minXN (t) grows at a speed ≤ w2, which
we want to disprove. After a sufficiently long time, say t, (t can be chosen
to be on the (logN)3 time scale), the survival of at least one of the killed
BRWs leads to the presence of particles in XN (t) so far to the right of w2 · t
that such a particle can then branch without being affected by selection for
more than log2N steps, leading to a population in the N−BRW comprising
more than N particles, a contradiction.

The above argument is an oversimplification (in particular, we have ar-
gued as if minXN (t) had an exactly linear growth over the time scales we
consider), but the proof in [27] goes along this line. As a result, vN cannot
be smaller than any w2 of the form (93), and one obtains a proof of (91).

For the proof of (92), one chooses a w1 of the form

w1 := v∗ − C − φ1

(logN)2
, (95)

leading to the fact that

ρ(w1) <<
1

N
, (96)

and accordingly

w2 := v∗ − C − φ2

(logN)2
, (97)

where φ2 > φ1.
The idea is then to show that, if minXN (t) grows at a speed ≥ w2, at

least one of the N independent BRWs must survive killing below a space-
time boundary moving at speed w1. In view of (96), this event has a small
probability, so that vN cannot be larger than any w2 of the form (97), and
we obtain a proof of (92). One has to take care of the fact that ρ is the
probability of survival of the killed BRW up to an infinite time-horizon, while
the survival events appearing in the bound involve a finite time-horizon. Still,
it can be shown that the survival probability over a large enough time scale
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(which again can be chosen to be of order (logN)3), leads to a good enough
approximation of (96).

Note that it is not unfair to say that our main contribution in [27] was to
find an appropriate way of putting together several pieces of arguments that
had been developed by other authors. Indeed, the key estimate is Theorem
26 by Gantert, Hu and Shi, while the proof strategy of (92) owes much
to the paper [128] by Pemantle, which deals with complexity bounds for
algorithms seeking near optimal paths in branching random walks. Also,
at the heuristic level, the existence of a link between the Brunet-Derrida
behavior of a branching-selection particle system such as the one studied
here, and the asymptotics of the survival probability for branching random
walks killed below a linear space-time barrier, was already suggested in the
papers [60, 142] by B. Derrida and D. Simon. Finally, let us mention that
a preliminary version of [27], see [21], was completed by one of the authors
(B.) before the results in [80] became publicly available. In [21], only the
(logN)−2 order of magnitude of the difference v∗ − vN was established, in
the special case where the step-distribution is Bernoulli.

3.2. Proof of Theorem 27. The proof strategy used by Gantert, Hu
and Shi [80] to prove Theorem 26 is probabilistic in nature, and relies among
other things, on a first-second moment argument, using a change-of-measure
technique combined with refined "small deviations" estimates for random
walk paths, and exploiting some ideas developed in [98] in the context of
branching Brownian motion.

On the other hand, our proof relies on the characterization of the survival
probability of the branching random walk as the solution of a non-linear
convolution equation. Indeed, for x ∈ R and t ∈ N, let qv(x, t) denote the
survival probability for the t first steps, of the BRW starting with one particle
at site x at time 0, when killing below a straight-line of slope v is applied.
We also use the notation qv(x,∞) to denote the probability of survival up
to an infinite time horizon.

Analysis of the first step performed by the walk leads to the following
equation

{
qv(x, t+ 1) = 2(qv(·, t) ? µ)(x− v)− (qv(·, t) ? µ)(x− v)2, x ≥ 0,

qv(x, t+ 1) = 0, x < 0.
(98)

A purely analytical treatment of the above equation, making use of
monotonicity properties, shows that qv(x,∞) is then uniquely character-
ized, among a suitable class of functions, by being a stationary (with respect
to time) solution of the equation, i.e.

{
qv(x,∞) = 2(qv(·,∞) ? µ)(x− v)− (qv(·,∞) ? µ)(x− v)2, x ≥ 0,

qv(x,∞) = 0, x < 0.
(99)
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In turn, this equation is (once more !) analogous to the F-KPP equation,
as is apparent when rewritten in terms of u(x, t) := qv(−x+ tv,∞),
u(x, t+ 1)− u(x, t)︸ ︷︷ ︸

! ∂u
∂t

= (ũ(x, t)− u(x, t))︸ ︷︷ ︸
! ∂2u

∂x2

+ ũ(x, t)− ũ(x, t)2︸ ︷︷ ︸
!u−u2

, x ≤ v(t+ 1),

u(x, t) = 0, x > vt,
(100)

where ũ(x, t) := (u(·, t) ? µ̃)(x) and µ̃ is the image of µ by the map x 7→ −x.
The idea is then to adapt the (non-rigorous methods) developed by

