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Abstract
We present a dynamical model of DNA mechanical unzipping under the action of a force. The
model includes the motion of a fork in a sequence-dependent landscape, the trap(s) acting on
the bead(s) and the polymeric components of the molecular construction (unzipped single
strands of DNA and linkers). Different setups are considered to test the model, and the
outcome of the simulations is compared to simpler dynamical models existing in the literature
where polymers are assumed to be at equilibrium.

1. Introduction

Over the past 15 years, various single molecule experiments
have investigated DNA mechanical and structural properties
[1–18] and protein–DNA interactions [19–29]. These
experiments provide dynamical information usually hidden
in large-scale bulk experiments, such as fluctuations on the
scale of the individual molecule. The separation of the
two strands of a DNA molecule under a mechanical stress,
usually referred to as unzipping, was first carried out by
Bockelmann and Heslot in 1997 [8]. The strands are pulled
apart at a constant velocity while the force necessary for the
opening is measured. The average opening force for the
λ-phage sequence is about 15 pN (at room temperature and
standard ionic conditions), with fluctuations around this value
that depend on the particular sequence content. Bockelmann,
Heslot and collaborators have shown that the force signal is
correlated to the average sequence on the scale of ten base
pairs but could be affected by the mutation of one base pair
(bp) adequately located along the sequence [10]. Liphardt
et al [15] and Danilowicz et al [16–18] have performed an
analogous experiment, using a constant force setup, on a short
RNA and long DNA molecules respectively (figure 1(B)). The
distance between the two strand extremities is measured as
a function of the time while the molecule is submitted to

a constant force. The separation of DNA strands has also
been studied in single molecule experiments by translocation
through nanopores [26, 27].

The motivation underlying unzipping experiments of
DNA is (at least) twofold. First, the study of unzipping
aims at a better understanding of the mechanisms governing
the opening of DNA during transcription and replication by
proteins such as polymerases, helicases and exonucleases
[20, 21, 28, 29]. Simple theoretical models describing the
opening as an unidimensional random walk on a sequence-
dependent free energy landscape have been proved to describe
quite well several experimental effects such as stick–slip
motion in the opening at constant velocity [9, 10], the long
pauses at a fixed position of unzipping at constant forces
[16, 30, 31], the hopping dynamics between two or more
states in unzipping at critical forces of short DNA molecules
[15, 31–33] and the torsional drag effects in unzipping at large
velocity [11, 34]. Moreover, statistical mechanical analyses
have been successfully applied to extract from experimental
data the sequence-dependent free energy landscape and the
height of free energy barriers [35, 36].

Second, unzipping experiments could potentially be
useful to extract information on the sequence itself [37].
Recently, single molecule sequencing has been achieved
by monitoring a DNA/RNA polymerase in the course of
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(A)

(B)

Figure 1. Typical experimental setups that will be described in the
following. (A) A setup with two optical traps (beads x1 and x4)
drawn as springs and whose centers are the black vertical lines and
(B) a setup with a single magnetic bead x3 that applies a constant
force to the molecule attached to a fixed ‘wall’. In both cases, the
molecular construction is made by a DNA molecule that has to be
opened (therefore, one should include two single-strand linkers that
are the opened parts of the molecule) and one double-stranded DNA
linker. The coordinates xi are the distances of the corresponding
points from the left reference position (which is the center of the left
optical trap in case (A) and the fixed wall in case (B)).

DNA synthesis from a ssDNA template [33, 38]; such
single molecule sequencing could become competitive with
standard DNA sequencing because they do not require,
a priori, amplification through polymerase chain reactions.
A fundamental question on the possibility of extracting
information on the sequence from unzipping experiments
is the influence of the experimental setup on the measures
and the limitations imposed by the latter [37, 39]. Indeed,
characteristic spatio-temporal limitations are the finite rates of
data acquisition, the relaxation time of the bead, the limited
spatial resolution, the thermal drift and more generally the
noise in the instruments. Moreover, the dynamics of the
opening fork (figure 1) is influenced by the single strands
(open parts) of the molecule and the linkers, and cannot be
deduced directly from the observation of the bead from which
the force or the position is measured.

The accuracy of unzipping experiments at fixed velocity
has improved a lot over the last decade. Initially performed
with an optical fiber [8], experiments were then based on the
use of simple optical traps [10]. Nowadays, double optical
traps [13, 36] allow us to considerably reduce the drift of the
setup and to achieve a temporal resolution of the order of
10 kHz, a sub-nanometric spatial resolution, and a precision
on measured forces of the order of fraction of pN. Unzipping
at fixed force has been performed by a magnetic trap with a
low temporal resolution (from 60 Hz to 200 Hz) due to the
time needed to extract the position of the bead, the spatial
precision being of the order of 10 nm Hz−1/2 [28, 29], or
by an optical trap also with a low temporal resolution (about
10 Hz) imposed by a feedback mechanism needed to keep the
force constant [15]. Recently, a new dumbbell dual optical
trap has been developed. It operates without feedback and can

maintain the force constant over distances of about 50 nm [33]
with a temporal resolution of 10 kHz and a spatial resolution
of 0.1 nm Hz−1/2.

Limitations due to the experimental systems were first
addressed in [39]. This paper stated the impossibility of
inferring the sequence due to ssDNA fluctuations: fluctuations
increase with the number of opened base pairs and can
become larger than the length of about 1 nm corresponding
to the spatial resolution of one open base pair. This problem
could however be solved by integrating out the single-strand
dynamical fluctuations. Several works have studied the effects
of the setup on the hopping dynamics of small RNA molecules
[32, 33, 39, 40]. The following effects have been underlined.
First, the free energy landscape changes when adding a
harmonic potential to the free energy, due to the bead and
handles [10, 32, 33, 40]. Therefore, for a given force,
the measured separation of the extremities depends on the
stiffnesses of the trap and handles. Moreover, the opening
and closing rates depend on the stiffness of the optical trap;
in particular when the experimental system gets softer the
fluctuations of the force gets smaller, and the hopping rates
approach their fixed-force values.

In this paper, we introduce a model for the coupled
dynamics of the opening fork, the ssDNA strand, the linkers
and the bead in the optical or magnetic trap. Essential
notions and existing literature are reviewed in section 2. Our
dynamical model is presented in section 3. Our program
allows us to simulate a generic setup, characterized by bead
dimensions, optical stiffness (absent in the case of magnetical
tweezers), linker composition (dsDNA or ssDNA) and lengths,
and the length of molecule to be unzipped. All the parameters
that characterize the different dynamical components can
be adjusted in the simulation. The model is then used to
simulate fixed-force (section 4) and fixed-extension (section 5)
numerical unzippings.

2. Free energies, time scales and effective dynamics

We discuss hereafter the thermodynamic properties of the
various parts of the experimental setup (DNA sequence, open
part of the molecule, single- or double-strand linkers), as well
as the relevant time scales. Finally, we briefly review previous
dynamical studies where the linkers and the open portion of
the molecules are assumed to be at equilibrium.

2.1. Thermodynamics of the components

2.1.1. Polymeric models for the linkers and open molecule.
A polymer model is specified by its free energy as a function
of the extension x for a given number n of monomers; we
call this quantity W(x, n). When x and n are large, W is
an extensive quantity; hence, W(x, n) = nw(x/n) = nw(l),
where l = x/n is the extension per monomer. We also define

f (l) = ∂W(x, n)

∂x
= w′(l),

l(f ) = inverse off (l),

g(f ) = max
l

[f l − w(l)] = f l(f ) − w[l(f )],

(1)
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which are, respectively, the force at fixed extension, the
average extension at fixed force and the free energy at fixed
force. Note that g(f ) is simply the integral of l(f ). Hence,
a polymer model is completely described from the knowledge
of the extension versus force characteristic curve, l(f ). In the
following, we will use some classical models for this function.

• Gaussian (Hook) model.

lHook(f ) = f

km
, (2)

where the stiffness constant km is related to the
temperature T and the average squared monomer length
(at zero force) b2 through km = kBT/b2.

• Freely-jointed chain (FJC) model.

lFJC(f ) = coth

(
f b

kBT

)
− kBT

f b
(3)

is the extension (per monomer) of a chain of rigid rods of
length b, free to rotate around each other. Comparison
of this model with force–extension curves for single-
stranded DNA shows that a better fit is obtained from
a modified FJC:

lMFJC(f ) = d

(
1 +

f

γss

)
× lFJC(f ), (4)

which takes into account the elasticity effects on the rod
length. Standard fit parameters are d = 0.56 nm, b =
1.4 nm and γss = 800 pN.

• Extensible worm-like chain (WLC) model.

lWLC(f ) = L

[
1 − 1

2

(
kBT

f A

)1/2

+
f

γds

]
(5)

is the formula for the high-force extension of an elastic
chain with persistence length equal to A. Experiments
show that it is an excellent description of double-stranded
DNA at high forces, with L = 0.34 nm, A = 48 nm and
γds = 1000 pN.

2.1.2. Free-energy landscape for the sequence. Let bi =
A, T ,C or G denote the ith base along the 5′ → 3′ strand (the
other strand is complementary) and B = {b1, b2, . . . , bN }.
The free-energy excess when the first n bp of the molecule is
open with respect to the closed configuration (n = 0) is [31]

G(n;B) =
n∑

i=1

g0(bi, bi+1), (6)

where g0(bi, bi+1) is the binding energy of the bp number i;
it depends on bi (pairing interactions) and on the neighboring
bp bi+1 due to stacking interactions. g0 is obtained from the
MFOLD server [41, 42], and listed in table 1 for 150 mM
NaCl, room temperature and pH 7.5. The values of the free
energies should be changed for different ionic conditions and
temperatures.

As an illustration, we plot the free energy G(n;�) of the
first 50 bases of the λ-phage sequence, � = (λ1, λ2, . . . , λN),
in figure 2 after subtraction of ngss(f ) for forces f = 15.9
and 16.4 pN. gss(f ) is the work to stretch the two opened
single strands when one more bp is opened, and calculated
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Figure 2. Free energy G (units of kBT ) to open the first n base pairs,
for the first 50 bases of the DNA λ-phage at forces 15.9 (dashed
curve) and 16.4 pN (full curve). For f = 15.9 pN, the two minima
at bp 1 and bp 50 are separated by a barrier of 12 kBT . Inset:
additional barrier representing the dynamical rates (21) to go from
base 10 to 9 (barrier equal to 2gss = 2.5 kBT ) and from base 9 to 10
(barrier equal to g0(b9, b10) = 3 kBT ); see text.

