
Stochastique Algo. – ISTIL 3A

Fiche 2 – Génération de variables pseudo-aléatoires
«Nul n’est censé ignorer la loi.» Principe de droit français.

1 Introduction

L’objet de la fiche précédente était d’expliquer comment on pouvait simuler,

à l’aide d’un ordinateur, des suites de nombres réels pouvant être considérées en

pratique comme des suites de variables aléatoires uniformément distribuées entre 0

et 1. Nous nous intéressons dans cette fiche à l’étape de transformation, qui consiste

à simuler des variables aléatoires de loi donnée, non-uniforme en général, à partir

des nombres produits par un générateur pseudo-aléatoire du type décrit dans la fiche

précédente.

1.1 Méthodes génériques et méthodes spécifiques

Pour la plupart des lois classiques telles que les lois gaussiennes, binomiales, ex-

ponentielle, géométrique, de Poisson, Gamma, Beta, etc... de nombreux algorithmes

performants, souvent très astucieux, optimisés dans leur implémentation, et repo-

sant sur les propriétés particulières de ces lois et sur les relations qui existent entre

elles, ont été développés. Ces algorithmes spécifiques sont implémentés dans divers

logiciels (tels que R) et bibliothèques (tels que la bibliothèque GSL (GNU Scienti-

fic Library) [G], en C et C++). Nous en donnerons quelques exemples, non pas à

titre de référence, mais plutôt d’illustration du type de propriétés sur lesquelles ces

méthodes sont basées.

En revanche, nous nous attacherons dans cette fiche à décrire précisément les mé-

thodes génériques de transformation, qui permettent de simuler des variables aléa-

toires de loi quelconque, et ne reposent pas comme les précédentes sur les propriétés

particulières des lois classiques.

Pour plus de détails, nous renvoyons (encore et toujours) à l’ouvrage de D. Knuth

[K], ainsi qu’à celui de L. Devroye [D]

(voir également la page de L. Devroye http://cgm.cs.mcgill.ca/~luc/ pour

des références récentes.)

2

1.2 Validité des méthodes de transformation

Les méthodes que nous présentons dans la suite supposent que l’on dispose de

variables aléatoires indépendantes U1, U2, . . . de loi uniforme sur [0, 1], et expliquent

comment transformer ces variables afin de produire une variable aléatoire, disons X,

possédant la loi souhaitée. La validité de ces méthodes est à chaque fois établie en

prouvant mathématiquement que, si l’on dispose en entrée de véritables variables

aléatoires i.i.d. uniformes sur [0, 1], la variable aléatoire X produite par la méthode

considérée possède effectivement la loi de probabilité souhaitée. Pour produire plu-

sieurs exemplaires indépendants de même loi que X, on répète le procédé en em-

ployant en entrée des tronçons disjoints de la suite de nombres pseudo-aléatoires

pseudo-uniformes produite par le générateur utilisé1.

On voit donc que la validité d’une telle méthode, c’est-à-dire le fait que l’on puisse

en pratique manipuler les nombres qu’elle produit comme des réalisations indépen-

dantes de variables aléatoires possédant la loi voulue, repose fondamentalement sur

la validité du procédé de génération de nombres pseudo-aléatoires employé, celle-ci

étant censée avoir été établie avant son utilisation. Toutes les remarques concernant

les précautions et les difficultés associées à la génération et à l’utilisation de nombres

pseudo-aléatoires s’appliquent ici. Nous distinguerons plusieurs critères de validité

des méthodes présentées :

– le premier critère consiste simplement à prouver mathématiquement que la mé-

thode fonctionne si on lui fournit en entrée de véritables variables aléatoires

i.i.d. uniformes sur [0, 1] ; il s’agit c’est un critère minimal de validité, sans

lequel l’emploi d’une méthode de transformation paraît difficilement envisa-

geable ;

– le deuxième critère consiste à prouver que la méthode demeure correcte lorsque

l’on prend en compte le caractère discret des nombres utilisés en entrée (et

éventuellement les autres problèmes liés à l’utilisation de calculs en précision
1il s’agit d’une remarque importante : dans ce qui suit, nous décrirons souvent des procédés

algorithmiques permettant de générer un nombre pseudo-aléatoire de loi donnée en partant d’un

ou plusieurs (le nombre sera parfois lui-même aléatoire) nombres pseudo-uniformes entre 0 et 1

produits par le générateur, et, si l’on désire simuler des suites indépendantes de nombres de loi

donnée, il est indispensable de vérifier que les procédés algorithmiques sont appliqués à des blocs

disjoints de nombres issus du générateur, ou, autrement dit, que les nombres pseudo-aléatoires

issus du générateur ne sont utilisés qu’une seule fois chacun.

3

finie) : au mieux, on peut en réalité espérer disposer de variables aléatoires

i.i.d. uniformes, non pas sur [0, 1], mais sur un ensemble de la forme{
0
K

,
1
K

, . . . ,
K

K

}
;

– le troisième critère consiste à prendre en compte explicitement le générateur

utilisé, et à prouver dans ce contexte que la méthode se comporte de manière

satisfaisante ; on doit alors étudier comment les propriétés connues du généra-

teur peuvent influencer les propriétés des nombres obtenus par transformation ;

à ce sujet, on peut au moins retenir que les garanties de qualité des généra-

teurs de nombres pseudo-aléatoires portent principalement sur la qualité de la

répartition des bits de poids fort, – les bits de poids faible présentant souvent

un assez mauvais comportement ;

– le quatrième critère est un critère (indispensable) de validité empirique : on

vérifie à l’aide de tests statistiques que les nombres fournis par la méthode (lors

d’un grand nombre d’utilisations supposées indépendantes) sont compatibles

avec l’hypothèse selon laquelle ceux-ci forment une suite de variables aléatoires

indépendantes possédant la loi souhaitée.

