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Thanks and apologies:



This mini-course includes:

> an intro. to a particular method for studying self-interacting
RW

» some applications of that method



This mini-course is not:

» a survey of known results on RWRE, cookie RW or any other
RW models

» going to answer all your questions about RW models



Self-interacting random walks:

» A n.n. RW path 1, is a sequence {n;}i* , for which

1 d
ni=mo, . )

» Notation: p"i(y, x) is conditional probability that the walk
steps from 1y =y to x, given the history fj; = (no, ..., Mi).

€ 79 and i1 —ni| = 1 for each i.

n—1

Q(Xn = (x0, %1, ..., Xn)) = H X (X4, Xig1)-
i—0

> Q assumed to be translation invariant w.r.t. starting point.



Self-interacting random walks include:

simple random walk
annealed RWRE

reinforced random walks

vV v v Vv

(annealed) cookie random walks



Properties of interest:

> recurrence/transience

» LLN: existence of v := limh— % Q-as.
_ D
> CLT: X2 = (0, £)
How do these properties change as we vary some parameter(s) of
the model?



Contents of this mini-course:

Derive the lace expansion for self-interacting random walks.

v

Obtain a formula for the speed appearing in the LLN

v

v

(Sketch)-Prove monotonicity properties for excited random
walks

Discuss other models

v



Primary model of interest: ERWD

> site-percolation A-cookie environment w € {0, 1}Zd,
i.e. cookies at {x : wy, =1}
» right drift (parameter 3) when eat a cookie, left drift (1)
otherwise
Given w, the ERWD {X;;}n>0 has law Q, defined by
» Qu(Xg=0)=1and

P& (0,11

1+ (Bliwy=1y — W1 — I =17))e1 -m

d and

pd(Mi, Mit1)

14 (Bhiwn =y Iy — M1 — Loy =iylmigag)er - Migr —mi)
- o .




Annealed ERWD

Annealed measure
Q) = | Qul)de

Under Q, interested in v (d, B, 1, A) defined by

v exists Q-a.s. for d > 6, by a theorem of Bolthausen, Sznitman
and Zeitouni (2003).



Theorem: (H, '09)

vitl(d, B, w,A) is continuous in (B, 1, A) € [0,1]3 when d > 6 and
when d > 12, is strictly increasing:

» in § € [0, 1] for each u, A € (0, 1]
» in A e€[0,1] for each u, B € (0, 1]

(Weaker results for monotonicity in ).

if e.g. L =0, we get monotonicity in 3,A € [0,1] for d > 9.



The two point function

Let
p°(x) =P(S1 =x)
be the SRW kernel (possibly with drift). Then for SRW

P(gﬂ:(XOVX].v---y Hp X1+1*X1 .



Expansion overview

» First write

n+1
cnp1(x) =) P°Wlen(x—u)+ ) ) m(yleniiom(x—y).
Y m=2 y

Here } . cn(x) =1, which makes some of the analysis easier.
» derive bounds on the lace expansion coefficients

» analyse the recursion relation, using the bounds on the lace
expansion coefficients (and induction)



Who cares?
Taking the Fourier transform, get

En1(K) =P°(K)En(k) + ) Am(K)Eni1 m(K),

where . .
(k)= ) e ¥cu(x) = E[e™Xn].
xezZd

Under strong™ assumptions on 7y, can inductively prove

~ _ ik- D S | L1yt
cn(kn 1) _ elk vten(k) 2)6 ikvym _ e sk Zk+en(k).

. Cnlkn

*The good news is that v and X are described in terms of the
expansion coefficients 7.