Table 1. Binding free energies g0(bi, bi+1) (units of kBT ) obtained
from the MFOLD server [41, 42] for DNA at room temperature,
pH = 7.5 and an ionic concentration of 0.15 M. The base values bi

and bi+1 are given by the line and column, respectively.

g0 A T C G

A 1.78 1.55 2.52 2.22
T 1.06 1.78 2.28 2.54
C 2.54 2.22 3.14 3.85
G 2.28 2.52 3.90 3.14

from the modified FJC model (4). The subtraction allows us
to compare the increase in the free energy due to the opening
of the sequence to the gain resulting from the release of ssDNA
polymers at a given force.

At these forces, the two global minima in figure 2 are
located in n = 1 (closed state) and n = 50 (partially open
state). Experiments on a small RNA molecule, called P5ab
[15], have been performed at the critical force fc such that
the closed state has the same free energy as the open one:
G(N;�) = Ngss(fc). They showed that, as the barrier
between these two minima is not too high, the molecule
switches between these two states; see section 2.3.

2.2. Fluctuations at equilibrium

2.2.1. Case of a single polymer. We now consider the
orders of magnitude of the fluctuations of the polymer. When
submitted to a force of f = 15 pN, the average extension
of the polymer is x̄ = nxm with xm = l(f ). We use
for single-stranded DNA the MFJC model, and for double-
stranded DNA the WLC model, with the parameters discussed
in section 2.1.1; then we get xm

ss = 0.46 nm and xm
ds =

0.33 nm for ss- and dsDNA respectively. At thermal
equilibrium, the extension will fluctuate around these average
values. The fluctuations are controlled by the microscopic
effective spring constant km(l) = w′′(l) = 1/l′(f ). For ds-

3
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Table 2. Fluctuations of single-stranded DNA at f = 15 pN and
T = 16.7 ◦C; δx̄/x̄ = 0.37/

√
n, δf̄ /f̄ = 1.57/

√
n,

τ = 4.83 × 10−11sn2.

n δx̄/x̄ δf̄ /f̄ τ (s)

10 0.117 0.496 4.8 × 10−9

40 0.058 0.248 7.7 × 10−8

100 0.037 0.157 4.8 × 10−7

400 0.018 0.078 7.7 × 10−6

1000 0.012 0.050 4.8 × 10−5

Table 3. Fluctuations of double-stranded DNA at f = 15 pN and
T = 16.7 ◦C; δx̄/x̄ = 0.17/

√
n, δf̄ /f̄ = 4.83/

√
n,

τ = 5.1 × 10−12sn2.

n δx̄/x̄ δf̄ /f̄ τ (s)

100 0.017 0.483 5.1 × 10−8

400 0.0085 0.241 8.1 × 10−7

1000 0.0054 0.153 5.1 × 10−6

4000 0.0027 0.076 8.1 × 10−5

10000 0.0017 0.048 5.1 × 10−4

and ssDNA we find, respectively, km
ds = 1311 pN nm−1 and

km
ss = 138 pN nm−1 according to the above models. For a

polymer with n monomers, the stiffness is k = km/n since the
effective spring constant is given by k(x, n) = ∂2

∂x2 W(x, n) =
km(x/n)/n.

Alternatively, the force f exerted on the polymer will
fluctuate around its average value f̄ if its extremities are kept at
a fixed distance x from each other. These fluctuations of force
(in the fixed-extension ensemble) and extension (in the fixed-
force ensemble) are easily computed by a quadratic expansion
of the free energy around the average, i.e. when approximating
the polymer with a spring of stiffness km/n, with the result

〈δx2〉 = kBT

km
n, 〈δf 2〉 = kBT km

n
. (7)

Defining δx̄ =
√

〈δx2〉 and δf̄ =
√

〈δf 2〉, we get

δx̄

x̄
=
√

kBT

km(xm)2

1√
n
,

δf̄

f̄
=
√

kBT km

f̄ 2

1√
n
. (8)

As expected, the relative fluctuations of both force and
extension become smaller and smaller as the number n of
monomers increases. Some values are reported in tables 2
and 3.

2.2.2. Case of several polymers (fixed-distance setup).
Now consider the case of several polymers, e.g. linker
and open part of the molecule attached one after the
other. In a fixed-force experiment, the components of
the setup are independent (at the level of the saddle-
point approximation) and the fluctuations in the extensions
simply add up. In the fixed-distance setup, however,
correlations between the extensions make the analysis more
complicated. As a concrete example, we consider the setup in
figure 1(A). The linker joining x1 and x2 is a double-stranded
DNA segment of Nds bases. The two linkers joining (x2, x3)

and (x3, x4) are single-stranded DNA segments of Nss =
N0

ss + n bases, where n is the number of opened base pairs.

The centers of the two optical traps are at 0 and X. We call x1

the position of the first bead and x4 the position of the second.
The probability Peq(n, x1, x2, x3, x4) = e−F/kBT , where the
free energy F reads as

F(�x, n) = 1
2k1x

2
1 + Wds(x2 − x1, Nds) + Wss(x3 − x2, Nss)

+ Wss(x4 − x3, Nss) + 1
2k2(x4 − X)2 + G(n;B), (9)

where Wds(x,Nds) = Ndswds(x/Nds) and Wss(x,Nss) =
Nsswss(x/Nss) are the elongation free energies of the double
strand and single strand, respectively.

In order to study the fluctuations in this setup, we first
find the maximum of Peq assuming that G(n;B) = ng0, i.e.
a uniform sequence B, and treating n as a continuous variable
assuming that it is large. At the maximum xi = x̄i and we
define

xm
ds = x̄2 − x̄1

Nds
, xm

ss = x̄3 − x̄2

Nss
= x̄4 − x̄3

Nss
. (10)

The saddle-point condition ∂xi
FA = 0 gives the following

equations, which represent the force balance condition along
the chain:

k1x̄1 = w′
ds

(
xm

ds

) = w′
ss

(
xm

ss

) = k2(X − x̄4) ≡ f̄ . (11)

The derivative with respect to n gives, using equations (1) and
(11), the condition

g0 = 2
[
xm

ssw
′
ss

(
xm

ss

)− wss
(
xm

ss

)] = gss(f̄ ), (12)

which allows us to find the force f̄ transmitted along the
chain. Once (12) is solved, the extensions of the beads and of
the double- and single-stranded parts of DNA (x̄1, X − x̄4, x

m
ds

and xm
ss respectively) are determined by equation (11). Finally,

the number of open bases n̄ is determined by

x̄1 + Ndsx
m
ds + 2

(
N0

ss + n̄
)
xm

ss + (X − x̄4) = X. (13)

Note that the value of f̄ is determined only by g0.
We work at temperature T = 16.7 ◦C (kBT = 4 pN nm)

and choose a uniform molecule with g0 = 2.69kBT , which is
a representative value for the pairing free energies in table 1.
We use the same models as in section 2.2.1 for the single-
and double-stranded DNA, with Nds = 3120 and N0

ss = 40.
Then solving equation (12) we get f̄ = 16.5 pN, and from
equation (11) we get xm

ss = 0.47 nm, xm
ds = 0.33 nm. We

choose k1 = 0.1 pN nm−1, then x̄1 = 165 nm, and k2 =
0.512 pN nm−1, then X − x̄4 = 32 nm. Given these values, n̄

is defined by X using equation (13):

n̄ = X − 1264

0.94
, (14)

with X expressed in nanometers.
For the same setup, we can compute the fluctuations of

n and of the elongations of the elements of the setup. In
particular, the fluctuations of the bead positions are measurable
in the experiment.

Let us define δxi = xi−x̄i and δn = n−n̄. To simplify the
formalism, we also define δxds = δx2 − δx1, δx

L
ss = δx3 − δx2

and δxR
ss = δx4 − δx3. A quadratic expansion of F around its

minimum gives

δF ∼ 1

2
k1δx

2
1 +

1

2
k2δx

2
4 +

w′′
ds

(
xm

ds

)
2Nds

δx2
ds

+
w′′

ss

(
xm

ss

)
2N0

ss + n̄

[(
δxL

ss − xm
ssδn

)2
+
(
δxR

ss − xm
ssδn

)2]
. (15)

4
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Using (4) and (5), we get km
ss = w′′

ss

(
xm

ss

) = 152 pN nm−1 and
km

ds = w′′
ds

(
xm

ds

) = 1416 pN nm−1.
One should take care of the fact that δx1 + δx4 + δxds +

δxL
ss + δxR

ss = 0; it is convenient to express δxR
ss as a function

of the others since its fluctuations are identical to those of
δxL

ss. The quadratic expansion of the function δF has the form
δF = 1

2δxAδx where δx = (δx1, δx4, δxds, δx
L
ss, x

m
ssδn

)
and

A = km
ss

N0
ss + n̄

⎛⎜⎜⎜⎜⎝
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 2 0
1 1 1 0 2

⎞⎟⎟⎟⎟⎠

+

⎛⎜⎜⎜⎜⎝
k1 0 0 0 0
0 k2 0 0 0
0 0 km

ds/Nds 0 0
0 0 0 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎠ . (16)

The inverse of the matrix A is

A−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1
k1

0 0 − 1
2k1

− 1
2k1

0 1
k2

0 − 1
2k2

− 1
2k2

0 0 Nds
km

ds
− Nds

2km
ds

− Nds
2km

ds

− 1
2k1

− 1
2k2

− Nds
2km

ds

1
4keff

1
4ks

eff

− 1
2k1

− 1
2k2

− Nds
2km

ds

1
4ks

eff

1
4keff

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (17)

where
1

ks
eff

= 1

k1
+

1

k2
+

Nds

km
ds

,
1

keff
= 1

ks
eff

+ 2
N0

ss + n̄

km
ss

. (18)

This immediately gives

kBT (A−1)1,1 = 〈δx2
1

〉 = kBT

k1

kBT (A−1)2,2 = 〈δx2
4

〉 = kBT

k2

kBT (A−1)3,3 = 〈δx2
ds

〉 = kBT Nds

km
ds

kBT (A−1)4,4 = 〈(δxL
ss)

2
〉 = kBT

4keff
kBT(
xm

ss

)2 (A−1)5,5 = 〈δn2〉 = kBT

4keff
(
xm

ss

)2

(19)

and shows that the fluctuations of n are dominated by the
weakest element of the setup; moreover, the correlation
between the bead displacements δx1, δx4 and the fluctuations
of the number of open base pairs δn is 〈δnδx1〉 = − kBT

2k1xm
ss

and

〈δnδx4〉 = − kBT
2k2xm

ss
; the stiffer the optical trap, the weaker is the

correlation between the location of the bead and the number
of open bases. Examples are given in table 4.

2.3. Effective dynamical models

In the simplest dynamical models, the fork (separating the
open and closed portions of the molecule) undergoes a biased
random motion in the sequence landscape. The linkers are
treated at equilibrium, which is correct if their characteristic
time scales are much smaller than the average time needed to
open or close a base pair.

