Stochastique Algo. — ISTIL 3A

Fiche 2 — Génération de variables pseudo-aléatoires

«Nul n’est censé ignorer la loi.» Principe de droit francais.

1 Introduction

L’objet de la fiche précédente était d’expliquer comment on pouvait simuler,
a l'aide d’'un ordinateur, des suites de nombres réels pouvant étre considérées en
pratique comme des suites de variables aléatoires uniformément distribuées entre 0
et 1. Nous nous intéressons dans cette fiche & ’étape de transformation, qui consiste
& simuler des variables aléatoires de loi donnée, non-uniforme en général, a partir
des nombres produits par un générateur pseudo-aléatoire du type décrit dans la fiche

précédente.

1.1 Meéthodes génériques et méthodes spécifiques

Pour la plupart des lois classiques telles que les lois gaussiennes, binomiales, ex-
ponentielle, géométrique, de Poisson, Gamma, Beta, etc... de nombreux algorithmes
performants, souvent trés astucieux, optimisés dans leur implémentation, et repo-
sant sur les propriétés particuliéres de ces lois et sur les relations qui existent entre
elles, ont été développés. Ces algorithmes spécifiques sont implémentés dans divers
logiciels (tels que R) et bibliothéques (tels que la bibliothéque GSL (GNU Scienti-
fic Library) [G], en C et C++). Nous en donnerons quelques exemples, non pas a
titre de référence, mais plutét d’illustration du type de propriétés sur lesquelles ces
méthodes sont basées.

En revanche, nous nous attacherons dans cette fiche & décrire précisément les mé-
thodes génériques de transformation, qui permettent de simuler des variables aléa-
toires de loi quelconque, et ne reposent pas comme les précédentes sur les propriétés
particuliéres des lois classiques.

Pour plus de détails, nous renvoyons (encore et toujours) a I'ouvrage de D. Knuth
[K], ainsi qu’a celui de L. Devroye [D]

(voir également la page de L. Devroye http://cgm.cs.mcgill.ca/~1luc/ pour

des références récentes.)

1.2 Validité des méthodes de transformation

Les méthodes que nous présentons dans la suite supposent que 'on dispose de
variables aléatoires indépendantes Uy, Us, . .. de loi uniforme sur [0, 1], et expliquent
comment transformer ces variables afin de produire une variable aléatoire, disons X,
possédant la loi souhaitée. La validité de ces méthodes est a chaque fois établie en
prouvant mathématiquement que, si 'on dispose en entrée de véritables variables
aléatoires i.i.d. uniformes sur [0, 1], la variable aléatoire X produite par la méthode
considérée posséde effectivement la loi de probabilité souhaitée. Pour produire plu-
sieurs exemplaires indépendants de méme loi que X, on répéte le procédé en em-
ployant en entrée des trongons disjoints de la suite de nombres pseudo-aléatoires
pseudo-uniformes produite par le générateur utilisé!.

On voit donc que la validité d’une telle méthode, c’est-a-dire le fait que I'on puisse
en pratique manipuler les nombres qu’elle produit comme des réalisations indépen-
dantes de variables aléatoires possédant la loi voulue, repose fondamentalement sur
la validité du procédé de génération de nombres pseudo-aléatoires employé, celle-ci
étant censée avoir été établie avant son utilisation. Toutes les remarques concernant
les précautions et les difficultés associées a la génération et a I'utilisation de nombres
pseudo-aléatoires s’appliquent ici. Nous distinguerons plusieurs critéres de validité
des méthodes présentées :

— le premier critére consiste simplement a prouver mathématiquement que la mé-

thode fonctionne si on lui fournit en entrée de véritables variables aléatoires
i.i.d. uniformes sur [0,1]; il s’agit c’est un critére minimal de validité, sans
lequel I'emploi d’'une méthode de transformation parait difficilement envisa-
geable ;