En général, le premier et le quatrième critère, et éventuellement le deuxième,

sont étudiés. Soulignons la difficulté d’étude du troisième, la structure des appels au

générateur effectués par l’utilisation répétée de méthodes de transformation au cours

d’une simulation pouvant varier de manière fort complexe et arbitraire. Le minimum

vis-à-vis du quatrième critère est d’examiner graphiquement la répartition empirique

(par exemple, au moyen d’un histogramme) des valeurs obtenues en appliquant la

méthode de manière répétée, et de pratiquer des tests standards d’adéquation. Bien

entendu, on ne teste (quasiment) pas ainsi l’indépendance des valeurs successives

obtenues, qui est également une propriété très importante. De plus, il n’est bien

entendu pas clair que des tests empiriques réussis avec une certaine implémentation

(c’est-à-dire avec une sous-suite donnée de la suite produite par le générateur) garan-

tissent que la méthode fonctionne en général, même si notre confiance en la méthode

en est renforcée.

Au passage, notons que la vérification empirique de l’adéquation des résultats

obtenus à la loi recherchée permet non seulement de mettre à l’épreuve la validité

pratique de la méthode décrite et de son association au procédé de génération utilisé,

mais également de tester le fait que l’implémentation effectuée correspond bien à la

4

méthode proposée et ne comporte pas d’erreurs.

1.3 Validité et efficacité

La validité d’une méthode de transformation n’est pas le seul élément à prendre

en compte pour décider de son utilisation. Son efficacité, mesurée la plupart du temps

en termes de temps d’exécution et d’espace mémoire, est également importante, en

particulier lorsque l’on mène des simulations massives au cours desquelles un très

grand nombre de variables aléatoires doit être simulé.

2 Un exemple très simple

Supposons que l’on cherche à produire des variables aléatoires de loi uniforme

sur l’ensemble des entiers de 0 à H, où H est un entier positif fixé.

Partant d’un nombre aléatoire U uniforme sur [0, 1], on obtient un entier V

distribué uniformément entre 0 et H en posant :

V ← b(H + 1)× Uc ,

bxc désignant la partie entière de x, c’est-à-dire le plus grand entier inférieur à x.

On vérifie le premier critère de validité de la méthode en calculant, pour tout

entier k tel que 0 ≤ k ≤ H, la probabilité P (V = k)

P (V = k) = P (l ≤ (H + 1)U < k + 1)

= P (l/(H + 1) ≤ U < (k + 1)/(H + 1)) = 1/(H + 1).

Comme nous l’avons souligné précédemment, U ne peut pas suivre exactement

la loi uniforme sur l’intervalle [0, 1].

Quant au deuxième critère, en admettant que U suive exactement la loi uniforme

sur l’ensemble discret
{

0
K , 1

K , . . . , K
K

}
, on constate que la probabilité pour que pour

que b(H + 1)× Uc soit égal à i peut ne pas être exactement égale à 1/H, mais

présenter un écart par rapport à cette valeur de l’ordre de 1/K. Le nombre K étant

en général supposé extrêmement grand, ceci ne pose pas nécessairement de problème

sérieux.

On pourrait envisager une autre méthode en utilisant le générateur pour pro-

duire un entier pseudo-aléatoire pseudo-uniforme entre 0 et un grand entier M , par

5

exemple, en se rappelant que U peut être vu comme un entier pseudo-aléatoire uni-

forme (il s’agit simplement d’utiliser la même séquence de bits, mais en l’interprétant

de manière différente) entre 0 et un grand entier RAND_MAX, et choisir V en ré-

duisant X modulo H + 1. Cependant, cette stratégie n’est pas à recommander car

elle fait intervenir les bits de poids faible de X, alors que les (relatives) garanties

de qualité des générateurs de nombres pseudo-aléatoires portent sur l’équirépartition

des bits de poids fort,– les bits de poids faible présentant souvent un comportement

moins bon. Le troisième critère nous permet ici à disqualifier une telle méthode.

3 Variables aléatoires de loi discrète

On suppose donc que l’on dispose d’un ensemble S fini ou dénombrable, que

l’on met sous la forme {xi, i ∈ I}, où I est un ensemble d’indices de la forme

I = {1, . . . , k} ou I = {1, 2, . . .}, ainsi que d’une liste de nombres (p(xi))i∈I , positifs

ou nuls et vérifiant
∑

i∈I p(xi) = 1.

Notre objectif est de générer un élément aléatoire V de S vérifiant PV = xi =

p(xi) pour tout i ∈ I. Pour alléger les notations, nous poserons dans la suite pi =

p(xi).

3.1 Méthode de découpage d’intervalles

En partant d’un nombre aléatoire U de loi uniforme sur [0, 1[, il suffit de poser :

V = xi, où i est l’unique élément de I vérifiant
∑i−1

j=1 pj ≤ U <
∑i

j=1 pj .

