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Abstract – The problem of how many trajectories of a random walker in a potential are
needed to reconstruct the values of this potential is studied. We show that this problem can
be solved by calculating the probability of survival of an abstract random walker in a partially
absorbing potential. The approach is illustrated on the discrete Sinai (random-force) model with a
drift. We determine the parameter (temperature, duration of each trajectory, . . . ) values making
reconstruction as fast as possible.
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Introduction. – Random walks (RWs) in random
media have been intensively studied in the past decades
as a paradigm for out-of-equilibrium dynamics, and have
led to the discovery and understanding of important
dynamical effects as anomalous diffusion, ageing . . . [1,2].
Briefly speaking the issue is to determine the statistical
properties of the walker from the ones of the energy poten-
tial. Much less attention has been devoted to the inverse
problem [3]: given one (or more) observed RW(s) can we
guess the potential values? This question naturally arises
in biophysics where the use of AFM, optical and magnetic
tweezers makes possible the mechanical separation of
single protein-protein complexes [4], or the unfolding
and refolding of single biomolecules [5–7]. The rupture
of chemical bonds, the dynamics of folding/unfolding of
nucleic acids, or proteins can be modeled as a RW motion
affected by thermal noise, moving in a quenched potential
determined by the composition of the chemical bonds, or
the sequence of amino- or nucleic-acids. Reconstructing
the free energy landscape of those processes is the object
of current and intense efforts [4,7–10].
In this letter we show how the inverse RW problem

can be practically solved within the Bayesian inference
framework and address the crucial question of the accu-
racy of reconstruction. In practice information can be
accumulated either by increasing the duration of one RW,
or observing more than one RW, or combining the two.
We discuss the optimal procedure minimizing the total
number of data to be acquired, and show how this
minimal amount of data can be calculated from the

probability of survival of an abstract walker in a partially
absorbing potential. The approach is illustrated in detail
on the celebrated discrete random-force (RF) model
(Sinai model with nonzero drift) [1,2].
Inference is a key issue in information theory and

statistics [11], with applications in biology [12], social
science [13], finance, . . . . A central question is the
so-called hypothesis testing problem: which one of two
candidate distributions is likely to have generated a set
of measured data? This question was solved in the case
of independent variables by Chernoff [14], and is the
core issue of the asymptotic theory of inference [11].
Chernoff showed that the probability of guessing the
wrong distribution decreases exponentially with the size
of the data set [14]. Later on the case of correlated vari-
ables extracted from one recurrent realization of a finite
Markov chain, an idealization of frequently encountered
situations, was solved [15,16]. The present work can be
seen as an extension of those studies to many transient
realizations of an “infinite” chain.

Random-force model. – For an illustration of the
problem consider the discrete, one-dimensional RF model
defined on the set of sites x= 0, 1, 2, . . . , N [1]. We start by
choosing randomly a set of dimensionless forces fx =±1
on each link (x, x+1) with a priori probability P0 =
∏

x
1+b fx
2 , where −1< b< 1 is called tilt. This defines

the values of the potential V on each site, Vx =−
∑

y<x fy

(by definition V0 = 0). An example of potential for b= 0.4
is shown in fig. 1.
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Fig. 1: Left, top: example of potential V obtained in the RF model with tilt b= 0.4 (size N = 1000, sites x> 200 not shown
here). Right: examples of RWs, numbered from 1 to 5, in this potential at temperature T = 1; plateaus are in correspondence
with the local minima of V . Here α≃ 0.85 (creep phase). Left, bottom: predictions obtained from the collection of the first R
RWs in the right panel, i.e. R= 2 means that the prediction is based on the first and second RWs; impulses locate incorrectly
predicted forces fx for x� 200. The number of erroneous forces decreases from 26 (for R= 1) to 0 (R= 5). Note the errors
on sites x0 ≃ 100 appearing when the fourth RW is taken into account; indeed this atypical RW marks no pause in the local
minimum in x0.