— le deuxiéme critére consiste & prouver que la méthode demeure correcte lorsque

I'on prend en compte le caractére discret des nombres utilisés en entrée (et

éventuellement les autres problémes liés & 1'utilisation de calculs en précision

il s’agit d’une remarque importante : dans ce qui suit, nous décrirons souvent des procédés
algorithmiques permettant de générer un nombre pseudo-aléatoire de loi donnée en partant d’un
ou plusieurs (le nombre sera parfois lui-méme aléatoire) nombres pseudo-uniformes entre 0 et 1
produits par le générateur, et, si I’on désire simuler des suites indépendantes de nombres de loi
donnée, il est indispensable de vérifier que les procédés algorithmiques sont appliqués a des blocs
disjoints de nombres issus du générateur, ou, autrement dit, que les nombres pseudo-aléatoires

issus du générateur ne sont utilisés qu’une seule fois chacun.

finie) : au mieux, on peut en réalité espérer disposer de variables aléatoires

i.i.d. uniformes, non pas sur [0, 1], mais sur un ensemble de la forme

01 K.
K’K"..’K ’

— le troisiéme critére consiste & prendre en compte explicitement le générateur
utilisé, et & prouver dans ce contexte que la méthode se comporte de maniére
satisfaisante ; on doit alors étudier comment les propriétés connues du généra-
teur peuvent influencer les propriétés des nombres obtenus par transformation ;
a ce sujet, on peut au moins retenir que les garanties de qualité des généra-
teurs de nombres pseudo-aléatoires portent principalement sur la qualité de la
répartition des bits de poids fort, — les bits de poids faible présentant souvent
un assez mauvais comportement ;

— le quatriéme critére est un critére (indispensable) de validité empirique : on
vérifie a I'aide de tests statistiques que les nombres fournis par la méthode (lors
d’un grand nombre d’utilisations supposées indépendantes) sont compatibles
avec ’hypothése selon laquelle ceux-ci forment une suite de variables aléatoires
indépendantes possédant la loi souhaitée.

En général, le premier et le quatriéme critére, et éventuellement le deuxiéme,
sont étudiés. Soulignons la difficulté d’étude du troisiéme, la structure des appels au
générateur effectués par I'utilisation répétée de méthodes de transformation au cours
d’une simulation pouvant varier de maniére fort complexe et arbitraire. Le minimum
vis-a-vis du quatriéme critére est d’examiner graphiquement la répartition empirique
(par exemple, au moyen d'un histogramme) des valeurs obtenues en appliquant la
méthode de maniére répétée, et de pratiquer des tests standards d’adéquation. Bien
entendu, on ne teste (quasiment) pas ainsi l'indépendance des valeurs successives
obtenues, qui est également une propriété trés importante. De plus, il n’est bien
entendu pas clair que des tests empiriques réussis avec une certaine implémentation
(c’est-a-dire avec une sous-suite donnée de la suite produite par le générateur) garan-
tissent que la méthode fonctionne en général, méme si notre confiance en la méthode
en est renforcée.

Au passage, notons que la vérification empirique de 'adéquation des résultats
obtenus & la loi recherchée permet non seulement de mettre a ’épreuve la validité
pratique de la méthode décrite et de son association au procédé de génération utilisé,

mais également de tester le fait que I'implémentation effectuée correspond bien & la

méthode proposée et ne comporte pas d’erreurs.

1.3 Validité et efficacité

La validité d’'une méthode de transformation n’est pas le seul élément a prendre
en compte pour décider de son utilisation. Son efficacité, mesurée la plupart du temps
en termes de temps d’exécution et d’espace mémoire, est également importante, en
particulier lorsque 'on méne des simulations massives au cours desquelles un trés

grand nombre de variables aléatoires doit étre simulé.

2 Un exemple trés simple

Supposons que l'on cherche & produire des variables aléatoires de loi uniforme
sur I’ensemble des entiers de 0 & H, ou H est un entier positif fixé.
Partant d’un nombre aléatoire U uniforme sur [0,1], on obtient un entier V'

distribué uniformément entre 0 et H en posant :
V—I|[(H+1)xU],

|x] désignant la partie entiére de z, c’est-a-dire le plus grand entier inférieur a x.
On vérifie le premier critére de validité de la méthode en calculant, pour tout
entier k tel que 0 < k < H, la probabilité P(V = k)

PV =k =PI<(H+1)U<k+1)

—PU/(H+1)<U < (k+1)/(H+1)) = 1/(H+1).