L’intervalle [0, 1] est ainsi découpé en intervalles de longueurs pi, et l’indice de

l’intervalle dans lequel tombe la variable U fournit l’indice de l’élément de S que l’on

renvoie.

La principale difficulté de cette méthode est liée à la recherche de i à partir de

U . La méthode la plus naïve consiste à tester d’abord si U < p1, puis, si ce n’est

pas le cas, si U < p1 + p2, et ainsi de suite jusqu’à obtenir i. Les probabilités cu-

mulées p1 + · · · + pk peuvent éventuellement être précalculées, afin de gagner du

temps. D’autre part, en plaçant d’abord les intervalles les plus larges, (ce qui né-

cessite également un prétraitement de la loi à simuler), on peut réduire le nombre

moyen de comparaisons à effectuer. D’autres méthodes de recherche, telles que par

exemple la dichotomie, peuvent également être employées. En outre, si les pi vérifient

des propriétés particulières, la recherche de i peut être grandement accélérée : c’est

6

exactement le cas de la méthode décrite dans le paragraphe précédent pour générer

des entiers uniformes entre 0 et H.

De manière générale, on retient que l’efficacité de la méthode est conditionnée

par l’efficacité avec laquelle il est possible de déterminer l’intervalle contenant U .

De plus, quitte à effectuer un prétraitement de la loi à simuler, il peut être possible

de diminuer le temps moyen nécessaire à la simulation, ce qui peut être intéressant

lorsque l’on cherche à simuler un grand nombre de variables aléatoires possédant la

loi recherchée (bien entendu, le prétraitement n’est en général pas rentable si l’on ne

simule qu’une seule variable aléatoire). D’autre part, des propriétés particulières des

pi peuvent s’avérer très utiles pour accélérer le procédé.

3.2 Méthode du rejet

La méthode du rejet repose sur deux observations, dont la première est la sui-

vante : il est équivalent de pouvoir générer une variable aléatoire V vérifiant P (V =

xi) = p(xi) pour tout i ∈ I, ou une variable aléatoire (V,W) de loi uniforme sur

l’ensemble A =
⋃k

i=1{xi} × [0, d× p(xi)], où d est une constante positive arbitraire.

La preuve (immédiate) est la suivante : si (V,W) est uniformément distribuée sur

un ensemble tel que A, la probabilité pour que V = xi est proportionnelle à dp(xi),

par définition de la loi uniforme, et donc égale à p(xi) (car nous avons affaire à des

probabilités, dont la somme est obligatoirement égale à 1). Inversement, si V vérifie

P (V = xi) = p(xi) pour tout i, on vérifie que la variable aléatoire (V,U × dp(V)),

où U est uniforme sur [0, 1] et indépendante de V , suit la loi uniforme sur A.

Le seconde observation est que, si l’on est en mesure de simuler des variables

aléatoires uniformes à valeurs dans un ensemble B contenant A, il est possible de

simuler par rejet des variables aléatoires uniformes sur A. Précisément : si (V,W) est

une variable aléatoire de loi uniforme sur un ensemble B qui contient l’ensemble A,

la loi de (V,W) conditionnelle au fait que (V,W) ∈ A est la loi uniforme sur A. Ceci

n’est pas lié à la forme spécifique de l’ensemble A, il s’agit d’une propriété tout-à-fait

générale qui a lieu pour tout (ou presque) couple d’ensembles A et B vérifiant A ⊂ B

et sur lesquels on peut définir la loi uniforme.

Ainsi, il est possible de simuler des variables aléatoires uniformes sur A en si-

mulant des variables aléatoires uniformes indépendantes à valeurs dans B jusqu’à

obtenir une variable se trouvant dans A, dont la loi est, d’après ce qui précède, uni-

7

forme sur A. L’idée est qu’il peut être beaucoup plus facile de générer des variables

uniformément distribuées sur B plutôt que directement sur A.

En d’autres termes, l’algorithme suivant renvoie une variable aléatoire (V,W)

uniformément distribuée sur A :

1) Générer (V,W) uniformément distribuée sur B

2) si (V,W) ∈ A, renvoyerV

3) sinon retourner à l’étape 1)

On notera que les générations successives de (V,W) sont supposées indépen-

dantes.

Le nombre de tentatives nécessaires jusqu’à obtention d’un résultat suit une loi

géométrique de paramètre L(A)/L(B), où L(·) désigne la mesure de Lebesgue dans

la dimension appropriée (la longueur pour des objets de dimension 1, la surface pour

des objets de dimension 2, etc...).

Un exemple simple, que l’on peut mettre en œuvre dans le cas où l’ensemble

S est fini, est celui où l’on prend pour B l’ensemble S × [0,M], où M = maxi pi,

dans lequel il suffit de simuler indépendamment deux coordonnées indépendantes et

uniformes.

Il est alors facile de générer des variables aléatoires uniformément dans B, puis-

qu’il suffit de poser V = xdU1×ke et W = U2 ×M , où U1 et U2 sont deux variables

aléatoires indépendantes et de loi uniforme sur [0, 1[.