After the quenched potential has been drawn, a random
walker starts in x= 0 at time t= 0. The walker then
jumps from one site x to one of its neighbors x′ = x± 1
with rate (probability per unit of time) rV(x→ x

′) = r0×
e(Vx−Vx′ )/(2T ) to satisfy detailed balance at temperature
T ; the attempt rate r0 will be set to unity in the following.
Reflecting boundary conditions are imposed by setting
VN+1 = V−1 =+∞. We register the sequence of positions
up to some time tf : X= {x(t), 0� t� tf}. Figure 1 shows
five RWs Xρ, ρ= 1, . . . , 5, each starting in the origin
x(0) = 0 and of equal duration tf for a temperature
T = 1. The value of the temperature strongly affects the
dynamics [2], and its relevance for the inverse problem will
be discussed later.
Our objective is to reconstruct the potential over a

region of the lattice, e.g., the value of the forces on some
specific links from the observation of RWs. Within Bayes
inference framework this can be done by maximizing the
joint probability of the potential V and of the observed
RWs X1, . . . ,XR over V [11]. P is the product of the
a priori probability of the potential, P0, times the likeli-
hood of the RWs given the potential, L. Since the RW
is Markovian, L depends only on the sets of total times
tx spent on every site x, and of the numbers of jumps
u(x→ x′) from x to x′ over the set of RWs:

L=
∏

x,x′

e−tx rV(x→x
′) rV(x→ x

′)u(x→x
′), (1)

where the product runs over all sites x and their neighbors
x′ = x± 1. Expressing the rates in terms of the forces
and maximizing the joint probability P we obtain the

most likely values for the forces: fx = sign(hx+α), where
α≡ T ln[(1+ b)/(1− b)] is a global “field” coming from
the a priori distribution P0 and hx a local contribution
due to the likelihood L,

hx= 2T sinh

(

1

2T

)

(tx+1− tx)+u(x→ x+1)

−u(x+1→ x). (2)

Figure 1 (left, bottom) shows predictions made from the
collection of the first R RWs in the right panel, with
R ranging from 1 to 5. The duration tf of the RW is
chosen to be much larger than the mean first-passage
time in x= 200, and much smaller than the equilibration
time teq ∼ e

bN/T . In this range the quality of prediction is
essentially independent of tf as will be discussed in
detail below. As expected, the number of erroneous forces
decreases with increasing R though atypical events may
produce flaws in the prediction. The analysis of these
atypical RWs, and how they lead to errors, is the keystone
of what follows.

Number of RWs necessary for a good recon-

struction. – Expression (1) for the likelihood of the
RWs is true for any potential V and can be geometrically
interpreted as follows. Given a set of RWs we extract a
signal vector S whose components are the times tx spent
on site x, the numbers u(x→ x′) of transitions from site
x to site x′. When R is large we expect S to be extensive
with R and define the intensive signal s= S/R. Similarly,
to each potential V we associate a vector v with compo-
nents: minus the outgoing rate, i.e.−

∑

x′( �=x) rV(x→ x
′)

for each site x, the logarithm of the rate rV(x→ x
′) for
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Fig. 2: Space of signals s partitioned into Voronoi cells CV,
one for each potential V (see text). The signal extracted from
a large number R of RWs in the potential V is strongly
concentrated around the typical signal s∗V. Small deviations
from s∗V (dark shading, small value of ωV) are more likely than
large fluctuations (light shading, large values of ωV). The most
dangerous potential V̄ corresponds to one of the contiguous
cells, CV̄; μ parametrizes the path between s

∗
V (μ= 0) and s

∗
V̄

(μ= 1). The value of ωV at the crossing point with the border
between the two cells is the inverse of Rc, the number of RWs
required to predict potential V.

each pair of neighbors. Then L= exp(R s ·v) from (1)
where · denotes the scalar product. Maximizing the
joint probability P = P0×L over the potential becomes
equivalent, in the large R limit, to finding v with the
largest scalar product with the signal s (see footnote 1). It
is natural to partition the space of signals into “Voronoi
cells” (fig. 2): Cv is the set of s having a larger scalar
product with v than with any other potential vector v′.
Bayes rule tells us that the most likely potential given
an observed signal s is the one attached to the cell in
which s lies.
Consider now RWs taking place in a given potential V.