Comme nous 'avons souligné précédemment, U ne peut pas suivre exactement
la loi uniforme sur l'intervalle [0, 1].

Quant au deuxiéme critére, en admettant que U suive exactement la loi uniforme
sur ’ensemble discret {%, %, e %} , on constate que la probabilité pour que pour
que [(H +1) x U] soit égal a i peut ne pas étre exactement égale & 1/H, mais
présenter un écart par rapport a cette valeur de l'ordre de 1/K. Le nombre K étant
en général supposé extrémement grand, ceci ne pose pas nécessairement de probléme
sérieux.

On pourrait envisager une autre méthode en utilisant le générateur pour pro-

duire un entier pseudo-aléatoire pseudo-uniforme entre 0 et un grand entier M, par

exemple, en se rappelant que U peut étre vu comme un entier pseudo-aléatoire uni-
forme (il s’agit simplement d’utiliser la méme séquence de bits, mais en U'interprétant
de maniére différente) entre 0 et un grand entier RAND MAX, et choisir V en ré-
duisant X modulo H + 1. Cependant, cette stratégie n’est pas & recommander car
elle fait intervenir les bits de poids faible de X, alors que les (relatives) garanties
de qualité des générateurs de nombres pseudo-aléatoires portent sur I’équirépartition
des bits de poids fort,— les bits de poids faible présentant souvent un comportement

moins bon. Le troisiéme critére nous permet ici & disqualifier une telle méthode.

3 Variables aléatoires de loi discréte

On suppose donc que l'on dispose d’un ensemble S fini ou dénombrable, que
I'on met sous la forme {z;, ¢ € I}, ou I est un ensemble d’indices de la forme
I={1,...,k}oul=1{1,2,...}, ainsi que d’une liste de nombres (p(z;));er, positifs
ou nuls et vérifiant), ; p(z;) = 1.

Notre objectif est de générer un élément aléatoire V' de S vérifiant PV = x; =

p(z;) pour tout ¢ € I. Pour alléger les notations, nous poserons dans la suite p; =

p(zi).

3.1 Meéthode de découpage d’intervalles

En partant d’un nombre aléatoire U de loi uniforme sur [0, 1], il suffit de poser :
V = x;, ou 7 est 'unique élément de I vérifiant 23;11 p; < U< 23'21 D;-

L’intervalle [0, 1] est ainsi découpé en intervalles de longueurs p;, et U'indice de
I'intervalle dans lequel tombe la variable U fournit I'indice de 1’élément de S que 'on
renvoie.

La principale difficulté de cette méthode est liée & la recherche de ¢ & partir de
U. La méthode la plus naive consiste & tester d’abord si U < pp, puis, si ce n’est
pas le cas, si U < p; + p2, et ainsi de suite jusqu’a obtenir i. Les probabilités cu-
mulées p; + - -+ + pp peuvent éventuellement étre précalculées, afin de gagner du
temps. D’autre part, en plagant d’abord les intervalles les plus larges, (ce qui né-
cessite également un prétraitement de la loi a simuler), on peut réduire le nombre
moyen de comparaisons & effectuer. D’autres méthodes de recherche, telles que par
exemple la dichotomie, peuvent également étre employées. En outre, si les p; vérifient

des propriétés particuliéres, la recherche de i peut étre grandement accélérée : c’est

exactement le cas de la méthode décrite dans le paragraphe précédent pour générer
des entiers uniformes entre 0 et H.

De maniére générale, on retient que l'efficacité de la méthode est conditionnée
par lefficacité avec laquelle il est possible de déterminer 'intervalle contenant U.
De plus, quitte a effectuer un prétraitement de la loi & simuler, il peut étre possible
de diminuer le temps moyen nécessaire a la simulation, ce qui peut étre intéressant
lorsque ’on cherche & simuler un grand nombre de variables aléatoires possédant la
loi recherchée (bien entendu, le prétraitement n’est en général pas rentable si 'on ne
simule qu’une seule variable aléatoire). D’autre part, des propriétés particuliéres des

p; peuvent s’avérer trés utiles pour accélérer le procédé.