Table 4. Saddle-point calculation for the setup in figure 1(A) with a
uniform molecule and k1 = 0.1 pN nm−1, k2 = 0.512 pN nm−1,
Nds = 3120, N 0

ss = 40. The force along the molecule is f̄ = 16.5;
then km

ss = 152 pN nm−1, km
ds = 1416 pN nm−1 and ks

eff =
0.07 pN nm−1.

X n̄ keff

√
〈δn2〉

1273 101 0.067 8.2
1358 102 0.062 8.5
2204 103 0.036 11.2

10664 104 0.0068 25.7

2.3.1. Time scales for the polymeric components of the
setup. In this section, we recall the typical time scales of
the polymeric components in the setup. Assume that the
polymers are subject to a Brownian force η(t) which is a zero-
average Gaussian process with an autocorrelation function
〈η(t)η(0)〉 = 2	T δ(t). Let 	 be the friction coefficient
of the polymer [43], that is, the ratio of the viscous force
exerted by the solvent to the velocity. As will be shown in
section 3, the friction coefficient scales as 	 = γ mn/3 with
γ m

ss = γ m
ds ∼ 2 × 10−8 pN s nm−2. Then, approximating

f (x, n) ∼ kmx/n, the relaxation time for an isolated polymer
of n bases is given by

τ = γ mn2

3km
. (20)

Note that the factor 3 in the denominator of the above equation
is an approximation for the true factor π2/4. The validity
of its approximation and the simplification it leads to will be
discussed in appendix A.

It is useful to compare the amplitude of the force
fluctuations with the noise. To do this, we approximate
〈δf (t)δf (0)〉 ∼ 2τ

〈
δf 2
〉
δ(t) = 2T 	f δ(t). Then, using

equation (7) to estimate
〈
δf 2
〉
, we get 	f = nγ m/3 = 	,

and (not surprisingly) the force fluctuations are of the same
order as the noise term.

From table 2, the relaxation time of the unzipped strands
is smaller than the typical base-pair opening (or closing) time
as long as the number n of unzipped bases is smaller than a
few hundreds. This is the case, in particular, for unzipping
experiments on short RNA molecules.

2.3.2. Random walk in the sequence landscape. Let us first
model the motion of the fork alone, that is, assuming that
the other components of the setup are at equilibrium. We
consider a DNA molecule unzipped under a fixed force f in
the sequence-landscape G(n;B) − ngss(f ) of figure 2. The
fork, whose position is denoted by n(t), can move forward
(n → n + 1) or backward (n → n − 1) with rates (probability
per unit of time) equal to, respectively,

ro(bn+1, bn+2) = r exp[−βg0(bn+1, bn+2)],

rc = r exp[−2βgss(f )],
(21)

where β = 1/kBT ; see figure 2. The value of the attempt
frequency r is of the order of 106 Hz [12, 14, 31]. Expression
(21) for the rates is derived from the following assumptions.
First, the rates should satisfy detailed balance. Second, we
impose that the opening rate ro depends on the binding free
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Figure 3. Number of open base pairs as a function of the time for
various forces (shown in the figure). Data show one numerical
unzipping (for each force) obtained from a Monte Carlo simulation
of the random walk motion of the fork with rates (21).

energy, and not on the force, and vice versa for the closing
rate rc. This choice is motivated by the fact that the range
for the base-pair interaction is very small: the hydrogen and
stacking bonds are broken when the bases are kept apart at a
fraction of an Angstrom, while the force work is appreciable
on the distance of the opened bases (≈ 1 nm). In contrast, to
close the base pairs, one has to first work against the applied
force; therefore, the closing rate rc depends on the force but not
on the sequence. This physical origin of the rates is reported
in the inset of figure 2. Note that, as room temperature is much
smaller than the thermal denaturation temperature, we safely
discard the existence of a denatured bubble in the zipped DNA
portion.

An example of unzipping dynamics for the λ-phage
sequence is shown in figure 3. The characteristic pauses in
the unzipping, present in experiments and corresponding to
deep local minima in the sequence landscape, are reproduced.
The rates (21) lead to a master equation for the probability
ρn(t) for the fork to be at site n at time t:

dρn(t)

dt
= −

N∑
m=0

Tn,mρm(t), (22)

where the matrix Tn,m is tridiagonal with nonzero entries
Tm−1,m = −rc(f ), Tm+1,m = −ro(m) and Tm,m = ro(m) +
rc(f ). Given this transition matrix, the opening dynamics can
be simulated with Monte Carlo dynamics. For small RNA or
DNA molecules, the transition matrix Tn,m can be diagonalized
numerically [31]. The smallest non-zero eigenvalue gives the
switching time between a closed and open configuration for
a hairpin with a free energy barrier such as that plotted in
figure 2.

2.3.3. Dynamics of the bead with equilibrated linkers and
strands. In a typical experiment, the force is exerted on the
molecule through the action of a (magnetic or optical) trap
on the bead. While the external force on the bead can be
considered as constant (e.g. in a magnetic trap), the force

acting on the fork fluctuates unless the trap (and the molecular
construction) is very soft; see equation (8). Therefore, the
fixed-force model of the previous section has to be modified.
In addition the bead, of size R � 1 μm, is a slow component
whose dynamics need to be taken into account. Let us denote
by k the stiffness of the trap and by γ the friction of the
bead in the solvent of viscosity η. Typical values for these
quantities are k = 0.1–0.5 pN nm−1 and γ = 6πRη =
1.6710−5 pN s nm−1. Thus, the characteristic relaxation time
of the bead is τ = γ /k � 0.2–1 ms.

The coupled dynamics of the fork and the bead was
considered by Manosas et al [14] in the case of small RNA
unzipping, with a single optical trap. For such small molecules
the relaxation time of the unzipped strands is expected to be
much smaller than the characteristic time of the bead, and the
molecule can be considered at equilibrium. The dynamical
scheme therefore consists in a coupled evolution equation for
the location of the bead and of the fork. The bead position
obeys a Langevin equation including the external force and the
force exerted by the fork through the (equilibrated) linkers and
unzipped strands, while the fork moves with rates (21) with a
bead location-dependent force.

A main conclusion of [14] is that, in the absence of
feedback imposing a fixed force on the molecule, the trap
stiffness must be as low as possible to detect jumps between
closed and open configurations of the RNA molecule. We
will discuss the validity of this statement in an information-
theoretic setting in section 5.2.

3. Dynamical modeling of the setup and its
components

The assumption that the linkers and the unzipped strands are
at equilibrium as the unzipping proceeds is correct for short
molecules as was the case in [14]. For long DNA molecules,
the relaxation time of the unzipped strands may become large
and dynamical modeling of the polymers involved in the
molecular construction cannot be avoided.

The purpose of this section is to describe how such a
dynamical model can be implemented. We hereafter denote
by ‘setup’ the full molecular construction that is used in a
given experiment, including linkers, beads, etc, while the
word ‘molecule’ refers to the part of DNA which has to be
opened. In an idealized description, the state variable is a
vector �x = (x1, . . . , xp) whose elements are the distances
from a reference position (that can be either the center of
an optical trap or a fixed ‘wall’ to which the polymers are
attached) of the extremities of the polymeric components in
the setup. In addition to �x, the number of open base pairs n is
needed to complete the description of the state of the setup.

As discussed in section 2.1, the total free energy F(�x, n)

of a setup is the sum of different contributions coming from
all the elements of the setup. A typical example is given in
equation (9).

Our aim is thus to construct a dynamical model that holds
on intermediate time scales, t � 10−6 s, and

(i) gives the correct equilibrium Gibbs measure Peq(�x, n) =
exp(−F(�x, n)/(kBT )),

6
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(ii) reproduces the relaxation times for the different elements
of the setup, as discussed below,

(iii) gives reasonable dynamical correlations between different
elements of the setup.

It is worth stressing at this point that ours is a coarse-
grained model which does not take into account the motion of
the individual monomers. It is expected that the dynamics on
time scales smaller than the typical sojourn time of the fork on
a base (� 10−6 s) is not relevant to our study of unzipping.

3.1. Langevin dynamics for the polymers and the beads

First, we consider the dynamics of �x at fixed n. In appendix A,
we show that for long enough times the dynamics of the setup
can be described by a system of coupled Langevin equations:

	ij ẋj = − ∂F

∂xi

+ ηi, (23)

where i, j = 1, . . . , p, and

• the free energy F(�x) is the sum of a contribution coming
from each element of the setup:

(i) each optical trap contributes 1
2k
x2, where 
x is its

elongation;
(ii) a bead in position i subjected to a constant force gives

a contribution −f xi ;
(iii) a polymer gives a contribution Wi(
x,Ni), with 
x

being its elongation and Ni its number of monomers.

For example, the total free energies of the setups in
figure 1 are

FA(�x) = 1
2k1x

2
1 + Wds(x2 − x1, Nds) + Wss(x3 − x2, Nss)

+ Wss(x4 − x3, Nss) + 1
2k2(x4 − X)2,

FB(�x) = Wds(x1, Nds) + Wss(x2 − x1, Nss)

+ Wss(x3 − x2, Nss) − f x3.

(24)

• �η is a Gaussian white noise with zero average and
variance 〈ηi(t)ηj (0)〉 = 2kBT 	ij δ(t), as requested by
the fluctuation–dissipation relation.

• the matrix 	 is a tridiagonal matrix such that

(i) the diagonal element 	ii is the sum of three
contributions:
(a) a term γ m

i−1Ni−1/3 + γ m
i Ni/3 coming from the

adjacent polymers (if any);
(b) a term γ coming from the bead (if any) attached

to xi ;
(c) a term taking into account the viscosity of the

Nc base pairs of the DNA molecule attached
to the fork (x3 and x2 in figures 1(A) and (B)
respectively) that are not open; this term has the
Fleury form γmol = γ ′N3/5

c and has to be added
to the diagonal element of 	 corresponding to the
fork position;

(ii) the offdiagonal elements are zero, except 	i,i+1 =
	i+1,i = γ m

i+1
Ni+1

6 that get a contribution from the
polymer joining xi and xi+1.

For instance, the setups in figure 1 correspond to the
matrices:

	B =

⎛⎜⎜⎝
γ m

ds
Nds
3 + γ m

ss
Nss
3 γ m

ss
Nss
6 0

γ m
ss

Nss
6 2γ m

ss
Nss
3 + γ ′N3/5

c γ m
ss

Nss
6

0 γ m
ss

Nss
6 γ + γ m

ss
Nss
3

⎞⎟⎟⎠ ,

	A =

⎛⎜⎜⎜⎝
γ + γ m

ds
Nds
3 γ m

ds
Nds
6 0 0

γ m
ds

Nds
6

0 	B

0

⎞⎟⎟⎟⎠ .