From the law of large numbers the signal s is equal, in the
infinite R limit, to s∗

v
= {t∗x, u

∗(x→ x′) = t∗x rV(x→ x
′)}

where t∗x is the average sojourn time on site x over RWs
of duration tf . As s

∗
v
∈Cv (see footnote

2) reconstruction
becomes flawless in the limit of an infinite number of data
as expected. For large albeit finite R, s typically deviates
from s∗

v
by O(R−

1

2 ); finite deviations have exponentially
small-in-R probabilities, e−RωV(s). The rate function
ωV(s) controlling rare deviations [15] is minus the sum of
the log likelihood of the signal, s ·v, and of the entropy
σ(s) of RWs mapped onto signal s. Though σ is a
complicated function of s (which depends on the duration

1The irrelevance of the a priori distribution in the asymptotic
case of large data set is well known [11] and can be checked for the
RF model: the local field (2) is extensive in R, while the global field
α remains finite.
2Let v

′ �= v; s∗v · (v−v
′) =
∑
x �=x′ u

∗(x→ x′)G(rV′ (x→ x
′)/

rV(x→ x
′)), where G(z) = z− ln z− 1> 0 for z �= 1.

of the RW), it turns out that its Legendre transform is
easy to calculate, and is sufficient for our purpose.
The probability to predict an erroneous potential is the

probability that the stochastic signal s does not belong to
cell Cv. This probability of error thus decays exponentially
with R over a typical number of RWs,

Rc(V) =

[

min
s/∈Cv

ωV(s)

]−1

, (3)

where the minimum is taken over signals outside the
“true” cell. It depends on the temperature, the duration
of the RW, . . . .
As the RWs are independently drawn, ωV is a convex

function of s, see appendix a) and [15]. The minimum in
(3) is thus reached on the boundary between the true cell
and another, bad cell, say, Cv̄. The attached potential, V̄,
is the most “dangerous” one from the inference point of
view. RWs generated from V and V̄ are hardly told from
each other unless more than Rc(V) of them are observed.
Assume V̄ is known. Then the boundary between Cv

and CV̄ is the set of signals s⊥ v− v̄ . We deduce

Rc(V)=

[

max
μ
min
s

(

ωV(s)+μ s · (v̄−v)
)

]−1

, (4)

where the Lagrange multiplier μ∈ [0; 1] ensures that s
is confined to the boundary. The Legendre transform
of ωV appearing in (4) is intimately related to the
evolution operator of an abstract random-walk process,
denoted by RW(μ) to distinguish from the original RW,
see appendix b) and [17]. This RW(μ)-er moves with the
rates r(1−μ)V+μV̄(x→ x

′) and may die on every site x with
positive rate,

dV,V̄,μ(x)=
∑

x′( �=x)

[(1−μ) rV(x→ x
′)+μ rV̄(x→ x

′)

− r(1−μ)V+μV̄(x→ x
′)
]

, (5)

see fig. 3. Consider now the probability π(μ) that the
RW(μ)-er, initially at the origin, has survived up to time
tf (the duration of the original RW). Then Rc(V ) =
minμ∈[0;1]1/|lnπ(μ)|, see appendix b).