Theorem: Speed formula

If iMn—oo 2 mon D 5 XThm (X) exists and n™1X;, 2 v, then

v = pro(x) + Z Zx%m(x).

m=2 x



speed formula proof

» Summing recursion over x:

n+1

1=1+ Z Zﬂm(x)

m=2 X
Thus ), m(x) =0.
» Multiply recursion by x =y + (x —y) and sum over x

n+1

Zxcnﬂ Zyp 4D xealX)+ ) Y ymm(y)

m=2 y

n+1

EXni1—Xal =EXd+ D) Y ymm(y)

m=2 y



speed proof cont.

lim EXni1— Xnl =¥

n—oo

then since X, = > 1 _;(X;n — Xim—1), we have also

lim E[n"1X,] =¥.
n—oo

If n=1Xn g v, by bounded convergence we get

lim En"1X,] =v,
m—oo

W
(e}
<
Il
<



Variance formula (symmetric case)

Suppose that E[X;1] = 0 for each n. and for each 1,j € {1,2,...,d},

[+ [j] 00

. EXn Xy [, [j]

Jim —=ESRS =5y, and §2§ y My (y) < oo,
m= y

Then

o
Ty =BG+ Y Y yly il ().
m=2 y



More notation

convolution of abs. summable functions f, g on 7.4
(f*g)l( Z f(y

recursion becomes

n+1
Cni1(x) = (P cn)(x) + D (Mm% Cny1-m)(x).

m=2

If 7 and X are such that 5 = xg, then



Derivation of expansion

Given i, define QT on walk paths starting from 1, by

write



expansion cont.

Write product as

i=0

Expand, using

n—1 n—1 1 1 n—1
H ai +Ay) Ha1~|— Cll—i-Ai))Aj( H Cli),
i=0 j= 0 i=0 i=j+1

(empty products are defined to be 1).



expansion cont.

Get
n—1 1
e =) P06 Y TPY (X
20 101 10
n—1 j—1 o )
3D po0) pA R ()
j=0 510 W0y 10
n—1 )
e[ T v 0wt
i=j+1



expansion cont.

second term becomes

ot L o
0, (0) X, oX; (1) (1) (1)
E § P (X]_ ) |:| |P ! N (Xi ,Xi+1)]A-
)
j=0 (0) >(1) (1) __(0) =0
) Xl Xj+l’X0 _Xl 1
ja (1)
x T v o x|
(el =141
n—1 )
_ o/, (0) X v _ =1 (1)
—§ § p(xl)E Q™ (X]—X] )A]
i=0 -(0) 2(1)
) X1 j+1
n—j—1
i’g?loi’r (2) (2
X P O x5
£@ W r=0



This product can be written as

nOh e L) _2(2) 2
H |:pXr (x2) Xf_:_l) 4 Ko (X(rQ)'XS-)H) % (X2 X(er)Ll)]'
=0

Expand this again!
> One term involves no 72';11 history, and gives:

n—1
~(0) -
( (1) )
Z Zpo(xlo)) Z QX1 (X] = X;I )A] Cn—]—l(x - X].,.l)
n—1

where we have used the substitution m =j + 2.
» Other terms all involve a A(2).



iterate

» Recursion follows from iterating until there is nothing left to
expand.

Terms appearing are:

N=1
where
N _ 0(,(0)
)= ) D poxy) ) > I )
INT
~(0) -(1) ~(N)
JEAmMN %) j1 1 INES!
N ke »
I | Jr_1+1 _z
X Q k1 (X]k Xlk)A]k ,
k=1

and ApNn=0€ZY 14+ +ijin=m—N-1}



Excited random walk (A =1, p =0)

Recall:
>
polm) = LEEA
>
P M Mig1) = 1+ Bl{nigﬁilézl “Miv1 —ni).
" 00
v=EXdE ) ) xm(x),

m=2 X

if this limit exists.

Theorem: (v.d. Hofstad, H.)
For d > 9, v(B) is increasing in € [0, 1.



The expansion coefficients.

S EDICID IED I

-(0)
]EAmN X ]1+1 XJN+1

N _
LR, g AR
<[1Q (X5 = X545,

For ERW,
Bel ( X(-n))
(n) ]nJr]. ]Tl -
A 2d {I{XM%Z N R
p
AT S aq g e e g e by

Define

LRI T T T T

2(0) %(1)
JEAmN %4 Xj 41 ;N+1



Since

so that



Does speed formula converge?