De manière synthétique, la méthode du rejet s’écrit donc, dans ce cas particulier,

de la manière suivante :

1) Générer+ V distribuée uniformément sur S

2) Générer W uniformément distribuée sur [0,M]

3) si W < p(V), renvoyer V

4) sinon retourner à l’étape 1)

On notera que le nombre d’étapes de la méthode, comme d’ailleurs dans le cas

du découpage d’intervalles, est lui-même une variable aléatoire, susceptible de varier

d’un appel à l’autre. Le nombre de comparaisons effectuées lors d’un passage est

limité à 1 (on compare T et p(xL)), mais il faut le multiplier par le nombre de

passages effectués jusqu’à obtenir une acceptation. Naturellement, plus la taille de

l’ensemble A, au sens de la mesure de Lebesgue, est petite par rapport à celle de

l’ensemble B dans lequel on l’inscrit, plus le nombre de rejets est important, et

plus l’exécution de l’algorithme est coûteuse en temps. Il est donc souhaitable que

8

l’ensemble B «colle» au plus près l’ensemble A, même si cette exigence est en général

contradictoire avec le fait qu’il doit être facile de tirer uniformément des points de

B. Dans certains cas, il est possible de trouver mieux qu’un ensemble de barres de

hauteurs toute égales comme ensemble B. Par exemple, lorsque l’on sait facilement

générer des variables aléatoires dont la loi, sans être identique à celle souhaitée pour

V , s’en rapproche. Plus précisément, supposons que l’on sache facilement générer des

variables aléatoires W à valeurs dans l’ensemble S, et dont la loi q(xi) = P (W = xi)

est telle que, pour une certaine constante c > 0, on ait pour tout i ∈ I, l’inégalité

p(xi) ≤ c× q(xi). On peut alors inscrire l’ensemble A dans l’ensemble

B =
k⋃

i=1

{xi} × [0, c× q(xi)],

et, conformément à l’observation précédente, il est facile de produire des éléments de

(V,W) de B uniformément distribués à l’aide de la méthode suivante

1) Générer V uniformément dans S

2) Générer+ W uniformément distribuée sur+ [0, c× q(V)]

(Exercice : vérifier que le couple (W,T) défini ci-dessus possède bien la loi uni-

forme sur l’ensemble B.)

On obtient ainsi une nouvelle méthode du rejet pour générer des variables aléa-

toires de loi P (V = xi) = p(xi) :

1) Générer V uniformément dans S

2) Générer W uniformément distribuée sur [0, c× q(V)]

3) si+ W < p(V), renvoyer V

4) sinon retourner à l’étape 1)

On constate que le nombre de rejets sera d’autant plus faible que l’approximation

p(x) ∼ cz(x) est précise.

Une remarque qui a son importance est que l’on peut, en fait, se contenter de

manipuler les probabilités p et q à une constante multiplicative près, ce qui est utile

lorsque le calcul des constantes de normalisations de p ou de q est difficile ou coûteux,

et présente en particulier un intérêt lorsque l’on manipule des lois conditionnelles.

Supposons donc que p(z) = βp1(z), et q(z) = γq1(z), où p1 et q1 sont des fonctions

plus simples à calculer que p et q, et que l’on ait une relation de la forme cq1 ≥ p1,

où c est connue explicitement. Alors, en générant V selon la loi q et W selon la

loi uniforme sur [0, cq1(V)], on obtient un point (V,W) uniformément distribué sur

9

l’ensemble
⋃k

i=1{xi} × [0, c × q1(xi)]. Conditionnellement au fait que W ≤ p1(V),

V est alors distribué selon la loi p, ce que l’on voit grâce aux mêmes arguments

que précédemment. L’algorithme correspondant ne nécessite pour fonctionner que

la connaissance de p1 et q1, et son efficacité repose sur le fait que p1 et cq1 soient

relativement proches.

Méthode de Walker

Une méthode plus élaborée pemettant de limiter considérablement le temps d’exé-

cution est la méthode de Walker, aussi connue sous le nom de «méthode des alias»,

qui suppose un prétraitement de la loi à simuler (voir l’article original [W]), et per-

met un gain de temps considérable lorsque l’on cherche à produire un grand nombre

de variables pseudo-aléatoires distribués suivant une loi discrète fixée. Intuitivement,

l’idée est de tronçonner puis recoller les barres qui constituent l’ensemble A défini

précédemment, de manière à obtenir un ensemble de barres de hauteur toutes égales,

en limitant à deux le nombre de tronçons de provenance différente dans chaque barre

ainsi formée, le point important étant que le tronçonnage/recollement conserve la

surface des morceaux déplacés. Plus formellement, la méthode de Walker repose sur

l’utilisation d’une table de la forme suivante (pour alléger les notations, rappelons

que l’on pose pi = p(xi)).

état 1 2 . . . k − 1 k

seuil q1 q2 . . . qk−1 qk

alias l1 l2 . . . lk−1 lk

vérifiant, pour tout 1 ≤ i ≤ k, les hypothèses :

– 0 ≤ qi ≤ 1

– li ∈ {1, . . . , k}
– qi +

∑
j : lj=i(1− qj) = kpi

Pour simuler la loi en question, on procède de la façon suivante :

1) Générer un entier L uniformément entre 1 et k

2) Générer un réel U uniformément dans l’intervalle [0, 1]

3) si U < qL, renvoyer V ← xL

4) sinon, renvoyer la valeur «alias» V ← xlL

Interprétation géométrique de la méthode : dessin au tableau.