Brunet and Derrida to study stochastic front propagation models, to treat
this equation for v close to v∗. At the heuristic level, this approach was used
by Derrida and Simon in [60, 142]. Our approach is inspired by the (rigor-
ous) treatment of Mueller, Mytnik and Quastel of a continuous-time version
of (100), which appears as a key intermediate step in their proof of Theorem
24 (see [123, 124]). The idea is to compare the solutions of the original non-
linear equation to solutions of suitably adjusted linear approximations of it,
for which explicit solutions are available. In the framework of [123, 124], the
corresponding equation is a second-order non-linear o.d.e., for which specific
techniques (such as phase-plane analysis) can be applied, while such tools are
not available in our discrete-time setting. Still, the monotonicity properties
of (98) allow us to compare sub- and super- solutions to (99) to qv(·,∞).

In our opinion, one of the interests of the present proof is that, combined
with the comparison approach used in [27], it provides a justification of
the velocity shift asymptotics (88) along the lines of the original analytic
argument of Brunet and Derrida. Although this argument is based on an
analysis of perturbations of (85) to which we were unable to give rigorous
content, making a detour via the survival probability, which satisfies a dual
version of the equation like (100), allowed us to obtain a rigorous proof.

4. Discussion

Theorem 25 is established for models with binary branching under as-
sumptions (1) and (2) on the step distribution µ. The assumption of binary
branching was made for the sake of simplicity, and it should not be difficult
to generalize the results to models with supercritical stochastic branching
with suitable tail decay. Similarly, the part of assumption (1) dealing with
the left-tail of µ is made only for technical reasons. On the other hand,
a slower than exponential decay of the right-tail for µ, or the absence of
assumption (2), are expected to alter the validity of the theorem. Indeed,
a sub-exponential tail for µ can lead to an infinite maximal speed for the
corresponding branching random walk. On the other hand, in the Bernoulli
case where µ = pδ1 + (1 − p)δ0, (2) breaks down when p ≥ 1/2, and the
conclusion of Theorem 25 does not hold (see e.g. the Appendix of [28] for a
short discussion of the meaning of (2), and [55] for a detailed discussion of
the p > 1/2 case).

For Theorem 27 too, the assumption of binary branching is made to
simplify the exposition, but can be relaxed to allow stochastic branching
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mechanisms. On the other hand, it is not clear whether an extension to gen-
eral step distributions with unbounded support but e.g. exponential decay
of the tail is possible.

Note that, even within the rather limited scope considered here, where
reproduction is asexual, and individuals are identified with a single numerical
fitness value, a wide variety of models can be considered. For instance, the
effect of fitness on the population composition can be modeled in many
distinct ways. Also, the specific assumptions on the frequency of mutations,
and on the way they affect individual fitness values, can have a large impact
upon the model’s behaviour. This is also true of the kind of limit (with
respect to population size, time and fitness scales, mutation rates) that is
investigated. As a result, we are very far from having a complete picture
of how such simple evolution models behave, and a quite rich set of open
questions may be asked about them. One specific problem we have started
to study with P. Maillard is the behaviour of the N−BRW model when the
step distribution µ has a heavy tail.

Even though much progress has been made in turning Brunet and Der-
rida’s predictions into mathematical theorems, substantial work remains to
be done before a proper mathematical understanding of most of their results
is achieved. For instance, in the N−BBM case, it is not yet proved that the
second-order correction to the velocity is indeed given by (86), or that the
genealogy is indeed described by the Bolthausen-Sznitman coalescent. Also,
the mathematical developments do not match (for the moment !) the unity
of the theoretical physics’ approach which is able to treat in the same way
such diverse objects as interacting particle systems and noisy PDEs.

One aspect of Brunet and Derrida’s work we have not mentioned is the
discovery of special families of branching selection models for which an exact
computation of some quantities is possible, see [47, 43]. For instance, in the
so-called exponential model, an individual with fitness value x gives birth to
an infinite number of children whose fitness values form a Poisson process on
R with intensity e−(y−x)dy, and, starting from a population of N individuals,
one keeps only the N children with the largest fitness values2. Although
the asymptotic behaviour of this model is quite different from the binary
branching N−BRWs considered above, one can match the asymptotics of
these two models in a coherent way. Recently, Comets, Quastel and Ramírez
[51] studied variants of one of these exactly solvable models, establishing
precise asymptotic results, and showing a form of robustness of the behaviour
of the model.

2This makes sense despite the infinite number of children, since R+ always contains
a finite number of children.
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