Jean-Christohe Mourrat (Université de Provence)
Titre : Speed of convergence to equilibrium for the environment viewed by a random
walker.
Résumé :
We consider a continuous-time random walk on Z^d moving among random
(symmetric) conductances. A property that proved useful for instance to
obtain invariance principles is the ergodicity of the process of the
environment viewed by the particle. We will show, provided the
conductances are i.i.d. and bounded away from 0, how to quantify the speed
of convergence to equilibrium of this process. The method starts with the
establishment of a Nash inequality. Two complementary approaches follow,
one based on a comparison with the simple random walk, the other
consisting in proving that some terms appearing in the Nash inequality do
not diverge too fast. The result is an algebraic decay of the variance,
valid for a large class of functionals of the environment. This decay has
interesting consequences in terms of the random walk itself, giving for
instance, under some conditions, an estimate of the difference between the
mean square displacement and the limit variance of the walk.
(arXiv:0902.0204)
Cyrille Lucas (ENS Paris)
Titre : La loi de l'arcsinus comme loi limite de l'agrégat de diffusion interne engendré par la marche de Sinaï
Gabriel Faraud (Université Paris 13)
Titre : Diffusions in random potential
Résumé :
We study a model of diffusion in a brownian potential. This model
was firstly introduced by T. Brox (1986) as a continuous time analogue
of random walk in random environment. We estimate the deviations
of this process above or under its typical behavior. Our results rely
on different tools such as a representation introduced by Y. Hu, Z. Shi
and M. Yor, Kotani's lemma, introduced at first by K. Kawazu and H.
Tanaka (1997), and a decomposition of hitting times developped in a
recent article by A. Fribergh, N. Gantert and S. Popov (2008) . Our
results are in agreement with their results in the discrete case.
Laurent Tournier (Université Claude Bernard Lyon 1)
Titre : Directional transience of random walks in Dirichlet random environment
Résumé :
In the same way that Dirichlet distribution arises in the context of Polya's urn, random walks in Dirichlet environment are related to oriented edge reinforced random walks. In this talk, I shall present a striking stability property of Dirichlet environment under time reversal, and show how it allows to prove directional transience of random walks in such environment on Z^d. This is a joint work with Christophe Sabot.
Alexander Fribergh (Université Claude Bernard Lyon 1)
Titre : Vitesse de la marche aléatoire biaisée sur un cluster de percolation
Omar Boukhadra (Université de Provence)
Titre : Estimées du noyau de la chaleur d'une marche aléatoire avec conductances aléatoires à queues lourdes
Résumé
Julien Poisat (Université Claude Bernard Lyon 1)
Titre : Accrochage de polymère avec désordre faiblement corrélé.
Résumé : on s'intéresse à un modèle de type mécanique statistique
modélisant un polymère en interaction avec une interface, et plus
particulièrement à son diagramme de phase. Des bornes sur la courbe
critique seront données lorsque l'on introduit dans ce modèle un
désordre faiblement corrélé.