On note que la méthode de Walker constitue une amélioration considérable de la

méthode du rejet (moyennant le calcul préliminaire de la table) : au lieu de rejeter

10

le résultat obtenu dans le cas où U ≥ pL et de recommencer un nouveau tirage, on

renvoie dans ce cas la valeur alias figurant dans la table.

Le nombre d’opérations requis par l’emploi de cette méthode ne dépend donc pas,

une fois qu’une telle table est construite, de la valeur de k. Lorsque k est grand, et que

l’on est amené à répéter un grand nombre de fois la simulation de la loi considérée,

il est donc très avantageux d’utiliser cette méthode.

Bien entendu, une question importante est de savoir comment fabriquer la table

de telle façon que la loi obtenue soit bien celle que l’on cherche à simuler.

L’algorithme suivant permet, à partir de la donnée des probabilités pi, de fabri-

quer une telle table. L’algorithme renvoie deux tableaux R et A, contenant respec-

tivement les valeurs des seuils de rejet R(i) = qi et les alias A(i) = li. Ce qui suit

concernant la méthode de Walker est librement reproduit du rapport de DESS de

F. Morata.

Construction des tables de Walker.

Pour i de 1 à k faire :

R(i)← k ∗ pi; {Initialisations des tables de seuils et d’alias}

A(i)← i;

Si (R(i) > 1) alors :

insérer i dans H ;

sinon :

insérer i dans L ;

finsi ;

finpour ;

Tant que (H 6= ∅) faire :

choisir j ∈ L; {choix d’indices}

choisir s ∈ H;

A(j)← s; {valeur alias de j}

R(s)← R(j) + R(s)− 1; {modification du seuil de rejet}

Si (R(s) <= 1) alors :

supprimer s dans H ;

11

insérer s dans L ;

finsi ;

supprimer j dans L ;

fintantque ;

Remarque : Il est facile de remarquer que :

– Si k ∗ pi ≤ 1, on a : {j; A(j) = i} = ∅.

– Si k ∗ pi > 1, on a : R(i) +
∑

{j; A(j)=i} (1−R(j)) = k ∗ pi.

Exemple :[Tables de Walker] Soit X une variable aléatoire discrète définie sur

{1..6} distribuée comme suit :



p1 = 0.1

p2 = 0.3

p3 = 0.2

p4 = 0.1

p5 = 0.2

p6 = 0.1

Méthode d’Aliasing : phase initiale

0.6

1.2

1.8

Etats
1 2 3 4 5 6

1.0

Initialement, on a : L = {1, 4, 6} et H = {2, 3, 5}.

12

Méthode d’Aliasing : première étape

0.6

1.2

1.8

Etats
1 2 3 4 5 6

2

1

1.0

R[2] = R[2] + R[1]− 1 = 1.8 + 0.6− 1 = 1.4

A[1] = 2

L = {4, 6} et H = {2, 3, 5}.

Méthode d’Aliasing : deuxième étape

0.6

1.2

1.8

Etats
1 2 3 4 5 6

2

1

2

4

1.0

R[2] = R[2] + R[4]− 1 = 1

A[4] = 2

L = {2, 6} et H = {3, 5}.

13

Méthode d’Aliasing : troisième étape

0.6

1.2

1.8

Etats
1 2 3 4 5 6

1

2

4

2

6

3

1.0

R[3] = R[3] + R[6]− 1 = 0.8

A[6] = 3

L = {2, 3} et H = {5}.

Méthode d’Aliasing : étape finale

0.6

1.2

1.8

Etats
1 2 3 4 5 6

1

2

4

2 3

63

5
1.0

R[5] = R[5] + R[3]− 1

A[3] = 5

L = {2} et H = ∅

14

Ce qui produit la construction finale :

0.6

1.2

1.8

Etats
1 2 3 4 5 6

1

2

2
3

5

4

2

5 6

3
1.0

On obtient via cette construction les tables de Walker suivantes :

Etats 1 2 3 4 5 6

Seuils 0.6 1.0 0.8 0.6 1.0 0.6

Alias 2 / 5 2 / 3

On notera que l’algorithme de fabrication des tables de Walker est O(k) si les

listes L et H sont par exemple manipulées comme des piles.

3.3 Remarque

Lorsqu’une méthode de génération de lois suppose un prétraitement qui peut être

réemployé lors d’appels ultérieurs à la méthode, il est très fortement recommandé de

n’effectuer qu’une seule fois la phase de prétraitement, et de la réutiliser systéma-

tiquement. Ceci est évident lorsque vous implémentez vous-même la méthode dans

tous ses détails (ce qui est rare), mais peut l’être moins lorsque vous faites appel à

des procédures déjà écrites (ou à un logiciel évolué tel que R ou MATLAB), dans les-

quelles le prétraitement n’apparaît pas de manière explicite. D’autre part, regrouper

en un seul plusieurs appels à une procédure rapide peut permettre d’économiser des

étapes d’interfaçage plus lentes, par exemple en utilisant des fonctions vectorielles de

haut niveau plutôt que des boucles. Ainsi, dans R, il est beaucoup plus rapide, pour

15

générer un échantillon de taille 1000000 d’une loi de Poisson de paramètre 2 (stocké

dans le tableau h) d’effectuer la commande :

h<-rpois(1000000,2)

plutôt que :

for(i in (1:1000000)) h[i]<-rpois(1,2)

4 Lois à densité

Il est utile de se représenter les variables aléatoires continues comme des limites

de variables aléatoires discrètes associées à une discrétisation de l’espace dont le pas

tend vers zéro. Les deux méthodes qui suivent ne sont que des adaptations au cas

continu des méthodes du découpage d’intervalles et de rejet vues précédemment dans

le cas discret.