(25)

A detailed derivation of these results and in particular of
the form of the matrix 	 can be found in appendix A.

3.2. Fork dynamics

The Langevin equation for the polymer dynamics at fixed n
must be complemented with transition rates for the dynamics
of n. To this aim, we discretize the Langevin equation with
time step 
t , and at each time step we allow the opening
n → n + 1 or closing n → n − 1 of a base pair at most.

The dynamics takes the form of a discrete time Markov
chain, with transitions (�x, n) → (�x ′, n′) and n′ ∈ {n, n ± 1}.
The total free energy F(�x, n) = Fsetup(�x, n) + G(n;B), where
the first contribution has been discussed in the previous section
and G(n;B) is the pairing free energy of the molecule, as
discussed in section 2.1.2. In appendix B, we show that in
order to satisfy the detailed balance condition with respect
to Peq(�x, n) = exp(−F(�x, n)/(kBT )), one should perform a
single step following the procedure.

(i) Choose whether to stay (n′ = n), to open (n′ = n + 1)

or to close (n′ = n − 1) a base, with rates rs,o,c(�x, n)

respectively:

ro(�x, n) = r
t eβ[G(n;B)−G(n+1;B)],

rc(�x, n) = r
t eβF(�x,n)−βF(�x,n−1),

rs(�x, n) = 1 − ro(�x, n) − rc(�x, n).

(26)

(ii) If the choice was to open, first perform a discrete Langevin
step �x → �x ′ at fixed n and then increase n by one.

(iii) If the choice was to close, first decrease n by one and
then perform a discrete Langevin step �x → �x ′ at fixed
n′ = n − 1.

(iv) If the choice was to stay, just perform a discrete Langevin
step �x → �x ′ at fixed n.

The Langevin equation is discretized in a standard way
by integrating equation (23) over a time 
t :

xi(t + 
t) = xi(
t) + 	−1
ij

[
−∂F (�x)

∂xj


t + Ej

]
, (27)

where Ej = ∫ 
t

0 ηj (t) dt are Gaussian variables with zero
average and variance

〈EiEj 〉 = 2kBT 	ij
t (28)

that are independently drawn at each discrete time step.

7
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3.3. Free energy at finite n

In section 2.1, we discussed some models for the free energy
W(x, n) of a polymer with n monomers and extension x. In the
limit x, n → ∞ at fixed extension per monomer, l = x/n, the
free energy enjoys an extensivity property: W(x, n) = nw(l).
However, in our simulations we might be interested in regimes
where n is small, typically of the order of 10–40 for small RNA
molecules. In this case, knowledge of the free energy per
monomer, w, is not sufficient, and a more detailed expression
for W is necessary to avoid inconsistencies.

As a starting point of the analysis, we consider a polymer
made of N identical monomers whose endpoints are denoted
by ui, i = 1, . . . , N with u0 = 0. The Hamiltonian of the
chain is the sum of pairwise interactions ϕ(ui − ui−1) and the
free energy reads, for x = uN , as

e−βW(x,n) = �−N+1
0

∫
du1, . . . , duN−1 e−β

∑
i ϕ(ui−ui−1), (29)

where �0 is a reference microscopic length scale. From the
above relation, the Chapman–Kolmogorov equation follows:

e−βW(x,n+m) = �−1
0

∫
dy e−βW(y,n)−βW(x−y,m). (30)

We first consider for simplicity the Gaussian model, ϕ(x) =
1
2kmx2. Then it is easy to show that

W(x, n) = km

2n
x2 − kBT

2
log

[
k�2

o

2πkBT n

]
. (31)

In the limit of large polymers, one obtains the free energy of a
monomer of extension l through

w(l) = lim
n→∞

1

n
W(x = ln, n) = ϕ(l) (32)

as expected and consistent with the discussion of section 2.1.
The logarithmic term in (31) contributes neither to w nor to
the Langevin equation for x. However it does contribute to
the rate to close a base pair (see equation (26)) and should be
taken into account in order to recover the correct rates. An
example of the effect of this term is obtained by computing the
equilibrium probability of n. Consider the (unrealistic) case
of a homopolymer, G(n;B) = ng0, subject to a constant force
and using a Gaussian model for the open part of the molecule;
then

Peq(n) = 1

Z

∫
dx e−nβg0−βW(x,2n)+βf x

= 1

Z′ e−nβg0+ n
k
f 2

. (33)

Therefore Peq(n) is a pure exponential, while if the correction
were neglected one would have obtained wrong behavior at
small n.

For a generic model of ϕ(x), one cannot compute W(x, n).
Still we found that for our purposes (n � 40), a consistent
approximation is obtained by keeping only the first correction
to the n → ∞ result, i.e. by defining

e−βW(x,n) = e−βnw(x/n)

√
βk(x/n)�2

o

2πn
, (34)

where k(l) = w′′(l). One can check that this expression
satisfies equation (30) with corrections in the exponent of

O(1), while the terms O(log n+log m) are taken into account.
Within this approximation, the error in log rc(x, n) in equation
(26) is O(1/n2) while if the first corrections are neglected it
is O(1/n).

In the following, we will make use of definition (34) unless
otherwise stated. We will discuss an example where the effects
of neglecting the corrections are clearly observable.

3.4. Details of the numerical simulations

We performed numerical simulations of the molecular
constructions depicted in figure 1, with the following
specifications.

• The total free energies of the two setups are given by
equation (24) plus the term G(n;B).

• The free energy of each polymer includes the saddle-point
corrections, i.e. it is given by equation (34). The relation
l(f ) (see section 2.1) is numerically inverted to obtain
w(l) and k(l) that enter in equation (34).

• For the single-stranded DNA we used the MFJC model,
equation (4), with d = 0.56 nm, b = 1.4 nm and
γss = 800 pN.

• For the double-stranded DNA we used the WLC model
in equation (5), with a small regularization term to avoid
a divergence for f → 0, which is however irrelevant for
values of forces to be discussed in the following, and with
A = 48 nm, L = 0.34 nm and γds = 1000 pN.

• Unless otherwise stated, the double-stranded DNA linker
is made of Nds = 3120 bps, while the two single-stranded
linkers are made of Nss = 40+n bases each, where n is the
number of open DNA bases (in other words, we included
on each side a 40-base single-stranded linker).

• We worked at fixed temperature kBT = 4 pN nm,
corresponding to T = 16.7 ◦C.

• We used the dynamical equations for the polymers defined
above, equations (23), within the discrete procedure
illustrated in section 3.2 and with transition rates (26)
for the fork with the attempt rate r = 106 Hz.

• The matrices 	 corresponding to the setups in figure 1
are given in equation (25); we used γ m

ds = γ m
ss = γ ′ =

2 × 10−8 pN s nm−1. We used a value γ = 1.67 ×
10−5 pN s nm−1 for the viscosity of the beads.

• The time step was fixed at 
t = 10−8 s; this value ensures
a correct integration of the equation of motion in all the
regimes discussed below. Even if in some cases a larger
integration step could be used, we decided to keep it fixed
in order to be sure that discretization biases are not present.

The values of the spring constants k1 and k2 and of the
force f in equation (24) varied in different simulation runs,
and will be specified later.

The program we used for the numerical simulations can
be downloaded from http://www.lpt.ens.fr/ zamponi. A user-
friendly version will be made available as soon as possible.
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3.5. Limits of validity of the dynamical model

Our model of the polymer dynamics suffers from two main
limitations.

First, we keep only one collective coordinate for each
polymer (its extension) associated with the longest relaxation
mode. Faster modes are discarded. The approximation is
justified provided there is no other mode slower than the typical
sojourn time on a base pair. From the discussion of section
2.3.1, the number of unzipped base pairs, n, cannot be well
above a thousand.

Another upper limit on n comes from the assumption that
the force is uniform along the polymer. In principle the force
is a function of the time t and the location y along the polymer,
which obeys a diffusion equation with a microscopic diffusion
coefficient Dm

ss � (
xm

ss

)2
/τm

ss , where xm
ss is the length of a

monomer and τm
ss = γ m

ss /km
ss is its relaxation time. Assume

that, at time 0, a base pair closes and the polymer is stretched
at the extremity x = 0 by xm

ss . Then the force, initially equal to
f (x, t = 0) = km

ssx
m
ssδ(x), will decay following the Gaussian

diffusion kernel. At time t, the force density at the extremity is
f (x, t) = km

ssx
m
ss/
√

2πDm
ss t . The relaxation is over when this

force excess is of the same order of magnitude as the typical
thermal fluctuations δf calculated in (8), that is, for times

t > n
km

ss

(
xm

ss

)2
2πkBT

τm
ss � 2 × 10−10n ps. (35)

When n ∼ 1000, the corresponding relaxation time is of the
order of the sojourn time on a base.

In conclusion, our dynamical model is adapted to ssDNA
polymers whose length ranges from a few hundred to a few
thousand bases. Shorter polymers can be considered at
equilibrium, while longer polymers cannot be modeled without
taking into account the space dependence of forces. A simple
way to tackle this difficulty consists in arbitrarily cutting long
polymers into 1000-base long segments, each modeled as
above. This procedure will be followed in section 5.1.

4. Unzipping at fixed force

4.1. Quasi-equilibrium unzipping

Before turning to the more interesting case of out-of-
equilibrium unzipping, we focus on the case of a small
molecule which is subject to a constant force close to the
critical force. In this situation, the molecule is able to visit all
the possible configurations.

We performed a set of numerical simulations at constant
force f̄ = 16.45 pN, with the setup described in figure 1(B).
The DNA molecule is a uniform segment of N = 500
base pairs, with pairing free energy G(n;B) = ng0 and
g0 = 2.69kBT . The entropic free energy per base of the
two open single strands is 2gss(f̄ ) = 2.684kBT . Therefore,
the infinite molecule would stay close; we are slightly below
the critical force. To the right and left open portions of the
molecule, two single-stranded DNA linkers of N0

ss = 40 bases
each are attached; therefore, the total length of the single-
stranded linkers is Nss = N0

ss + n, where n is as usual the

2.68
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Figure 4. Bottom: average fraction of the time spent on each base.
The full (blue) curve corresponds to equation (34) while the dashed
(black) curve corresponds to equation (34) without the saddle-point
corrections (the square-root term). The dot-dashed (red) line is
Peq(n) ∝ exp[−n
g] with 
g = 0.006. Top: effective rates
(squares and triangles) estimated from the maximization of the
probability in equation (36) (r = 106 Hz) without saddle-point
corrections (full curve of the lower panel). The dashed lines are the
asymptotic values of the rates; see text. We do not report the rates
corresponding to the full equation (34) since they are essentially
independent of n.

number of open base pairs. The leftmost linker is a double-
stranded DNA of Nds = 3120 base pairs, whose presence is
however irrelevant for the scope of this section. The total
length of the simulation was T = 7200 s, i.e. 2 h.