3.2 Meéthode du rejet

La méthode du rejet repose sur deux observations, dont la premiére est la sui-
vante : il est équivalent de pouvoir générer une variable aléatoire V vérifiant P(V =
x;) = p(x;) pour tout ¢ € I, ou une variable aléatoire (V, W) de loi uniforme sur
I'ensemble A = Ule{xl} x [0,d x p(x;)], ot d est une constante positive arbitraire.
La preuve (immédiate) est la suivante : si (V, W) est uniformément distribuée sur
un ensemble tel que A, la probabilité pour que V' = z; est proportionnelle & dp(z;),
par définition de la loi uniforme, et donc égale a p(x;) (car nous avons affaire a des
probabilités, dont la somme est obligatoirement égale & 1). Inversement, si V' vérifie
P(V = z;) = p(z;) pour tout i, on vérifie que la variable aléatoire (V,U x dp(V')),
ou U est uniforme sur [0, 1] et indépendante de V', suit la loi uniforme sur A.

Le seconde observation est que, si I’on est en mesure de simuler des variables
aléatoires uniformes & valeurs dans un ensemble B contenant A, il est possible de
simuler par rejet des variables aléatoires uniformes sur A. Précisément : si (V, W) est
une variable aléatoire de loi uniforme sur un ensemble B qui contient I’ensemble A,
la loi de (V, W) conditionnelle au fait que (V, W) € A est la loi uniforme sur A. Ceci
n’est pas lié & la forme spécifique de I'ensemble A, il s’agit d’une propriété tout-a-fait
générale qui a lieu pour tout (ou presque) couple d’ensembles A et B vérifiant A C B
et sur lesquels on peut définir la loi uniforme.

Ainsi, il est possible de simuler des variables aléatoires uniformes sur A en si-
mulant des variables aléatoires uniformes indépendantes & valeurs dans B jusqu’a

obtenir une variable se trouvant dans A, dont la loi est, d’aprés ce qui précéde, uni-

forme sur A. L’idée est qu’il peut étre beaucoup plus facile de générer des variables
uniformément distribuées sur B plutét que directement sur A.

En d’autres termes, l'algorithme suivant renvoie une variable aléatoire (V, W)
uniformément distribuée sur A :

1) Générer (V, W) uniformément distribuée sur B

2) si (V,W) € A, renvoyerV’

3) sinon retourner a 'étape 1)

On notera que les générations successives de (VW) sont supposées indépen-
dantes.

Le nombre de tentatives nécessaires jusqu’a obtention d’un résultat suit une loi
géométrique de parameétre L(A)/L(B), ou L(-) désigne la mesure de Lebesgue dans
la dimension appropriée (la longueur pour des objets de dimension 1, la surface pour
des objets de dimension 2, etc...).

Un exemple simple, que 'on peut mettre en oecuvre dans le cas ol I'ensemble
S est fini, est celui on 'on prend pour B l'ensemble S x [0, M], ot M = max; p;,
dans lequel il suffit de simuler indépendamment deux coordonnées indépendantes et
uniformes.

Il est alors facile de générer des variables aléatoires uniformément dans B, puis-
qu’il suffit de poser V' = [y, xp) et W = Uz x M, ou Uy et Us sont deux variables
aléatoires indépendantes et de loi uniforme sur [0, 1.

De maniére synthétique, la méthode du rejet s’écrit donc, dans ce cas particulier,
de la maniére suivante :

1) Générer+ V distribuée uniformément sur S

2) Générer W uniformément distribuée sur [0, M]

3) si W < p(V), renvoyer V

4) sinon retourner a 'étape 1)

On notera que le nombre d’étapes de la méthode, comme d’ailleurs dans le cas
du découpage d’intervalles, est lui-méme une variable aléatoire, susceptible de varier
d’un appel a l'autre. Le nombre de comparaisons effectuées lors d’un passage est
limité & 1 (on compare T et p(xr)), mais il faut le multiplier par le nombre de
passages effectués jusqu’a obtenir une acceptation. Naturellement, plus la taille de
I’ensemble A, au sens de la mesure de Lebesgue, est petite par rapport & celle de
I’ensemble B dans lequel on l'inscrit, plus le nombre de rejets est important, et

plus l'exécution de ’algorithme est cotiteuse en temps. Il est donc souhaitable que