Optimal working point for the RF model. – We
apply the above theory to the discrete RF model, and
want to predict the value of the force fy on the link
(y, y+1) for some specific y. The dangerous potential is V̄
obtained from V upon reversal of the force fy→−fy. We
aim at calculating the probability π(μ) of survival of the
RW(μ)-er moving with rate r(x→ x′) = rV(x→ x

′)
and dying on site x with rate d(x) = 0 except:

r(y → y + 1) = 1/r(y + 1→ y) = e(1−2μ)fy/(2T ), d(y) =

D(fy), d(y+1) =D(−fy), where D(f)≡ (1−μ)e
f/(2T )+

μe−f/(2T )− e(1−2μ)f/(2T ) from (5). From the previous
section the number of RWs required for a reliable
prediction of fy is Rc(y;V) =minμ1/|lnπ(μ)|.
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Fig. 3: Effective potential for the abstract random walker
RW(μ) (top) and motion on the semi-infinite line (bottom). An
example of random-force potentialV (full line) is shown as well
as the most dangerous potential V̄ (dotted line) corresponding
to a mutation of the force fy =+1→−1 on some site y. RW(μ)
moves in the effective potential (1−μ)V+μV̄ (dashed line,
shown for μ= 0.38, close to the optimal value). The rates of
motion in the effective potential are the same as in the true
potential V, except between sites y and y+1 (dashed arrows).
In addition RW(μ) dies at sites y and y+1 with rates (5)
(wriggled lines).

Let πx(μ, t) be the probability that RW(μ), initially on
site x, is still alive at time t. The time evolution of πx is
described by

∂πx
∂t
=
∑

x′( �=x)

r(x→ x′)
(

πx′ −πx
)

− d(x)πx, (6)

with initial condition πy(μ, 0) = 1 (by convention π−1 =
πN+1 = 0). After Laplace transform over time, eqs. (6) are
turned into recurrence equations for the ratios πx/πx+1
and solved with great numerical accuracy. We obtain
this way the probability of survival, π(μ) = π0(μ, tf ), and
optimize over μ. Though Rc depends on the potential
V, its general behavior for tilt b > 0 as a function of
the duration tf is sketched in fig. 4. Three regimes are
observed:

– for tf ≪ τy (mean first-passage time in y) RW(μ) has
a low probability to visit y and is almost surely alive,
hence Rc is very large;

– for τy≪ tf ≪ teq RW(μ) has visited the region
surrounding y and escaped from this region (tran-
sient regime), hence its probability of survival
remains constant, and so does Rc;

– for tf ≫ teq RW(μ) visits again and again the region
surrounding y, hence the probability of survival
decreases exponentially with duration: Rc ∝ 1/tf .

t

Rc

T

ν

τ eq t fy

Fig. 4: Sketch of the number Rc(y;V) of RWs necessary for
a good inference of the force fy as a function of the RW
duration tf . τy is the typical first-passage time in y from
the origin, teq the equilibration time (comparable to the first-
passage time from the extremity N when y≪N). Inset: rate
of reconstruction (9) as a function of temperature at fixed tilt.

The total time Rc× tf for a good reconstruction is
minimal when we choose tf ∼ τy. This marginally transient
regime corresponds to the plateau of fig. 4: RWs are long
enough to visit site y but short enough not to wander much
away from y. To calculate the corresponding value of Rc
we take the limits, in order, N →∞, tf →∞, and look
for the stationary solution of (6) with boundary condition
πx→∞ = 1. The result for the probability of survival is

π(μ)=
e−

µ

T

1−μ+μ e−
1

T +μ(1−μ) t∗y+1 (e
1

4T − e−
3

4T )2
, (7)

where the mean sojourn time on site y+1 in V is [2]

t∗y+1 =
∑

z�0

exp

[

1

T

(

Vy+z+2+Vy+z+1
2

−Vy+1

)]

. (8)

Distribution of {Rc} over potentials. – The
number Rc(y;V) of RWs necessary to predict the value of
fy depends on the potential V through the sojourn time
t∗y+1 (8). By randomly drawing potentials (or varying site
y) we obtain the distribution of Rc shown in fig. 5. The
main features are:

– Small Rc correspond to sites where the RW spends
long time t∗ (traps)3: Rc ∼

1
|lnπ| ∼

1
ln t∗ from (7). The

power law tail of the distribution of sojourn times,
P (t∗)∼ (t∗)−(α+1) [2], gives rise to an essential singu-
larity at the origin in the cumulative distribution,
Q(Rc)∼ e

−α/Rc . The potential is easy to predict over
trapping regions since the RWer spends a long time
there, and accumulates information about the energy
landscape.