4.1.1. A test of the model. The average fraction of
time spent on each base, corresponding to the equilibrium
probability distribution Peq(n), is reported in the lower panel
of figure 4. We expect that in the large n limit, Peq(n) ∼
exp[−n(g0 − 2gss(f ))] = exp[−n
g], with 
g ∼ 0.006.
This is expected to break down when Nss is so small that the
second-order corrections to the saddle-point in equation (34)
become important. As can be seen in figure 4, the exponential
form correctly describes the data.

We performed additional simulations in which the square-
root term in equation (34) was removed. As one can see, in this
case the small n deviations are much more pronounced. It is
worth noting that for a non-Gaussian polymer, one expects
a deviation from the exponential form at small enough n.
However, this analysis shows that taking into account the small
n corrections to W(x, n) systematically reduces this effect.
Estimating its real order of magnitude therefore requires an
exact expression for W(x, n), which could be in principle
obtained from the recurrence equation (30). However, this is a
complicated numerical task that goes beyond the scope of this
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paper. What we want to stress here is that the inclusion of the
square-root term in equation (34) gives significant differences
when n � 200 and should therefore be included if one wants
to analyze the unzipping of small molecules.

4.1.2. Effective dynamics of the fork. In a situation where the
linkers are short, such that their relaxation time is faster than
the mean time spent on a base, the linkers are able to reach
equilibrium before n changes. Therefore one might hope to
define an effective dynamics for the fork, where n changes
according to effective rates that depend on the variation in the
free energy of the setup on closing or opening a base.

To this aim we considered the model for the fork dynamics
described in section 2.3, but assuming n-dependent opening
and closing rates. Within this model, the probability of a
trajectory of the fork is a function of the number of upward
(un)/downward (dn) jumps and the time spent on base n, tn:

Peff[n(t)] =
N∏

n=1

(
reff
c (n)
t

)dn
(
reff
o (n)
t

)un

× (1 − 
t
(
reff
c (n) + reff

o (n)
))tn

. (36)

Given the values of un, dn, tn measured along our trajectory of
duration T, we can infer the effective rates by maximizing the
above probability. Assuming that reff
t � 1, we obtain

reff
c (n) = dn

tn
, reff

o (n) = un

tn
, (37)

as estimates for the effective rates. For the full expression
(34), the rates are almost independent of n; on the other
hand, if the first-order correction is neglected, one obtains
n-dependent rates, consistent with the observation that Peq(n)

is not exponential. These are reported in the upper panel of
figure 4. In both cases, the rates are consistent with the detailed
balance condition reff

c (n)Peq(n) = reff
o (n − 1)Peq(n − 1).

4.2. Out-of-equilibrium opening

For long molecules, the barrier between the closed and open
states may become very large, e.g. ∼ 3000 kBT for the 50 000
bases λ–DNA at the critical force fc = 15.5 pN [31]. The
time necessary to cross this barrier is huge, and full opening
of the molecule never happens during experiments. To open a
finite fraction of the molecule, the force has to be chosen to be
larger than its critical value. The opening can then be modeled
as a transient random walk, characterized by pauses at local
minima of the free energy and rapid jumps in between [16].

4.2.1. Analytical calculation of the average time spent by the
fork on a base. First consider the case of a fixed force acting
on the fork while all the other components are at equilibrium
as in section 2.3. In the transient random walk, the opening
fork spends a finite time around a position n before escaping
away and never coming back again in n. The number un of
opening transitions n → n + 1 is stochastic and varies from
experiment to experiment and base to base. The total number
of times the fork visits the base pair n before escaping is given
by the sum of the number un of transitions from n − 1 to n

and of the number un+1 − 1 of transitions from n + 1 to n.
Therefore, the average time spent in n is

tn = 〈un〉 + 〈un+1〉 − 1

ro + rc(n)
, (38)

where 1/(ro + rc(n)) is the average time spent in n before each
opening or closing step. Let us introduce the probability En

n+1
of never reaching back position n starting from position n + 1.
The probability P of the number un of opening transitions
n → n + 1 during a single unzipping simply reads as

P(un) = (1 − En
n+1

)un−1
En

n+1. (39)

From equation (39), we have that the average number of
openings of bp n is

〈un〉 =
∑
un�1

P(un)un = 1

En
n+1

. (40)

We are thus left with the calculation of En
n+1. For infinite

force, En
n+1 = 1 since the fork never moves backward. For

finite force, we write a recursive equation for the probability
En

m that the fork never comes back to base n starting from base
m(� n + 1):

En
m = qmEn

m−1 + (1 − qm)En
m+1, (41)

where

qn = egss(f )

egss(f ) + eg0(bn,bn+1)
(42)

is the probability of closing base n and 1−qn is the probability
of opening it at each step. Note that for forces larger than the
critical force, we have qn < 1

2 : the random walk is submitted
to a forward drift and is transient. The boundary conditions
for equation (41) are En

n = 0 and En
m = 1 for m → ∞.

For a homogeneous sequence, the escape probability is
E = (1 − 2q)/(1 − q). For a heterogeneous sequence by
defining ρn

m = En
m

En
m+1

, we obtain the Riccati recursion relation:

ρn
n = 0; ρn

m+1 = 1 − qm+1

1 − qm+1ρn
m

for n � m. (43)

Equation (43) can be solved numerically for a given sequence.
Then, the escape probability starting from n + 1 is

En
n+1 =

∏
m�n+1

ρn
m, (44)

and the average time spent in the base n is then obtained from
(40) and (38).

4.2.2. Results from the dynamical model. To check
whether these theoretical predictions are affected by dynamical
fluctuations of the bead, linkers and unzipped strands, we
have carried out simulations with the model of section 3. We
have carried out 160 unzippings of the λ-phage sequence at
a force of 17 pN for T = 100 s (physical time), with the
same molecular construct of section 4.1 (Nds = 3120 base
pairs of dsDNA linkers on a side plus N0

ss = 40 bases of the
ssDNA linker at each side of the DNA to be open). For such a
construct, the equilibrium extension of the polymers for n open
base pairs is 2Nsslss + Ndslds, where lds = 0.3337 nm, lss =
0.4758 nm and Nss = N0

ss + n. The stiffness of the polymers
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Figure 5. Top: average time spent by the fork on position n. Bottom: time spent by the whole setup at an extension between x3 and
x3 + 
x, with 
x = 0.5 nm. The black line in both figures represents the theoretical predictions from section 4.2.1. The red points are the
results from the simulation. Standard deviations are represented by error bars in the top panels and by the thickness of the red curves in the
bottom panels.

is 1/keff = Nss/km
ss + Nds/km

ds with km
ss = 160.5 pN nm−1

and km
ds = 1450 pN nm−1. The relaxation times of the

polymers are of the order of 0.1 ms for about 400 unzipped
bases and 1 ms for about 2500 open bases, and are larger than
the characteristic times of about 2 × 10−6 s needed to open a
weak base and of about 10−5 s needed to open a strong base.

We plot in figure 5 the average time spent by the fork at
location n for two portions of the sequence, corresponding
to about 400 and 2500 open base pairs. The agreement
between the theoretical and numerical estimates of the times
is excellent, meaning that the fluctuations of extensions of
the polymers and the dynamics of the bead induce negligible
changes on the rates of opening and closing, as seen close to
the critical force in section 4.1.

As experiments do not give direct acces to the time spent
by the fork at location n, we show in figure 5 (bottom) the time
t (x3) spent by the unzipped ssDNA between extensions x3 and
x3 + dx. These times are compared to their values assuming
that the positions x3 of the beads are randomly drawn from the
equilibrium measure:

t (x3) =
∑

n

tnP (x3|n), (45)

where tn is calculated from (38) and P(x3|n) is calculated from
an argument similar to that used in section 2.2.1 and can be
written up to the quadratic order around the saddle point as

P(x3|n) =
√

βkeff(f )

2π
e−β

keff (f )

2 (x3−Ndslds(f )−2Nsslss(f ))2
. (46)

The agreement is, again, excellent.
Figure 5 and equation (45) show that t (x3) gets

contributions from the times spent by the fork on a set of bases
whose number depends on the magnitude of the equilibrium

fluctuations of the linkers. These equilibrium fluctuations
increase with the length of ssDNA, e.g. δx3 � 5 nm for 400
unzipped base pairs and δx3 � 12 nm for 2500 unzipped bases.
Therefore, as the number n of unzipped base pairs increases,
the characteristic curve of t (x3) gets more and more convoluted
(compare left-bottom and right-bottom panels in 5).

In figure 6 we compare the value of the ssDNA extension
from one unzipping, x3, to its average value at equilibrium,
x

eq
3 , as a function of the number of unzipped base pairs n.

The fluctuations in the extension are compatible with the
equilibrium deviations. Again, no clear out-of-equilibrium
effect is observed. The reason is that, even if the single strand
is not relaxed in the opening time of a base, the fork goes back
and forward around a given location before moving away.
Therefore, the quantities we have measured are averaged on
the number of times a base pair is opened and are close to their
mean value even in a single unzipping. This can be deduced
from figure 5 by comparing the total time spent on a base
(points) with the time to open a base (dashed lines)

5. Unzipping at fixed extremities

5.1. Correlation functions

One of the main advantages of considering the dynamics of
the linkers and of the beads is that it allows us to compute
autocorrelation functions and to explore the interaction
between different parts of the setup, a task which would be
impossible from a priori calculations.

We have performed a few simulations with the setup
shown in figure 1(A) where the spring constant of the first
optical trap of extension x1 is 0.1 pN nm−1 and the second
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Figure 6. Total extension x3 of the setup in figure 1(B) at a fixed
number n of unzipped bases for a single unzipping (black line). If
the fork visits the same base n twice or more, we plot the average of
the extension values. The gray strip represents the average value at
equilibrium, x

eq
3 (n), and the standard deviation around its value at

equilibrium.

(x4) has stiffness 0.512 pN nm−1. The molecule in the fork is
uniform with g0 = 2.69kBT . The only parameter that is varied
across simulations is the distance between the optical traps and
thus the typical number of open bases. In figure 7, we show
two typical cases. What is evident is that the single strand
has two time scales: one which is proper to the fluctuations at
n fixed and another which is of the same order of magnitude
as the correlation time of the fork. As the number of open
bases grows, the fast time scale also grows until it becomes
impossible to distinguish the two.