I’ensemble B «colle» au plus prés I'ensemble A, méme si cette exigence est en général
contradictoire avec le fait qu’il doit étre facile de tirer uniformément des points de
B. Dans certains cas, il est possible de trouver mieux qu’'un ensemble de barres de
hauteurs toute égales comme ensemble B. Par exemple, lorsque 1’on sait facilement
générer des variables aléatoires dont la loi, sans étre identique & celle souhaitée pour
V', s’en rapproche. Plus précisément, supposons que 1’on sache facilement générer des
variables aléatoires W a valeurs dans I’ensemble S, et dont la loi ¢(x;) = P(W = z;)
est telle que, pour une certaine constante ¢ > 0, on ait pour tout ¢ € I, I'inégalité

p(zi) < ¢ X g(x;). On peut alors inscrire 'ensemble A dans I’ensemble

k
B = J{wi} x [0,¢ x q(x)],
i=1
et, conformément & ’observation précédente, il est facile de produire des éléments de
(V,W) de B uniformément distribués a l’aide de la méthode suivante

1) Générer V' uniformément dans S

2) Générer+ W uniformément distribuée sur+ [0, ¢ x ¢(V)]

(Exercice : vérifier que le couple (W, T') défini ci-dessus posséde bien la loi uni-
forme sur ’ensemble B.)

On obtient ainsi une nouvelle méthode du rejet pour générer des variables aléa-
toires de loi P(V = x;) = p(z;) :

1) Générer V uniformément dans S

2) Générer W uniformément distribuée sur [0, ¢ x g(V)]

3) si+ W < p(V), renvoyer V

4) sinon retourner a l'étape 1)

On constate que le nombre de rejets sera d’autant plus faible que I’approximation
p(x) ~ cz(x) est précise.

Une remarque qui a son importance est que 'on peut, en fait, se contenter de
manipuler les probabilités p et ¢ & une constante multiplicative preés, ce qui est utile
lorsque le calcul des constantes de normalisations de p ou de ¢ est difficile ou cotiteux,
et présente en particulier un intérét lorsque I'on manipule des lois conditionnelles.
Supposons donc que p(z) = Opi(2), et q(z) = vq1(2), ou p1 et g1 sont des fonctions
plus simples & calculer que p et ¢, et que I'on ait une relation de la forme cq; > p1,
ol ¢ est connue explicitement. Alors, en générant V selon la loi ¢ et W selon la

loi uniforme sur [0, cq;(V)], on obtient un point (V, W) uniformément distribué sur

I’ensemble Ule{xz} x [0,¢ x q1(z;)]. Conditionnellement au fait que W < p;(V),
V est alors distribué selon la loi p, ce que l'on voit grace aux mémes arguments
que précédemment. L’algorithme correspondant ne nécessite pour fonctionner que
la connaissance de py et ¢1, et son efficacité repose sur le fait que p; et cg; soient
relativement proches.

Méthode de Walker

Une méthode plus élaborée pemettant de limiter considérablement le temps d’exé-
cution est la méthode de Walker, aussi connue sous le nom de «méthode des aliasy,
qui suppose un prétraitement de la loi a simuler (voir larticle original [W]), et per-
met un gain de temps considérable lorsque I'on cherche & produire un grand nombre
de variables pseudo-aléatoires distribués suivant une loi discréte fixée. Intuitivement,
I'idée est de tronconner puis recoller les barres qui constituent l’ensemble A défini
précédemment, de maniére a obtenir un ensemble de barres de hauteur toutes égales,
en limitant & deux le nombre de troncons de provenance différente dans chaque barre
ainsi formée, le point important étant que le trongonnage/recollement conserve la
surface des morceaux déplacés. Plus formellement, la méthode de Walker repose sur

'utilisation d’une table de la forme suivante (pour alléger les notations, rappelons

que 'on pose p; = p(x;)).