– Conversely the largest value of Rc, denoted by R
H
c ,

corresponds to the homogeneous potential V Hx =−x
in which the walker is never trapped and is quickly

3RW(µ), due to conditioning to survival, is likely to stay for
∼ 1/d(y)≪ t∗ in the trap only.
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Fig. 5: Cumulative probability distributionQ of Rc(y;V) at temperature T = 1 and for three tilt values b. Full lines are numerical
results from 106 samples, and dashed lines are the outcomes from the ℓ-pattern approximation. The singularities in Q are in
one-to-one correspondence with the local potential patterns, some of which are shown. Their abscissas (value of Rc) do not
depend on the value of the tilt b. Inset: Rc vs. T for the 3 patterns +++, −++, −−− (from top to down).

driven to +∞. RHc can be calculated from (7) by
setting fx =+1 for all sites in (8). The singularity in
Q when Rc→R

H
c corresponds to quasi-homogeneous

potentials, where one force, say, on site ℓ, is −1. Such
potentials have exponential-in-ℓ small probabilities,
but give values of Rc on site y= 0 exponentially close
to RHc . On the overall, we find 1−Q(R

H
c − ǫ)∼ ǫ

β ,
where the exponent is β = T ln 1+b2 .

– In-between Q shows marked steps at well-defined
and b-independent values of Rc, which correspond to
specific local force patterns beyond site y. A ℓ-pattern
is defined as a sequence of forces on sites y+1 to
y+ ℓ+1, followed by all + forces; the corresponding
Rc can be exactly calculated from (7), (8), and is
shown for 7 among the 16 ℓ= 4 patterns in fig. 5.
The histogram of Rc can be accurately approximated
for any tilt b > 0 based on the above local-pattern
description. Given a length ℓ we enumerate all the 2ℓ

patterns, calculate the corresponding Rc, and weight
them with probability (1+b2 )

#fx=+× ( 1−b2 )
#fx=−. In

practice we choose ℓ∼ 10/ln[2/(1− b)], to ensure
that patterns with more than ℓ negative forces have
negligible weights (< e−10). The resulting histograms
are in excellent agreement with Q for intermediate
values of Rc (dashed lines in fig. 5).

Tuning temperature for fast reconstruction. –

The dependence of Rc upon temperature is shown for
three patterns in the inset of fig. 5. We have Rc ∼ 4T as
T →∞ independently of the pattern, and Rc ∼ 2T/(h+3)
when T → 0, where h is the highest barrier to the right of
y in the potential defined by the pattern (fig. 5). When the

temperature exceeds the temperature Tb such that α= 1
the velocity of the RWer is finite y

τy
∼ v(T )> 0 [2]. The

rate of reconstruction ν(T ), i.e. the velocity at which
bases can be correctly predicted, is at least v(T )/RHc (T ),
that is,

ν(T )�
1− cosh 1T + b sinh

1
T

cosh 1
2T − b sinh

1
2T

/RHc (T ). (9)

The dependence of ν upon temperature is sketched in the
inset of fig. 4; it is maximal and equal to νM for some
temperature TM realizing a trade-off between fast motion
(large velocity) and accurate reading-out (small Rc). Even
in the small b limit the optimal reconstruction rate is finite,
νM ∼ b2, by working at high temperature TM ∼ 1b , while
in the absence of optimization procedure the number of
predicted forces scales only as the squared logarithm
of the time [18].