As remarked in section 3.5, our model cannot in principle
be used when the linkers are made of n � 1000 monomers.
To check for the importance of force propagation effects,
we ran a simulation for Nss = 9700 (bottom panel of
figure 7) where we cut each linker into nine subunits of 1000
bases each plus a final unit which is connected to the opening
fork. Overall, the correlation functions are not much affected
by this modification and in particular the correlation times are
unaffected within numerical errors. The main effect of cutting
the long linkers is that the correlation function of the linker
becomes more stretched (i.e. if they are fit with exp[−(t/τ )βs ],
the exponent βs is slightly smaller). This is to be expected since
by cutting the polymer we include more relaxation modes, each
with its relaxation time. A wider distribution of relaxation
times implies a smaller exponent βs . In table 5, we compare
the results of the numerical simulation with the predictions of
section 2.2.1 which do not take into account the interactions
between different parts of the setup. While the simulated
results for the single-stranded and the double-stranded DNA
are not too far off from the prediction, the two springs show
a much greater deviation from the theoretical estimates. This
prompted us to analyze further the relationship between the
fork and the bead position as will be discussed later.

The potential acting on the fork position, in the case of
a uniform molecule, is dictated by the stiffness of the rest of
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Figure 7. Correlation functions for the setup in figure 1(A) at two
different values of the number of open bases, Nss = 40 + n.

Table 5. Comparison between the correlation times of the setup in
figure 1(A) as computed for an isolated element and the result of a
complete numerical simulation. In the case of the fork, we reported
as the theoretical value 1/keff , which must be multiplied by a
viscosity to obtain the relaxation time; it turns out that a viscosity
∼ 8 × 10−5 pN s nm−1 matches the theoretical and numerical results.

Theoretical (s) Numerical (s)

Single strand 4.83 × 10−11N 2
ss 5.4 × 10−11N 2

ss
Double strand 4.96 × 10−5 ∼3 × 10−5

Spring x1 1.67 × 10−4 ∼1.5 × 10−3

Spring x4 3.26 × 10−4 ∼7 × 10−5

Fork Nss ∝ 14.2 + 0.013Nss 1.3 × 10−3 + 8.4 × 10−7Nss

the setup only as seen in section 2.2.1. That is to say that
n experiences a harmonic potential with the spring constant
proportional to keff ; this in turn predicts correlation times that
are proportional to 1

keff
which has a linear dependence on n.

This behavior is in very good agreement with the data that
have been extracted from numerical simulations.

5.2. Mutual information between the bead position and fork
location

Figure 9 shows the dynamical correlations of the fork and bead
positions. The two beads have different correlation functions
due to the difference in their stiffnesses: k = 0.5 pN nm−1 for
bead 1 and k = 0.1 pN nm−1 for bead 2. After an initial decay
(taking place over a time proportional to 1/k from section
2.3.3), the bead correlations exhibit a quasi-plateau behavior
whose height is roughly proportional to 1/k. The plateau
reflects the correlation between the motion of the bead and
that of the fork on time scales of the order of the equilibration
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Figure 8. Relaxation times of the correlation functions in figure 7 as
a function of the number of open bases. In the case of the single
strand (ss), only the fast relaxation time is plotted. For the fork and
the single strand, dashed lines indicate a fit to τn = A + BNss (with
A = 1.3 × 10−3 and B = 8.4 × 10−7) and τss = CN 2

ss (with
C = 5.4 × 10−11 s). For the others, full lines are guides to the eye.

time of the fork. It appears that soft beads allow one to track
the location of the fork better than stiffer beads.

In the following, we will give a closer look at the
dependence of these correlations on the optical trap stiffness;
to do so we construct a setup as in figure 1(A), but where
the stiffness of the optical trap on the left is kept constant at
0.512 pN nm−1 while the stiffness of that on the right is varied
across two orders of magnitude3.

To give quantitative support to this statement we define
the mutual information I between the position of the bead in
the optical trap, x4, and the number of open base pairs, n:

I (x4, n) =
∑

n

∫
dx4P(x4, n) log

(
P(x4, n)

P (x4)P (n)

)
, (47)

where P(x4, n) is the joint probability density for the bead
to be at position x4 while there are n open base pairs; P(n)

and P(x4) are the two marginals. Note that the definition of
mutual information does not suffer from the problems which
arise with entropy when we switch between a continuous and a
discrete definition; that is to say that binning with sufficiently
small bins does not change the mutual information.

I can be easily computed by keeping track of the times
passed at a given bead position and the given number of
open bases during a run of the simulation. As stressed
before, the fact that the x4 coordinate must be binned has
negligible effects on the computation of entropy. For very
large stiffnesses the amplitude of the oscillations of the bead
can become very small, and thus a lack of sensitivity in the
measure of the position of the bead could become an issue.
Fortunately, the current state of the art in the optical trap
cannot attain stiffnesses larger than, say, 1 pN nm−1 with

3 An attentive reader might have noted that we changed the stiffness of the
right bead compared to what it was in the previous section; the rationale
behind this choice is to keep its value at the center of the range in which we
will vary the other.
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Figure 9. Top: autocorrelation functions for the setup in figure 1(A)
when the molecule to unzip is a block copolymer composed of
alternating stretches of ten strong pairs and ten weak pairs. This
way the fork correlation time is greatly increased allowing us to
view effects on the two traps of different optical stiffnesses. Bottom:
correlation functions between one of the two beads and the number
of open base pairs. Values have been normalized so that the value at
zero time difference is ρ = 〈xin〉/

√
〈x2

i 〉〈n2〉.

micrometer beads [32]. In this regime, the fluctuations of the
bead are dominated by the stiffness of the trap and thus we
can say that 〈δx2

4 〉 ∼ (βk2)
−1; see equation (19). Comparing

the fluctuations of the bead position with the sub-nanometer
precision 
 over its location yields√〈

δx2
4

〉



� 10–50, (48)

which is much larger than unity.
Figure 10 shows that the mutual information I only weakly

depends on the sequence but strongly depends on the stiffness
k of the trap. This behavior can be understood very intuitively.
Right after a base pair opens or closes, the whole setup in
a fixed-force experiment has to give way; the less rigid an
element of the setup is compared to the rest, the more it will
accommodate for the change in n.

We conclude that, in a single measurement, soft traps
give more information on the fork location than stiff traps.
However, I is the mutual information between the fork and
bead locations per measure. As we have seen in section 5.1,
the correlation times extracted from the simulations decrease
with k and, as k grows, more and more uncorrelated measures

13



Phys. Biol. 6 (2009) 025003 C Barbieri et al

0 0.5 1 1.5 2
k (pN/nm)

0.1

1

I(
x,

n)

flat
sawtooth

Figure 10. Mutual information I between x4 and n as a function of
the trap stiffness, k. Black circles are computed on a uniform
sequence, while red squares are measured on the sawtooth potential
described in the caption to figure 9.

can be done in the same amount of time. It is thus expected
that information per unit of time is not maximal for small
values of k. In other words, stiffer traps give worse quality
but more frequent signals on the location of the fork. Finding
the optimal value of k would require a detailed analysis of the
correlation times of the bead and of the fork. In particular, the
size of the bead would affect the optimal value for k through
the viscosity coefficient, but not the information per measure,
I. However this dependence should not be crucial since the
bead size cannot be much varied in experiments: it can be
neither too small to exert a sufficient force nor too large due to
the size of the physical setup.

6. Conclusion

This paper has been devoted to the presentation of a dynamical
model for the different components of the setups used in the
unzipping of single DNA molecules under a mechanical action.
Compared to previous studies, our model does not assume
a priori that the polymers in the molecular construction are at
equilibrium but takes into account their relaxation dynamics.
It is important to stress out that the dynamical description for
the linkers and the unzipped part of DNA is coarse grained: the
basic unity is the polymers themselves and not the monomers
they are made of.

As a consequence, each polymer is associated with a
unique relaxation time. The assumption is justified as long
as these times are comparable to the typical opening or
closing time of a single base pair. Longer polymeric chains,
e.g. ssDNA strands with a few thousand bases, need to
be modeled in a more detailed way; more precisely, they
should be divided into short enough segments along which
the force can be considered as uniform on the time scales
associated with the fork motion. Although in this paper
we did not observe any important force propagation effect,
these might be more important in strongly nonequilibrium
situations such as opening at constant (high) velocity. We plan
to simulate unzippings with such molecular constructions in
the near future to understand how force propagation across the

polymeric segments can affect the effective rates for closing
base pairs in such situations.

One of our results is that one has to be very careful with
the expression of the free energies (entering the dynamical
rates) for short polymers, be they linkers or ssDNA unzipped
strands. Use of the free energy per monomer, obtained from
force–extension measures on long molecules, as usually done
in the literature, can lead to erroneous results. We have shown
that finite-size corrections to the energetic contributions and
the dynamical rates have to be taken into account.

As a main advantage, the code we have developed is
versatile: we can easily change setups, for example use a fixed-
force or fixed-position ensemble, and change the number and
types of linkers and of traps for the beads. We have found
that, in fixed-force unzippings, the opening and closing rates
for the fork are not affected by the force fluctuations coming
from the polymeric chains. For small linkers and a number
of unzipped base pairs, indeed, force fluctuations are large
but fast, and are averaged out on the characteristic opening–
closing time of a base pair. For large linkers or a number
of unzipped bases force fluctuations are slow but small, and
therefore do not change the dynamic of the opening fork.
We have also performed unzipping simulations at large forces
where the opening dynamics is transient, and found that the
average time spent by the unzipped strands at a given extension
is accurately predicted from the time spent by the fork on a
base convoluted by the equilibrium fluctuations of ssDNA.
Moreover, the extension between the extremities at a fixed
number of open base pairs in a single unzipping experiment
is compatible with equilibrium fluctuations of ssDNA and
linkers. The program could be easily adapted to unzipping
at constant velocity, where non-equilibrium effects are likely
to be more important.

Our study suggests that one measure of the position of
the bead in soft traps gives more information on the location
of the fork than in the case of stiffer traps. This statement is
however to be considered with caution. Beads in stiffer traps
reach equilibrium on shorter time scales, and the overall rate of
information per unit time could be higher in stiffer traps. While
purely qualitative at this stage, such a statement is relevant to
the study of the inverse problem of unzipping, that is, inferring
the sequence of the DNA molecule from the unzipping signal.
We hope that the present dynamical modeling will be useful
to assess the rate at which information on the sequence could
be acquired from mechanical single molecule experiments.
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Appendix A. Langevin dynamics of coupled
polymers

One of the simplest models of polymer dynamics is that
proposed by Rouse [44], where the polymer is described as
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a chain of beads which are modeled as Brownian particles,
linked by harmonic springs.

While it is true that this model is very crude because
it ignores hydrodynamic interactions and exclude volume
effects, it has the huge advantage of being largely solvable.
Therefore, we will now use it as the basis for a few
considerations that will then be generalized to more realistic
models.

