Overview

1. Introduction

- 2. « Dynamical » inference
 - Bayesian inference and Chernoff information
 - Study of the inverse discrete Sinai problem
 - Case of DNA (Viterbi algorithm)
- 3. « Static » inference and perspectives

Random Walk in a Random Potential

Two questions

• How can one guess the potential from the knowledge of one (or more) walk(s)?

 \rightarrow practical question (algorithm)

• How many walks does one need for the inference to be reliable?

 \rightarrow theoretical question (probability)

Discrete Sinai model

Discrete Sinai model

Cumulative probability for R_c

Back to DNA opening

 $r_{o}(n) = r \exp(-g(b_{n}, b_{n+1}))$ and $r_{c}(n) = r \exp(-2g_{s}(f))$

Signal to extract from a random walk realization:

- t_n : time spent on base n
- o_n : number of openings of base n (transition $n \rightarrow n+1$)
- c_n : number of closings of base n (transition n \rightarrow n-1)

Inference with Viterbi algorithm

- Increase n up to end to find optimal b_N*
- Decrease n to calculate $b_{N-1}^* = b_{N-1}^{max} (b_N^*)$, b_{N-2}^* , ...

Results from sequence-inference algorithm

R=40 unzippings \rightarrow better prediction

The prediction is bad in the region where the opening fork n(t) spends a small time.

Decay of the single base error with R

Error on base $n \sim exp(-R/R_c(n))$

Results for R_c(f,n)

 $R_{c}(17.4 \text{ pN}) = 50$; time = 50 x 0.4 sec = 20 sec (opening velocity at 17.4 pN =1000 bp/sec)