On souhaite donc simuler une variable aléatoire V dont la loi est donnée par une

densité f , c’est-à-dire une fonction intégrable f : R→ R+ telle que

P (a < V < b) =
∫ b

a
f(x)dx.

4.1 Méthode d’inversion

Pour simplifier, nous supposerons que f est strictement positive sur un intervalle

ouvert I, et nulle hors de I (autrement dit, la variable aléatoire prend toutes ses

valeurs dans l’intervalle I), et continue sur I.

La fonction de répartition :

F (s) = P (X ≤ s) =
∫ s

−∞
f(u)du

définit alors une bijection strictement croissante de I sur]0, 1[, et l’on peut donc

définir

F−1 :]0, 1[→ I.

Pour simuler une variable aléatoire dont la loi possède la densité f , la méthode

d’inversion est la suivante : partant d’un nombre pseudo-aléatoire U uniforme sur

[0, 1], on pose :

V ← F−1(U).

16

La validité de cette méthode est prouvée grâce aux égalités :

P (F−1(U) < x) = P (U < F (x)) = F (x) = P (V < x),

la première égalité reposant sur la stricte croissance de F .

En théorie, il est donc possible de simuler grâce à la méthode d’inversion n’im-

porte quelle loi à densité. En pratique, cette méthode pose le problème du calcul

numérique (souvent approché) de F−1, qui peut se révéler difficile, ou tout au moins

coûteux en temps de calcul. De plus, si les opérations arithmétiques usuelles (somme,

produit, quotient) sont en général rapides à effectuer, l’appel à des opérations plus

complexes (logarithme, fonctions trigonométriques,...) peut également ralentir signi-

ficativement la méthode, même si l’on dispose d’une formule d’inversion explicite.

Notez que cette méthode est étroitement analogue à la méthode de découpage d’in-

tervalles dans le cas discret, la recherche de F−1(U) correspondant à la recherche de

l’intervalle dans lequel U se trouve. Nous laissons à titre d’exercice le fait de décrire

complètement l’analogie, dans le cas où l’on approche la loi continue de densité f

par une loi discrète associée à une discrétisation fine de l’intervalle I.

4.2 Méthode du rejet

La méthode est exactement analogue au cas discret. Elle repose sur le fait que

l’on peut simuler par rejet des variables aléatoires uniformes dans l’ensemble A =⋃
x∈R{x} × [0, f(x)], en inscrivant A dans un ensemble B sur lequel la génération

directe de variables aléatoires uniformes est possible.

Par exemple, dans le cas où la densité f est nulle hors d’un intervalle [a, b], et

majorée par une constante M , on peut inscrire A dans le rectangle B = [a, b]× [0,M]

et tirer des points uniformément dans B en tirant indépendamment et uniformément

chacune des deux coordonnées dans leurs domaines respectifs.

Dans ce cas particulier, la méthode s’écrit donc ainsi :

1) Générer+ U1 uniformément distribuée sur [a, b]

2) Générer U2 uniformément distribuée sur [0,M]

3) si U2 < f(U1), V ← U1

4) sinon retourner à l’étape 1)

En ramenant R sur l’intervalle [0, 1] par une transformation adéquate, on peut

utiliser cette méthode pour générer des variables aléatoires continues dont le support

est R tout entier.

17

Comme dans le cas discret, on peut utiliser la méthode du rejet dans le cas où

l’on est peut simuler des variables aléatoires possédant une densité g, la densité f

vérifiant, pour tout x :

f(x) ≤ cg(x),

où c est une constante positive :

1) Générer V distribuée selon la densité g

2) Générer W uniformément distribuée sur [0, c× g(X)]

3) si+ W < f(V), renvoyer V

4) sinon retourner à l’étape 1)

Comme dans le cas discret, on peut se contenter de ne manipuler les densités f

et g qu’à une constante multiplicative près, c’est-à-dire si f s’écrit αf1 et g βg1, et

que l’on a f1 ≤ cg1.

La méthode du rejet a l’avantage de ne pas nécessiter le calcul de F−1, puisqu’elle

suppose seulement la connaissance de f , voire de f à une constante multiplicative

près. En outre, si f n’est pas connue explicitement mais peut être calculée au moyen

d’approximations successives, cette méthode peut se révéler particulièrement efficace

puisqu’il s’agit seulement d’effectuer des comparaisons entre les valeurs prises par f

et d’autres valeurs, et non pas de calculer f avec la plus grande précision possible.

Comme dans le cas discret, ce qui conditionne l’efficacité de la méthode est le fait

que l’ensemble B ne soit pas trop gros par rapport à l’ensemble A, de façon à ce que

le nombre de rejets reste raisonnable, au moins en moyenne ou avec forte probabilité.

Par exemple, si la densité f à simuler est proche d’une fonction affine g (et

à support borné), simuler d’abord la densité correspondant à cette fonction affine

conduira a rejeter beaucoup moins souvent qu’en appliquant la méthode du rejet

à partir d’une loi de densité constante (ce à quoi revient la version la plus simple

présentée ci-dessus).