» P4 is law of simple symmetric random walk in d dimensions,
» Dal(x ) = Ifjxj=1}/(2d) is SRW step distribution.
» Galx) =2 oo OD*k( ) is SRW Green's function. Then

iy 2 (k4+1i—1)! .
Gdl(X) :Zmpd(Xk:X), forl} 1.
s K

Note that G*i( ) < oo if and only if d > 2i.
G:ff = G*I( ). Fori>0, let qq =(d—1)/d

v

&i(d) = q el 1.



bounds in terms of SRW

Lemma: For all u € Z4, f,, and i€ Z .,

2 (j41) (141) ~x(it1)
g QU™ (X; =u) <ilgy TGy
i—o )’

)N MQﬁm(xj — ) <ilgy(d).

1
I
sketch proof: LHS of first ineq. is

j

> Y Qi =iy = Qv =
i—0 ' 1=0

< Zpd—l(xl =u *ﬂm)z U tl)!Q(Ni =
1=0 =t
< supZ]P’dfl(XL —V)Z G +i)|Q(Nj =1)



proof cont.

> Nj is # steps that f(} takes in coordinates 2,3,...,d
» {Nj}j>0 isa RWon Z, steps +1,0 w.p. qq, 1 —dq
» Nj ~Bin(j, qq), thus
G+ 1) (L _
j| Q(N] :U:qd1 u Q(N]+1:l+l)
> Nj-local time of level 1 ~Geom(qq), thus for m <1,
— (j+1i _ (i+1) (L+1)!
_Zm =1)=4qy T

Finally

o .
L+ 1)! . * (1
Z]P)dfl(xlz\))( l!) :1!Gd(jfl)(v)



Proposition ~ formula converges

Define d
= ——G¢ .
4= g dt
ag <1 when d > 6.
Proposition:
> ZX yezd Z X y)| < ﬁd 180(d)
» N > 2,

> D) Iyl <pNaHd-

x,yezd m

1) 'Gg_1€1(d)al

—2



Piecewise bounds
Given T, and Zj11, define

AZ 1) = (P17 (25, 2541) =7 (27, 25+1) ) izo—nm)-

Lemma: For any iy,

ioZ A )IQ™ (K = 7) < mpotd,
=02,
io(i +1) ) JA(Z41)IQ™(X; = Z) < mPag,
j= Za
iZ AlZ5)IQT (% = 2) < mp Y,
=12,
i(i +1) Y 1Az 1)IQ™ (K =) < m[ﬂglc(ld)_

j=1 Zj 1



Lemma sketch proof: (first one)

LHS bounded by

ZZQﬂm =) {Z;"Eﬂm 1}2dZ {zjr1=zjxe1}

j=0 Z Zj+1

ZJ )I{Zj Effm-1}

u |\/|

This is equal to

m—1

m-lm

2 QX5 =m).

1=0 j=0

B S QT (X; € fim 1)
=0

o



sketch proof of Proposition

From definition of 7ty (x,y), ZX’yEZd > It (x,y)| is bounded

by
> poxy ZZ'A Q% (X, =&
X0

j1=1 !
]1+1

Z Zm QN (K, = 7).

in=0 3
]N+1

» AD is non-zero only if j; is odd.

» Use Lemma repeatedly to get desired bounds.



PART 2:

Monotonicity for excited random walk



Excited random walk (A =1, p =0)

Recall:
g 1
p°(1) = 7+ [3221 '111' and
g ( )
- 1+ Blingi; €1 - Mitr — M
PrMiMit1) = aal I;d - =
>

ml@

i D W —xMmn(x, ).
m=2 x,y

Theorem: (v.d. Hofstad, H.)
For d > 9, v(B) is increasing in B € [0, 1].



Differentiate!
Let @'m'(x,y) = g5 7m (x,

Write

e (xy) = o (x y) + o? (x y) + o (%, y)
where these terms arise from differentiating
> pO(x"),
gn-1 o)
> Hn 11_[]12_1 Fin1H1%in (X(i:)'x(i?Jrl)
N
> Hn:l A
with respect to f3.



piecewise derivatives

- I @i 1)
%p“m(nm,x) =0 (lxmn=er) = Ixm=—en) -

d / - .