Conclusion. – We have shown how the number of RWs
required for a good reconstruction of the potential can be
deduced from the probability of survival of an absorbing
RW process. This connection is intimately related to the
Feynman-Kac formula for evaluating Wiener functionals
over Brownian paths [19]. Here the Brownian paths of
interest are the RWs in the true potential, and the
functional corresponds to the a posteriori probability
of predicting the most dangerous potential from those
observed RWs [17]. Our result is of practical interest
since the survival probability can be estimated through
numerical simulations, e.g. in dimension � 2. Furthermore
we have determined, for the special case of the RF model,
the optimal “experimental” protocol for reconstruction
(number of RWs, duration, temperature).
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Our formalism can be extended to models involving
discrete variables fx taking more than 2 values, and with
nearest-neighbour (or, more generally, local) interactions.
An example is the DNA-inspired model of [9], where the
base fx on each site may take 4 values. This case is
interesting in that the rate matrix r(x→ x+1; fx, fx+1)
is degenerate: base pair (fx, fx+1) and its complementary,
reverse base pair, e.g. AG and CT, give rise to the same
rate. Quasi–“zero mode”-like excitations appear which
induce strong correlations between decay constants Rc(y)
at different sites y.
The application to continuously parametrized poten-

tials, e.g. the RF model with forces taking continuous
instead of binary values, is possible too. The aim is now
to predict the true potential values up to some accuracy
on each site; this accuracy bounds turns de facto the
continuous problem into a discretized one, and determines
an acceptable neighborhood around s∗

v
in the space of

signals. The rate function ωV is generically parabolic
around s∗

v
, with a curvature matrix called Fisher infor-

mation matrix [11]. Our approach can be easily extended
to the case of a finite delay between two measures of the
positions, and Chernoff’s result is recovered in the finite
N , infinite delay limits [9,14].

∗ ∗ ∗

We are grateful to D. Thirumalai for his suggestion of
illustrating our formalism on the RF model. This work was
partially funded by ANR under contract 06-JCJC-051.

Appendix: rate function for signals. – In this
appendix we call PR(S |V) the probability that R RWs
in potential V provide signal S. For large R we expect
PR(S |V)∼ exp(−RωV(s= S/R)).
a) Consider two sets of, respectively, R1 and R2

RWs with signals S1 and S2. Then the combination
of those R=R1+R2 RWs gives signal S1+S2. We
deduce the inequality PR1+R2(S1+S2 |V)�PR1(S1 |V)
×PR2(S2 |V). Taking the logarithm and sending R→∞
at fixed ηi =Ri/R, si = Si/Ri (i= 1, 2) we find that
ωV(η1s1+ η2s2)� η1 ωV(s1)+ η2 ωV(s2).
b) Consider πR =

∫

dsPR(s |V) e
μ s·(v−v̄). A saddle-

point calculation leads to − lnπR/R=mins[ωV(s)+
μs · (v̄−v)] when R→∞. Assume time is discrete, with
a time delay ∆t between two measures of the position
xi of the RW, i= 0, 1, 2, . . . , I = t/∆t. Going back from
a sum over signals to a sum over the RWs X1, . . . ,XR

we have πR = π
R, where π=

∑

X

∏I
i=1 qV(xi−1→xi)

1−μ×

q
V̄
(xi−1→ xi)

μ =
∑

xI

[

(qV)
1−μ× (q

V̄
)μ
]I
(xI , 0), where

qW(x→ y) is the probability to go from x to y in
time ∆t in the potential W. Here ×, (. . .)μ,1−μ refer
to Hadamard i.e. entry-wise product, and [. . .]I to
matrix power. Taking the limit ∆t→ 0 we obtain
π=
∑

x(e
tM )x,0, where M is the transition matrix with

entries M(y, x) = r(1−μ)V+μV̄(x→ y), and M(x, x) =
∑

(y �=x) [(1−μ)rV(x→ y) + μrV̄(x→ y)]. Note that

M(x, x)+
∑

y( �=x)M(x→ y) =−dV,V̄,μ(x)< 0. The RW
process does not conserve probability, and π can be
interpreted as the probability of survival up to time t of
a RWer in potential (1−μ)V+μV̄ in the presence of
absorbing sites with rates d

V,V̄,μ(x).
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