Our aim is to write a system of coupled equations for
the time evolution of a certain number of marked points on a
(hetero)polymer. One of these points will be for instance the
location of the opening fork. In the case of a double DNA
strand attached to a single strand, one point will mark the
location where the two different polymers are attached (see
the examples in figure 1). Note that if the marked points we
focus on are far apart, only the slower modes of the system
will be relevant, as the fast modes describe local relaxations of
the chain. Therefore, in the following, we want to focus on a
long wavelength/long time effective description of the chain.

A.1. The dynamics of a single polymer

A.1.1. The model and its normal modes. As the simplest
case we consider a polymer composed of N identical springs,
each with an identical link at one end. The first is connected to
a wall that has infinite mass (or, better still in this framework,
infinite viscosity) and on the last a force f is exerted. The
Langevin equations describing such a polymer can be written
as ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

γmu̇1 = −2kmu1 + kmu2 + η1
...

γmu̇n = −2kmun + kmun−1 + kmun+1 + ηn

...

γmu̇N = −kmuN + kmuN−1 + f + ηN,

(A.1)

where ηi are white Gaussian noises of zero mean and variance:
〈ηi(t)ηj (0)〉 = 2kBT δij δ(t). (A.2)

Let us for the moment neglect the noise term. Then, defining
τm = γm/km, we can formally rewrite these equations as

τmu̇n = −2un + un−1 + un+1, ∀ n, (A.3)
supplemented by the boundary conditions

u0 ≡ 0, uN+1 ≡ uN + f/km. (A.4)
A standard way to find the normal modes of the above

linear system is to search for solutions of the form un(t) =
un(0) exp(−λt/τm). One can easily show that the general
solution satisfying the first boundary condition u0 = 0 has the
form

un(t) ∝ sin(qn) exp(−λ(q)t/τm),

λ(q) = 2(1 − cos(q)).
(A.5)

The second boundary condition (A.4) requires that uN+1(t) −
uN(t) = f/km = const. Since we can always add the constant
value to uN+1(t), we can replace this boundary condition by
uN+1(t) = uN(t). This requires that sin(qN) ∼ sin(q(N +1));
then q = (π/2 + pπ)/N . The slowest mode then corresponds
to q = π/2/N , which for large N gives a relaxation time

τ(N) = τm/λ(π/2/N) ∼ 4

π2
τmN2, (A.6)

which proves the validity of the scaling in equation (20).

A.1.2. Recurrence equations for a fixed end. We now want
to write a system of coupled equations for a certain number
of points on the polymer by integrating out us we are not
interested in. To begin, we focus on the end point uN .

It is convenient to perform a Laplace transformation and
write

un(t) =
∫ ∞

0
dλun(λ) e−λt/τm . (A.7)

Then equation (A.5) becomes, in Laplace space,

(2 − λ)un(λ) = un+1(λ) + un−1(λ), (A.8)

with the same boundary conditions u0(λ) ≡ 0, and uN+1(λ) −
uN(λ) = (f/km)δ(λ). For λ �= 0, the latter condition reduces
to uN+1(λ) = uN(λ) as discussed above for the normal mode
analysis.

We introduce a function

ζn−1(λ) = un−1(λ)/un(λ). (A.9)

Substituting the latter relation in (A.8), we get

(2 − λ − ζn−1(λ))un(λ) = un+1(λ), (A.10)

from which we get a Riccati recurrence equation⎧⎨⎩
ζ0(λ) = 0 (due to u0 = 0),

ζn(λ) = 1

2 − λ − ζn−1(λ)
.

(A.11)

This recurrence can be solved and the function ζn(λ) computed
for all n.

Since we are interested in the large time limit, we can
expand the function ζn(λ) for small λ; we obtain

ζn(λ) = n

n + 1
+

n(1 + 2n)

6(1 + n)
λ +

n(6 + 19n + 16n2 + 4n3)

180(1 + n)
λ2

+ O(λ3). (A.12)

One obtains the effective equation for uN by substituting the
above expression in (A.10) and setting n = N . Keeping only
the linear term in λ and the leading terms in N � 1, we get(

1 +
1

N
− λ

N

3

)
uN(λ) = uN+1(λ). (A.13)

Moving back to the time domain, we obtain

τm

N

3
u̇N = − 1

N
uN + (uN+1 − uN), (A.14)

which is equivalent, using the boundary condition uN+1−uN =
f/km, to

γmN

3
u̇N = −km

N
uN + f. (A.15)

In this way, we got an effective equation for the endpoint of
the polymer that is still a linear first-order differential equation
and takes into account only the slowest mode of the chain.

There is however an inconvenience: in fact a
straightforward computation shows that the relaxation time
obtained from equation (A.15) is τ(N) = τmN2/3 that differs
by a factor π2/12 from the correct value given by equation
(A.6). The origin of this discrepancy clearly lies in the fact that
the expansion we made in equation (A.12) is not convergent
at fixed λ for n → ∞, as successive terms in the series are of
order n2p−1λp.
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Figure A1. Two joint polymers subjected to an external force f . x1

marks the endpoint of the first polymer made of N links whose
endpoints are u1, u2, . . . , uN−1, uN ≡ x1. The second polymer
originates from x1 and is made of 2M − 1 links, whose endpoints
are v−(M−1), v−(M−2), . . . , v−1, v1, . . . , vM−2, vM−1, x2.

Let us then go back to the computation of the normal
modes of the system within this formalism. The second
boundary condition uN+1(λ) = uN(λ) implies ζN(λ) = 1. The
normal modes are the solutions of this equation with respect
to λ. One can show from the exact expression of ζN(λ) that

lim
N→∞

N [ζN (̃q2/N2) − 1] = −q̃ cot(̃q) ≡ ζ̃ (̃q). (A.16)

The zeroes of this function are q̃ = π/2 + kπ ; therefore,
the solutions of ζN(λ) = 1 tend for large N to λ = (π/2 +
pπ)2/N2, in agreement with the exact result of the previous
section. An inspection of equations (A.12) and (A.16) shows
that the small λ expansion of ζN(λ) is equivalent to performing
a small q̃ expansion of ζ̃ (̃q) in order to find its first zero. This
indeed yields ζ̃ (̃q) ∼ −1 + q̃2/3 that gives q̃ = √

3 for the
first zero that gives back τ(N) = τmN2/3.

Then one can check that a higher order expansion in λ (or
equivalently in q̃) produces a more accurate result; indeed the
series of ζ̃ (̃q) converges for q̃ < π while the zero is located at
q̃ = π/2. It is easy to show that if one truncates the series to
order p, the difference between the solution and the true zero
is exponentially small in p.

A.1.3. Discussion The conclusion of this section is that
equation (A.15) is a correct description of the dynamics of the
end of the polymer in the limit of large N and large times.
While it captures the correct scaling with N of the relaxation
time, the coefficient is wrong by a factor of π2/12 ∼ 0.82.
Still, this is quite satisfactory for our purposes since the
experimental error in the determination of τm is of the same
order of magnitude. Better approximations can be obtained
by truncating the expansion of ζN(λ) to higher orders in λ,
therefore obtaining a higher order differential equation for
uN(t).

In the following, we will derive the coupled equation for
many marked points along the chain, limiting ourselves to the
first-order truncation. This produces first-order differential
equations of the Langevin type.

A.2. Dynamics of two coupled polymers

We will now show how to use this formalism to derive coupled
equations for different points on a composite polymer. We
continue neglecting the noise, which we will reintroduce at
the end of this section.

As a simple example, let us consider the polymer drawn
in figure A1. It is composed of N monomers of type ‘U’ linked
to 2M −1 monomers of type ‘V’. The two types of monomers
might differ in the value of the microscopic spring constant,

bead viscosity, etc. If the monomers are identical, then we are
just marking a point in the middle of a polymer.

The effective equation for the endpoint of polymer U can
be derived following the analysis of the previous section. We
denote x1 ≡ uN and we get

γ U
m

N

3
ẋ1(t) = −kU

m

N
x1(t) + kV

m(v−(M−1)(t) − x1(t)), (A.17)

where the last term is the ‘external’ force that the polymer V
exerts on U.

A.2.1. Integration of the V polymer. Now we want to
integrate out all the monomers v−(M−1), . . . , vM−1 in order
to obtain the coupling between x1 and x2. To this aim, and in
order to keep the formalism symmetric, we can start from the
middle of the polymer V by integrating simultaneously v−1

and v1 in order to obtain effective equations for v−2 and v2,
and so on. In Laplace space (note that now in equation (A.7)
τm = τV

m ), the equations for v±1 have the form

(2 − λ)v−1(λ) = v−2(λ) + v1(λ),

(2 − λ)v1(λ) = v2(λ) + v−1(λ).
(A.18)

These can be easily solved to get v±1 as a function of v±2.
Iteration leads to the following form for the equation after n
steps:

ξn(λ)v−n−1(λ) = v−n−2(λ) + ηn(λ)vn+1(λ),

ξn(λ)vn+1(λ) = vn+2(λ) + ηn(λ)v−n−1(λ).
(A.19)

One can check that this form is stable under one step of iteration
and the following recursion relations are obtained:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ξ0 = 2 − λ,

η0 = 1,

ξn+1 = 2 − λ − ξn

ξ 2
n − η2

n

,

ηn+1 = ηn

ξ 2
n − η2

n

,

(A.20)

where the initial values are determined by consistency between
(A.18) and (A.19) for n = 0. These recurrences are easily
solved by introducing the two quantities An = 1/(ξn − ηn)

and Bn = 1/(ξn + ηn) respectively; these satisfy the same
recurrence in (A.11) except for the initial condition which is
different and determined according to (A.20).

At the leading order in n → ∞ and at first order in λ, we
get

ξn(λ) = 1 +
1

2n
− 2n

3
λ, ηn(λ) = 1

2n
+

2n

6
λ. (A.21)

Finally, one obtains from this procedure a coupled equation
for v−(M−1) and vM−1 where x1 ≡ v−M and x2 ≡ vM also
appear.

A.2.2. Coupled effective equations. To obtain the coupled
effective equations, one starts from the following system:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−γ U
m

N

3

λ

τV
m

x1 = −kU
m

N
x1 + kV

m(v−M+1 − x1),

ξM−2(λ)v−M+1(λ) = x1 + ηM−2(λ)vM−1(λ),

ξM−2(λ)vM−1(λ) = x2 + ηM−2(λ)v−M+1(λ),

(1 − λ)x2 = vM−1 + f,

(A.22)
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where the first equation is just the Laplace transform of
equation (A.17) (recall that we use the definition of Laplace
transform (A.7) with τm = τV

m ), the second and third equations
are equation (A.19) for n = M − 2 and the last equation is the
Laplace transform of the equation for x2, which in the time
domain reads as γ V

m ẋ2 = −kV
m(x2 − vM−1) + f .