_ Mm A XnOMm

B (p Mm,x) —p (nm,X))
1

2d Mm&Tm-1NMmEXn_1} (I{X_nm:el} - I{X_nm:_el}) '

> define p'™ as nyy’mn(N)(x,y) with p° replaced with
bound on its derivative, and A(™) by |A(M)]
> define X;:” ... replacing A(¥) with its derivative . ..

> y%{N) ... replacing kth product of the trans. probabilities with
bound on derivative and A(™ by |A(M)]



derivative bounds

Letting Y™ = Y 1, v and XN = S Xi, we obtain

> ) et xy)l<p™

m x yezd

> ) eyl <y,

m X,y eZd

> ) eyl < x™.

m X,y eZd

(N)

Bound all of these terms separately, as done for Zx’y’m T (X, Y)



Summary of bounds

Z p™N 4y ™) N < stuff (d)
N

where
» we need ag < 1 for “stuff’ to converge
» “stuff’ involves Gi ; for i =1,2,3, so need d > 8
> “stuff’ is O(d—2) and stuff(d) < d—! when d > 9 using
Gg < 1.07865, Gj%<1.2891, G* < 1.8316.

Monotonicity result follows!



General case

Recall, in site-perc A-cookie environment w,

T+ (Bliwy=1p — (1 — I, —1y))er -m

d and

Polo.mi) =

P (Mi,Mit1)

L (Bl =1 mega ) — B = Lw, =1y Imgap))er - Mign —ni)

2d
Under Q:

L+ ((B+wA—pler-m
2d
L+ ((B+ WAL g, ) — Wer - Mivr —Mi)

P M, Mis1) = >d :

p°(o,m1) = and similarly,




Theorem: (H.)

vitl(d, B, w,A) is continuous in (B, 1, A) € [0,1]3 when d > 6 and
when d > 12, is strictly increasing:

» in § € [0, 1] for each u, A € (0, 1]
» in A e€[0,1] for each u, B € (0, 1]

(Weaker results for monotonicity in ).

if e.g. L =0, we get monotonicity in 3,A € [0,1] for d > 9.



Strategy

» Speed exists (d > 6) by a theorem of Bolthausen, Sznitman
and Zeitouni

» Show that speed formula converges
B+ruA—p ¢
v BARA R § 5 ey
m=2 X,y

» differentiate speed formula, show that “leading” term
dominates



More interesting

Conjecture:

» Foralld>2, (B, A) € 0,13, vl exists and is monotone
increasing in 3 for fixed u, A and decreasing in u for fixed 3, A
respectively.

» For each d > 3 and u € [0, 1] and all A sufficiently large, 3!
Bo(w, d,A) € [0, 1] such that v(d, 1, Bg,A\) = 0. The same is
true if the roles of A and 3 are reversed.

Theorem: (H.) True in high dimensions.



mu

1.0

0.8

0.6

0.4

0.2

0.0

Sign of velocity of ERW in 2 dimensions
with competing drifts beta and mu

0.0 0.2 0.4 0.6 0.8 1.0
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mu

1.0

0.8

0.6

0.4

0.2

0.0

Sign of velocity of ERW in 3 dimensions
with competing drifts beta and mu

0.0 0.1 0.2 0.3 0.4 0.5 0.6

beta




Speed formula converges, d > 6

For ERWD,
Al (B+mer - (473 —x;1) I —1
- 2d peexitVoxi™ ) T Mgz )
(n) (B + U))\
AT S g Tl = zen fm ety

Same as before except for (3 4+ p)A instead of 3 in all bounds.
» Repeat procedure to get convergence when 2a4 < 1 (d > 6).

» Get continuity of speed as a function of (A, 3, i) for free.
(d>6)
> d > 9, for any U, speed is positive for AP large enough.



Partial derivatives of speed formula

As before,




Derivatives of pieces

0 & Al @ fim 1)
aﬁpnm(nm: X) = 2d : (I{X_nm:el} - I{X_nm:_el}) !
0 - (B + Wn, gfm 1)
Mm — Mm&Nm-1
P Mm, x) >d e
0 - My, gin ) — 1
fim — NMm&im-1}
T Mm, x) 2d e
and

% (pﬁ’“ (M, x) = pXnim (ﬂmyx))

A
= 5qmmeAn anneta 1) (lxnm=en) = lxnn=—eu) -

The other terms are similar.