18

f1

f

f2

f3

Dans le cas où la densité f est «coincée» entre deux fonctions affines g1 et g2, on

peut encore réduire le nombre de fois où le calcul de f est nécessaire. (Pour plus de

détails, voir [K]).

Insistons une fois encore sur le fait que l’indépendance (supposée) des appels suc-

cessifs au générateur de nombres pseudo-aléatoires est fondamentale pour la validité

de cette méthode.

La méthode de Walker ne peut pas être adaptée directement au cas continu.

5 Décompositions de la loi à simuler

Divers types de décomposition de la loi que l’on cherche à simuler en lois plus

simples – en tout cas plus faciles à simuler directement – sont employés pour accélérer

les procédés de simulation. Certains sont très spécifiques de la forme des lois à simuler,

d’autres sont de portée plus générale.

19

Souvent, on utilise des décompositions permettant de réaliser la loi recherchée

à partir de combinaisons de variables aléatoires de loi plus simples, en effectuant

des opérations telles que somme, produit, maximum, etc... L’utilisation de variables

aléatoires conditionnées à vérifier certaines conditions, et obtenues par la méthode

du rejet, est également très répandue.

Plusieurs exemples intéressants de ces idées sont présentés dans la partie suivante,

et nous y renvoyons pour des exemples explicites.

Une autre idée, de portée assez générale, et permettant de réduire le temps néces-

saire à la simulation de certaines lois est de décomposer celles-ci en parties «faciles» à

simuler et en parties «difficiles», l’idée sous-jacente étant que, si la loi est essentielle-

ment composée de parties faciles à simuler, et de quelques parties difficiles à traiter,

la simulation de la loi consistera la plupart du temps en une simulation facile, et

rarement (mais de temps en temps quand même) en une étape plus coûteuse, d’où

un temps moyen d’exécution raisonnable. Illustrons ceci par un exemple :

f8

f9

f10

f11

f12

f13

f14

f1 f2 f3 f4 f5 f6 f7

20

Pour simuler la loi dont la densité f est représentée ci-dessus, on l’écrit, confor-

mément au découpage représenté, sous la forme :

f(x) = f1(x) + f2(x) + · · ·+ f14(x),

que l’on réécrit :

f(x) = p1g1(x) + p2g2(x) + · · ·+ p14g14(x),

chaque pi étant égal à l’aire sous le graphe de fi, de telle sorte que les gi sont des

densités de probabilité. On obtient alors un moyen de simuler la loi en procédant de

la manière suivante :

1) Simuler L ∈ {1, . . . , 14} selon la loi P (L = i) = pi

2) Renvoyer V simulé selon la densité fL

Les densités fi pour i = 1, . . . , 7 sont tout simplement constantes, et par consé-

quent très faciles à simuler. L’aire p1 + . . . + p7 recouvrant l’essentiel de la surface

sous la courbe f , la méthode consistera donc la plupart du temps à effectuer une

simulation très rapide. Dans le cas (très peu fréquent) où L ≥ 8, on doit bien entendu

effectuer une simulation plus complexe.

6 Exemples de méthodes spécifiques

Nous avons mentionné le fait que les méthodes spécifiques – parfois très ingé-

nieuses à la fois dans leur principe théorique et dans leur implémentation – reposent

sur des propriétés particulières des lois qu’elles visent à simuler. Bien entendu, cela

ne les empêche nullement d’incorporer et d’exploiter les idées provenant des mé-

thodes génériques décrites plus haut (notamment la méthode du rejet). Voici quelques

exemples de telles méthodes, qui sont donnés, rappelons-le, à titre d’illustration, et

non pas de référence. Nous vous invitons à consulter la bibliographie pour plus de

détails.

6.1 Simulation de variables aléatoires gaussiennes

Quitte à centrer et réduire en dimension 1, ou à diagonaliser la matrice de cova-

riance pour un vecteur gaussien de dimension d ≥ 2, on peut ramener la simulation

21

de variables gaussiennes à la simulation de variables gaussiennes standards N (0, 1)

(unidimensionnelle, m = 0, σ2 = 1.)

Une méthode possible est la méthode dite «rectangle-wedge-tail» (voir [K]), dé-

veloppée par R. Marsaglia, qui constitue une application à la loi normale de l’écriture

de la loi à simuler sous la forme d’un mélange de lois plus faciles à traiter. Le graphe

de la densité gaussienne est découpé en 31 portions, de trois types : rectangulaires,

correspondant à un petit tronçon de gaussienne au-dessus d’un rectangle d’appui, et

queue de la distribution. Les rectangles sont aisément simulés. Les tronçons égale-

ment, grâce à un coincement entre deux portions de droite, en utilisant la méthode

du rejet, et en ne calculant la valeur de la densité que lorsque la droite minorante ne

suffit pas à déterminer si l’on doit accepter ou rejeter. La queue de la distribution

est traitée par la méthode du rejet basée sur la racine carrée d’une variable de loi ex-

ponentielle. La méthode ne requiert lors de la plupart des appels, que des opérations

arithmétiques élémentaires extrêmement rapides.