état | 1 | 2| ... | k=11 k
seuil | q1 [@2 | --. | G—1 | Gk
alias ll l2 . lk—l lk

vérifiant, pour tout 1 < ¢ < k, les hypothéses :
- 0<q¢ <1
-Lie{l,...,k}
S ait ;=1 —) = kps
Pour simuler la loi en question, on procéde de la fagon suivante :
1) Générer un entier L uniformément entre 1 et k
2) Générer un réel U uniformément dans l'intervalle [0, 1]
3) si U < qr, renvoyer V « x,
4) sinon, renvoyer la valeur «alias» V «— x;,
Interprétation géométrique de la méthode : dessin au tableau.
On note que la méthode de Walker constitue une amélioration considérable de la

méthode du rejet (moyennant le calcul préliminaire de la table) : au lieu de rejeter

10

le résultat obtenu dans le cas ot U > pp, et de recommencer un nouveau tirage, on
renvoie dans ce cas la valeur alias figurant dans la table.

Le nombre d’opérations requis par ’emploi de cette méthode ne dépend donc pas,
une fois qu’une telle table est construite, de la valeur de k. Lorsque k est grand, et que
I’on est amené a répéter un grand nombre de fois la simulation de la loi considérée,
il est donc trés avantageux d’utiliser cette méthode.

Bien entendu, une question importante est de savoir comment fabriquer la table
de telle facon que la loi obtenue soit bien celle que ’on cherche & simuler.

L’algorithme suivant permet, & partir de la donnée des probabilités p;, de fabri-
quer une telle table. L’algorithme renvoie deux tableaux R et A, contenant respec-
tivement les valeurs des seuils de rejet R(i) = ¢; et les alias A(i) = [;. Ce qui suit
concernant la méthode de Walker est librement reproduit du rapport de DESS de
F. Morata.

Construction des tables de Walker.

Pour i de 1 a k faire :
R(i) < k * p;; {Initialisations des tables de seuils et d’alias}
A7) «— i
Si (R(i) > 1) alors :
insérer i dans H ;
sinon :
insérer i dans L
finsi;
finpour;
Tant que (H # () faire :
choisir j € L; {choiz d’indices}
choisir s € H;
A(j) < s; {valeur alias de j}
R(s) < R(j) + R(s) — 1; {modification du seuil de rejet}
Si (R(s) <=1) alors :

supprimer s dans H;

11

insérer s dans L;
finsi;
supprimer j dans L;
fintantque;

Remarque : 1l est facile de remarquer que :
~ Sikxp; <1,ona:{j; A(j) =i} = 0.
= Sikxpi>1 ona: R(i)+ > ag=n (1 — R()) =k*p;.

Exemple :[Tables de Walker| Soit X une variable aléatoire discréte définie sur

{1..6} distribuée comme suit :

p1 =0.1
p2 = 0.3
p3 = 0.2
pg = 0.1
ps = 0.2
pe = 0.1

\

Méthode d’Aliasing : phase initiale

18

12
10

0.6

Etats
1 2 3 4 5 6

Initialement, on a : L = {1,4,6} et H = {2,3,5}.

12

Méthode d’Aliasing : premiére étape

18

12

10

0.6 (2
1

Etats

R2)=R[2]+R[1]-1=18+06—1=14
All] =2

L ={4,6} et H = {2,3,5}.

Méthode d’Aliasing : deuxiéme étape

18
12 /\
10

2 2
06

1 4

L={2,6) et H=1{35).

Méthode d’Aliasing : troisiéme étape

18
12
10
\
2 2
06 3
1 4 6

Etats

L =1{2,3} et H={5}.

Méthode d’Aliasing : étape finale

18
12 f\
10
2 S |2 3
06
1 3 | 4 6

Etats

L={2}et H=1

13

14

Ce qui produit la construction finale :

18

12
10

0.6

Etats

On obtient via cette construction les tables de Walker suivantes :

FEtats | 1 2 3 4 5 6
Seuils [0.61.0/08|06|1.0|0.6
Alias | 2 | / | 52| /| 3

On notera que l'algorithme de fabrication des tables de Walker est O(k) si les

listes L et H sont par exemple manipulées comme des piles.