> Proceed as before using these slightly different bounds. Get

ovith A
<A
B < A-stuff(d)
ol B4
_ < . stuff
| < (B W - stuff(a)
ovith A —1
— 02 < stuff(d),
on 1 stuff(d)

» stuff(d) is order d—2
> Need to take d higher to beat (B + A < 2

» Doesn't quite work for p derivative for large A



Negative speeds:

Lemma: For each d > 2 and p > 0, the speed™* is negative for
AB sufficiently small.

Corollary: Fix d > 9, and u € [0, 1]. For each A sufficiently large,
can find a Bo(W, d, A) so that the speed is 0. For each d > 12
Bo(w, d,A) is unique. The same is true with the roles of A and 3
reversed.



sketch proof of lemma:

Fixd > 2 and u > 0.
Prove that limsup,,_, n_IX][iH < %E[Xg”], Q-almost surely:

» Explicitly write down
Quw (X1[1+3 - Xn = 3|Xn =Xn)

Qw(xglq 2|X = n)

Qw( n+3 — XTL = 1|Xn = Xn)
also -1,-2,-3 (and 0)
> the first two increase if you switch on a cookie
» so does the sum of all three

> reverse is true for negative terms



sketch proof cont.

» Take expectations w.r.t. QQ, get quantities bounded by
Qx5! =)

» By coupling, X}, is left of walk with environmental
regeneration every 3 steps

> the latter has speed %E[Xgu]

» continuous in (B,A) € [0, 1]2
» < —e(d, u) when A =0.



Monotonicity for RWpRE

» annealed velocity of RWRE NOT monotone increasing in the
expected drift at the origin.

» if only one coordinate of environment is random, shifting
probability from left steps to right steps increases speed to the
right

» if more than one 77?7 even when components of environment
are independent (or completely dependent)



Monotonicity theorem

Suppose
» d=dp+dy and A < dg
>
do
S (woler) + wol—ei)) = 8
i=1

» ci > 0, are constants for 1 < A.

Theorem: (H.) Let d; > 7 and X ~Bernoulli(f). Suppose that
Wo(e;5) and wo(—ej) are independent of X (and (3) for each j > A
and Q-almost surely,

wolei) =ciX, and weo(—ei) = ¢i(1 —X), for i <A,

1-5
2d;

wol(u) = foru e {£eqyr1..., Teql

Then for & sufficiently small, vIII(B) is continuous and strictly
increasing in f3.



Transition probabilities

Let pw(x,Yy) = wx(y — x) be the probability of a transition from x
to y in environment w. Annealed trans. prob. p™ (Nn, Nn + 1) is

1-5
> 2d, fOI’uEEd\EdO,
» for i <A,

P (M, Mn + €3) = ci(Igo0tm—0) T Bliri—o,L;—0))

P (M, M — €1) = ¢t — P (M, Mn + €1).

» something independent of 3 otherwise.



The derivatives

0 =
‘%p”“(nn,nnieﬂ

il —o=t)licny < Clicay

jl 1
A 521 FEPTS , | TR ,
Al < =xi I —x €Bag ) (i Y —xi T €Bgy)
jl 1
A 521 NI I (i1 . .
‘aﬁ - xh ) 0 B Dl il e
—o

Now proceed with similar kind of argument as for the excited
models.



Other models?

> excitement in two coordinates with (B, 32): monotonicity
of vitlin pl27

» once-reinforced random walk on a tree?

» variance of a random walk with partial once-reinforcement?

» the orthant model, one of the more interesting examples of
random walks in (i.i.d.) degenerate random environments in

H., Salisbury
» do site percolation in Z¢
» from each occupied site lay down the arrows {+e;,1=1,...,d}
» from each vacant site lay down the arrows {—e;, i =1,...,d}

v

run a random walk (that chooses uniformly from available
steps) in this random environment

require a tremendous advance in our understanding and use of
the recursion equation)
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