Un autre exemple est la méthode polaire (ou encore de Box-Muller), qui renvoie

deux variables aléatoires V1, V2 indépendantes distribuées selon la loi N (0, 1), et

repose sur des propriétés particulières de la loi gaussienne :

1) Générer deux variables aléatoires uniformes U1, U2 ∈ [−1, 1]

2) S ← U2
1 + U2

2

3) Si S ≥ 1 retourner en 1)

4) Si S = 0 renvoyer V1 ← V2 ← 0

5) Sinon, renvoyer V1 ← U1(−2 log(S)/S)1/2 , V2 ← U2(−2 log(S)/S)1/2

Pour prouver la validité de cette méthode, on remarque tout d’abord que l étape

de rejet 3) permet d’obtenir un point de coordonnées (U1, U2) de loi uniforme sur le

disque unité, et l’on passe en coordonnées polaires pour décrire plus commodément la

loi de (U1, U2) conditionnellement au non-rejet, et en déduire celle du couple (V1, V2).

On constate que l’on ne rejette qu’avec une probabilité égale à 1− π/4 ≈ 0, 21. Une

alternative est de fabriquer directement (sans rejet) U1 et U2 sous la forme U1 =
√

U4 cos(2πU3) et U2 =
√

U4 sin(2πU3), où U3 et U4 sont deux variables aléatoires

indépendantes de loi uniforme sur [−1, 1], ce qui nécessite le calcul de fonctions

trigonométriques.

Il existe encore bien d’autres méthodes...

22

6.2 Lois de Cauchy

Rappel : il s’agit de la famille de lois sur R dont les densités s’écrivent f(x) =

(aπ)−1(1+(x/a)2), où a > 0. On se ramène par multiplication à une variable aléatoire

de loi de Cauchy de paramètre a = 1.

On peut par exemple l’obtenir en renvoyant tan(πU1), ou encore en générant par

rejet (U1, U2) de loi uniforme sur le disque unité comme dans la méthode polaire

ci-dessus, et en renvoyant le rapport U1/U2.

6.3 Lois Gamma et Beta

Rappelons qu’il s’agit des lois sur R+ dont les densités s’écrivent f(x) = Γ(a)−1xa−1e−x.

Pour a entier, on peut utiliser le fait qu’une somme de a variables aléatoires

indépendantes de loi exponentielle possède une loi Gamma de paramètre a.

Lorsque a est grand, cette méthode n’est plus efficace. On peut appliquer la

méthode du rejet avec pour densité g celle de X =
√

2a− 1Y + a− 1 conditionnée à

prendre des valeurs positives (que l’on simulera également par rejet), où Y suit une

loi de Cauchy de paramètre 1. On peut mettre g sous la forme g(x) = βg1(x), où

g1(x) = (1+ (x− (a− 1))/(
√

2a− 1))2) pour x > 0 (on a donc g1(X) = 1/(1+Y 2)),

et f sous la forme f(x) = γf1(x), avec f1(x) = xa−1e−x. On vérifie que, pour a > 1,

f1 ≤ cg1, où c = (e
a−1)a−1. Lorsque a ≥ 3, la probabilité de rejet est inférieure à 1/2.

En utilisant le fait que, si X1 et X2 sont deux variables aléatoires indépendantes

de loi Gamma de paramètres a et b respectivement, l’expression X1/(X1 + X2) suit

une loi Beta de paramètre (a, b) on peut effectuer des simulations à l’aide de la

méthode ci-dessus.

6.4 Loi binomiale

En utilisant le fait qu’une somme de variables aléatoires indépendantes de lois de

Bernoulli de paramètre p suit la loi binomiale de paramètres n et p, on peut effectuer

des simulations pour des valeurs de n raisonnables. Lorsque n est grand, d’autres

approches doivent être utilisées. Par exemple la méthode récursive suivante.

On écrit n sous la forme n = a+b−1, où a et b sont du même ordre de grandeur.

On génère ensuite une variable aléatoire X de loi Beta de paramètre (a, b). Si X ≥ p,

on génère en appelant récursivement la méthode une variable aléatoire N1 de loi

binomiale de paramètres a− 1 et p/X, et l’on renvoie V = N1. Si X < p, on génère

23

par un appel récursif une variable aléatoire N2 de loi binomiale de paramètres b− 1

et (p−X)/(1−X), et l’on renvoie la valeur V = a+N1. Clairement, après de l’ordre

de log(n) appels récursifs, on est ramené à la génération de variables aléatoires de

loi binomiale faisant intervenir des valeurs raisonnables de n.

La preuve de la validité de la méthode se fait en observant les faits suivants.

Tout d’abord, étant données n variables aléatoires indépendantes de loi uniforme sur

[0, 1], le nombre de ces variables qui sont ≤ p suit une loi binomiale de paramètres

n et p. La loi de la b−ème plus grande de ces variables suit, quant à elle, une loi

Beta de paramètre (a, b). De plus, conditionnellement à la valeur X de ce b−ème

maximum, les b− 1 variables supérieures à X sont indépendantes et de loi uniforme

sur l’intervalle [X, 1], tandis que les a − 1 variables aléatoires inférieures à X sont

indépendantes et de loi uniforme sur l’intervalle [0, X].

Bibliographie

[D] L. Devroye. Non-Uniform Random Variate Generation, Springer-Verlag, New

York, 1986.

[G] GSL – The GNU Scientific Library http ://sources.redhat.com/gsl/

[K] D. Knuth. The Art of Computer Programming. Vol. 2. Seminumerical

Algorithms. Third edition. Addison-Wesley, 1998.

[W] A. Walker. An efficient method for generating discrete random variables with

general distributions, ACM Transactions on mathematical software 3 : 253–256.

1977.