3.3 Remarque

Lorsqu’une méthode de génération de lois suppose un prétraitement qui peut étre
réemployé lors d’appels ultérieurs a la méthode, il est trés fortement recommandé de
n’effectuer qu'une seule fois la phase de prétraitement, et de la réutiliser systéma-
tiquement. Ceci est évident lorsque vous implémentez vous-méme la méthode dans
tous ses détails (ce qui est rare), mais peut I’étre moins lorsque vous faites appel a
des procédures déja écrites (ou a un logiciel évolué tel que R ou MATLAB), dans les-
quelles le prétraitement n’apparait pas de maniére explicite. D’autre part, regrouper
en un seul plusieurs appels a une procédure rapide peut permettre d’économiser des
étapes d’interfagage plus lentes, par exemple en utilisant des fonctions vectorielles de

haut niveau plutot que des boucles. Ainsi, dans R, il est beaucoup plus rapide, pour

15

générer un échantillon de taille 1000000 d’une loi de Poisson de paramétre 2 (stocké
dans le tableau h) d’effectuer la commande :
h<-rpois(1000000,2)
plutot que :
for(i in (1:1000000)) h[i]l<-rpois(1,2)

4 Lois a densité

Il est utile de se représenter les variables aléatoires continues comme des limites
de variables aléatoires discrétes associées & une discrétisation de I’espace dont le pas
tend vers zéro. Les deux méthodes qui suivent ne sont que des adaptations au cas
continu des méthodes du découpage d’intervalles et de rejet vues précédemment dans
le cas discret.

On souhaite donc simuler une variable aléatoire V' dont la loi est donnée par une

densité f, c’est-a-dire une fonction intégrable f : R — R, telle que
b
Pla<V <b) = / Fa)da.
a

4.1 Meéthode d’inversion

Pour simplifier, nous supposerons que f est strictement positive sur un intervalle
ouvert I, et nulle hors de I (autrement dit, la variable aléatoire prend toutes ses
valeurs dans l'intervalle I), et continue sur I.

La fonction de répartition :
F(s)=P(X <s)= / f(u)du

définit alors une bijection strictement croissante de I sur]0,1[, et 'on peut donc
définir
F71o,1]— I

Pour simuler une variable aléatoire dont la loi posséde la densité f, la méthode
d’inversion est la suivante : partant d’un nombre pseudo-aléatoire U uniforme sur
[0, 1], on pose :

V — FHU).

16

La validité de cette méthode est prouvée grace aux égalités :
P(FY(U)<2)=PU < F(z)) = F(z) = P(V < 2),

la premiére égalité reposant sur la stricte croissance de F.

En théorie, il est donc possible de simuler grace a la méthode d’inversion n’im-
porte quelle loi & densité. En pratique, cette méthode pose le probléme du calcul
numérique (souvent approché¢) de F~!, qui peut se révéler difficile, ou tout au moins
coliteux en temps de calcul. De plus, si les opérations arithmétiques usuelles (somme,
produit, quotient) sont en général rapides a effectuer, 'appel a des opérations plus
complexes (logarithme, fonctions trigonométriques,...) peut également ralentir signi-
ficativement la méthode, méme si I'on dispose d’une formule d’inversion explicite.
Notez que cette méthode est étroitement analogue a la méthode de découpage d’in-
tervalles dans le cas discret, la recherche de F~1(U) correspondant & la recherche de
I'intervalle dans lequel U se trouve. Nous laissons & titre d’exercice le fait de décrire
complétement I'analogie, dans le cas ot 'on approche la loi continue de densité f

par une loi discréte associée a une discrétisation fine de 'intervalle I.

4.2 Meéthode du rejet

La méthode est exactement analogue au cas discret. Elle repose sur le fait que
I’on peut simuler par rejet des variables aléatoires uniformes dans ’ensemble A =
Uzer{z} x [0, f(2)], en inscrivant A dans un ensemble B sur lequel la génération
directe de variables aléatoires uniformes est possible.

Par exemple, dans le cas ou la densité f est nulle hors d’un intervalle [a,b], et
majorée par une constante M, on peut inscrire A dans le rectangle B = [a, b] x [0, M|
et tirer des points uniformément dans B en tirant indépendamment et uniformément
chacune des deux coordonnées dans leurs domaines respectifs.