Eliminating v−M+1 and vM−1 from these equations, using
the recurrence equations (A.20) and the result (A.21) we finally
get the coupled equations:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
γ U

m

N

3
+ γ V

m

2M

3

)
ẋ1 + γ V

m

2M

6
ẋ2

= −kU
m

N
x1 +

kV
m

2M
(x2 − x1),

γ V
m

2M

3
ẋ2 + γ V

m

2M

6
ẋ1 = − kV

m

2M
(x2 − x1) + f.

(A.23)

At this point we reintroduce the free energy of the polymer
chain, defining N1 ≡ N and N2 ≡ 2M − 1 ∼ 2M:

F(x1, x2) = kU
m

2N1
x2

1 +
kV
m

2N2
(x2 − x1)

2, (A.24)

and a matrix

	 ≡
(

γ U
m

N1
3 + γ V

m
N2
3 γ V

m
N2
6

γ V
m

N2
6 γ V

m
N2
3

)
(A.25)

so that we can write the above system as

	ij ẋj = − ∂F

∂xi

+ fi + ηi, (A.26)

where �f = (0, f ) is the external force vector and we
reintroduced the noise term �η that we neglected before.

The correlation function of the noise at this point is
determined by the requirement that the fluctuation–dissipation
relation is verified. This imposes that

〈ηi(t)ηj (0)〉 = 2kBT 	ij δ(t). (A.27)

A.3. Beads

At this point, we should add the beads that are used for the
optical manipulation of polymers. These beads are optically
tweezed or subjected to magnetic fields in order to apply forces
to the polymers. In the former case, the force acting on the
bead is a harmonic force f = −k(x − X), while in the latter
it is constant, f = fext. Each bead is characterized by a
friction coefficient that can be computed using the Stokes
law; we denote it by γ . Typically they are of the order of
10−5 pN s nm−1, i.e. much bigger than the microscopic
viscosity of the polymers γm ∼ 10−8 pN s nm−1.

In the presence of a bead attached to the endpoint of a
polymer, the equations of motion (A.1), (A.18), etc, remain
valid, but one should add the contribution of γ to the viscosity
of the coordinate describing the position of the bead. For
instance, if there is a bead attached to the endpoint uN , the last
equation of (A.1) reads as

(γ + γm)u̇N = −kmuN + kmuN−1 + f + ηN . (A.28)

Then the above derivation still holds because the last equation
is not used until the end. The only modification will be the

inclusion of γ on the diagonal element 	ii corresponding to
the coordinate of the bead.

Therefore to describe the beads attached to the end of the
molecular construction in figure 1, we modify the matrix 	

as above, and in case A, we add to the free energy a term
1
2k(x4 − X)2, while in case B we add a term −fextx3.

In the case of figure 1(A), one also has to include the left
bead. In this case, if we call V the first polymer after the bead,
we can start from a system of equations identical to (A.22),
but with the first equation replaced by

− γ ẋ1 = −kx1 + kV
m(v−M+1 − x1). (A.29)

This will again lead to (A.26) with

	 ≡
(

γ + γ V
m

N2
3 γ V

m
N2
6

γ V
m

N2
6 γ V

m
N2
3

)
(A.30)

and

F(x1, x2) = k

2
x2

1 +
kV
m

2N2
(x2 − x1)

2. (A.31)

A.4. Description of a generic setup

The arguments of the previous section suggest that in the
general case, a bead can be treated ‘as a particular instance
of a polymer’. In other words, we can consider the setups in
figure 1 as chains of p joint elements U = U1, U2, . . . , Up;
each element can be an ‘optical trap’ (i.e. a spring) or a polymer
of N1, N2, . . . , Np monomers respectively (in the case of an
optical trap, we set by default Ni = 1). The endpoint of each
element is denoted by xi , and �x ≡ (x1, x2, . . . , xp) is the state
vector of the system (we also define x0 ≡ 0).

Then, the total free energy is F(�x) =∑p

i=1 WUi
(xi−xi−1)

where WUi
(x) = 1

2kx2 for an optical trap of stiffness k. Then
equation (A.26) holds, with i, j running from 1 to p and the
noise correlation matrix is given by (A.27).

The matrix 	 must be constructed as follows. Each
diagonal term 	ii , related to xi , is the sum of a Stokes term
coming from a bead possibly attached to xi and the contribution
coming from the two elements adjacent to xi (except for i = p

when there is only one contribution):

	ii = γ + γ Ui

m

Ni

3
+ γ Ui+1

m

Ni+1

3
(1 − δip) (A.32)

(the first term is present only if there is a bead attached to xi).
All the off-diagonal elements are zero except those adjacent
to the diagonal (i.e. connecting xi and xi±1) which get a
contribution from the polymer connecting these two ends:

	i,i+1 = 	i+1,i = γ Ui+1
m

Ni+1

6
, i = 1, . . . , p − 1. (A.33)

Note that this final formulation is independent of the Gaussian
form of F(�x) that we assumed in the derivation; therefore,
we will also use it for non-Gaussian polymers substituting the
appropriate form of F(�x) in equation (A.26).

To conclude this section, note that a further check of
the quality of the first-order approximation can be done as
follows. If we consider a single polymer made of N1 + N2

bases, the corresponding relaxation time is predicted to be
τ = τm(N1 + N2)

2/3. On the other hand, we could
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consider two coupled polymers of N1 and N2 bases following
equation (A.23) for yU,V

m = γm and kU,V
m = km respectively.

The coupled equation can be exactly solved and yields two
distinct relaxation times (that typically differ by a factor
of 10); the slowest relaxation time can be compared with
τ = τm(N1 + N2)

2/3. We found that the difference is at most
20%, and the error is maximal for N1 ∼ N2 while it decreases
when one of the two polymers is much longer than the other.

Appendix B. Transition rates for the fork dynamics

We now consider a fork n attached to the polymers. For
simplicity, we consider the case of a single polymer whose
extension is x and free energy is W(x, n). We want to construct
a stochastic process that samples the equilibrium distribution
Peq(x, n) = e−βW(x,n)−G(n;B)/Z, where −G(n;B) is the free
energy gain in closing the first n bases of DNA, as defined in
equation (6).

The random process is constructed as follows. The
Langevin equation discussed in the previous section is
discretized with time step 
t . If at a given time t the system
is in a state (x, n), we allow three possible transitions:

• (x, n) → (x + 
x, n) with rate Hs(x, n,
x),
• (x, n) → (x + 
x, n + 1) with rate Ho(x, n,
x),
• (x, n) → (x + 
x, n − 1) with rate Hc(x, n,
x).

We must have∫
d
xHs(x, n,
x) + Ho(x, n,
x) + Hc(x, n,
x) = 1.

(B.1)

Moreover we can define rates rs,o,c(x, n) =∫
d
xHs,o,c(x, n,
x) that represent the rates to stay,

open or close n independent of 
x. In a practical
implementation we first decide whether to open, close or stay
according to rs,o,c, and then extract 
x from the distribution
Hs,o,c(x, n,
x)/rs,o,c(x, n).

The detailed balance conditions read as
P(n, x)Ho(x, n,
x)

= P(n + 1, x + 
x)Hc(n + 1, x + 
x,−
x)

P (n, x)Hc(x, n,
x)

= P(n − 1, x + 
x)Ho(n − 1, x + 
x,−
x)

P (n, x)Hs(x, n,
x)

= P(n, x + 
x)Hs(n, x + 
x,−
x).

(B.2)

We assume that the rate for opening is given by the product
of a term that only depends on the binding free energy as in
equation (21) and a term corresponding to a standard Langevin
step:

Ho(x, n,
x) = r
t eG(n;B)−G(n+1;B)

√
4πT 
t

γn

× exp

[
− γn

4T 
t

(

x − f (x, n)
t

γn

)2
]

. (B.3)

Note that integrating over 
x we find ro(x, n) =
r
t eG(n;B)−G(n+1;B) = r
t e−g0(bn+1,bn+2), consistent with
equation (21).

Now it is easy to show that the following expression
for Hc(x, n,
x) follows from the second detailed balance
condition:

Hc(x, n,
x) = r
t eβW(x,n)−βW(x+
x,n−1)

√
4πT 
t

γn−1

× exp

[
− γn−1

4T 
t

(

x +

f (x + 
x, n − 1)
t

γn−1

)2
]

(B.4)

and that the first condition is then automatically satisfied. Up
to now, we did not specify the form for f (x, n). However for
a generic f (x, n), the above rate is not Gaussian. To obtain a
Gaussian rate, we assume that

f (x, n) = −∂W(x, n)

∂x
, (B.5)

and perform the following simplifications assuming that 
t is
small:

Hc(x, n,
x) = r
t eβW(x,n)−βW(x,n−1)

× eβW(x,n−1)−βW(x+
x,n−1)−βf (n−1,x+
x)

√
4πT 
t

γn−1

× exp

[
− γn−1

4T 
t

(

x − f (x + 
x, n − 1)
t

γn−1

)2
]

∼ r
t eβW(x,n)−βW(x,n−1)

√
4πT 
t

γn−1

× exp

[
− γn−1

4T 
t

(

x − f (x + 
x, n − 1)
t

γn−1

)2

+
β

2

∂2W(x, n − 1)

∂x2

x2

]
. (B.6)

Neglecting O(
x3) one obtains a Gaussian distribution for

x, and computing the first and second moments of the
Gaussian one can see that at the lowest order in 
t it is
equivalent to

Hc(x, n,
x) = r
t eβW(x,n)−βW(x,n−1)

√
4πT 
t

γn−1

× exp

[
− γn−1

4T 
t

(

x − f (x, n − 1)
t

γn−1

)2
]

. (B.7)

From the above expression, we deduce that the rate for closing
is rc(x, n) = r
t eβW(x,n)−βW(x,n−1), and one first has to close
and then perform a Langevin step with force f (x, n − 1) and
friction γn−1.

Finally, the rate at constant n is simply given by

Hs(x, n,
x) = [1 − ro(x, n) − rc(x, n)]

√
4πT 
t

γn

× exp

[
− γn

4T 
t

(

x − f (x, n)
t

γn

)2
]

, (B.8)

and it is easy to see that this verifies the third detailed balance
equation if equation (B.5) holds and higher orders in 
t are
neglected.

To resume, the implementation of the algorithm is as
follows.
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(1) Choose whether to stay, open or close, with rates
rs,o,c(x, n) respectively.

(2) If open, first perform a Langevin step at n and then increase
n by 1.

(3) If close, first decrease n by 1 and then perform a Langevin
step at n − 1.

(4) If stay, just perform a Langevin step at n.
(5) Go to 1.

The extension of the above derivation to a case where
many polymers are present is straightforward, since the only
polymers whose rates are coupled with n are the two adjacent
ones. All the other polymers are not influenced by n, and one
can use standard discretized Langevin dynamics.
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