Dans ce cas particulier, la méthode s’écrit donc ainsi :

1) Générer+ U1 uniformément distribuée sur [a, b]

2) Générer Uz uniformément distribuée sur [0, M]

3)siUs < f(Uy), V « U

4) sinon retourner a l'étape 1)

En ramenant R sur U'intervalle [0, 1] par une transformation adéquate, on peut
utiliser cette méthode pour générer des variables aléatoires continues dont le support

est R tout entier.

17

Comme dans le cas discret, on peut utiliser la méthode du rejet dans le cas ou
I’on est peut simuler des variables aléatoires possédant une densité g, la densité f

vérifiant, pour tout x :
f(z) < cg(z),

ou c est une constante positive :

1) Générer V distribuée selon la densité g

2) Générer W uniformément distribuée sur [0, ¢ x g(X)]

3) si+ W < f(V), renvoyer V

4) sinon retourner a I'étape 1)

Comme dans le cas discret, on peut se contenter de ne manipuler les densités f
et g qu’a une constante multiplicative prés, c’est-a-dire si f s’écrit af1 et g Bg1, et
que 'on a fi; < cg;.

La méthode du rejet a I’avantage de ne pas nécessiter le calcul de F~1, puisqu’elle
suppose seulement la connaissance de f, voire de f & une constante multiplicative
prés. En outre, si f n’est pas connue explicitement mais peut étre calculée au moyen
d’approximations successives, cette méthode peut se révéler particuliérement efficace
puisqu’il s’agit seulement d’effectuer des comparaisons entre les valeurs prises par f
et d’autres valeurs, et non pas de calculer f avec la plus grande précision possible.
Comme dans le cas discret, ce qui conditionne l'efficacité de la méthode est le fait
que 'ensemble B ne soit pas trop gros par rapport a ’ensemble A, de fagon a ce que
le nombre de rejets reste raisonnable, au moins en moyenne ou avec forte probabilité.

Par exemple, si la densité f a simuler est proche d’une fonction affine g (et
a support borné), simuler d’abord la densité correspondant & cette fonction affine
conduira a rejeter beaucoup moins souvent qu’en appliquant la méthode du rejet
a partir d’'une loi de densité constante (ce & quoi revient la version la plus simple

présentée ci-dessus).

18

Dans le cas ot la densité f est «coincée» entre deux fonctions affines g1 et g9, on
peut encore réduire le nombre de fois ou le calcul de f est nécessaire. (Pour plus de
détails, voir [K]).

Insistons une fois encore sur le fait que I'indépendance (supposée) des appels suc-
cessifs au générateur de nombres pseudo-aléatoires est fondamentale pour la validité
de cette méthode.

La méthode de Walker ne peut pas étre adaptée directement au cas continu.

5 Décompositions de la loi & simuler

Divers types de décomposition de la loi que I'on cherche a simuler en lois plus
simples — en tout cas plus faciles & simuler directement — sont employés pour accélérer
les procédés de simulation. Certains sont trés spécifiques de la forme des lois & simuler,

d’autres sont de portée plus générale.

19

Souvent, on utilise des décompositions permettant de réaliser la loi recherchée
a partir de combinaisons de variables aléatoires de loi plus simples, en effectuant
des opérations telles que somme, produit, maximum, etc... L’utilisation de variables
aléatoires conditionnées a vérifier certaines conditions, et obtenues par la méthode
du rejet, est également tres répandue.

Plusieurs exemples intéressants de ces idées sont présentés dans la partie suivante,
et nous y renvoyons pour des exemples explicites.

Une autre idée, de portée assez générale, et permettant de réduire le temps néces-
saire & la simulation de certaines lois est de décomposer celles-ci en parties «facilesy a
simuler et en parties «difficiles», I'idée sous-jacente étant que, si la loi est essentielle-
ment composée de parties faciles & simuler, et de quelques parties difficiles & traiter,
la simulation de la loi consistera la plupart du temps en une simulation facile, et
rarement (mais de temps en temps quand méme) en une étape plus coiteuse, d’ou

un temps moyen d’exécution raisonnable. Illustrons ceci par un exemple :

f10

f11

20

Pour simuler la loi dont la densité f est représentée ci-dessus, on 1’écrit, confor-

mément au découpage représenté, sous la forme :

f(@) = fi(@) + fo@) + - + fra(2),

que l'on réécrit :
f(@) = p1g1(x) + p2ga(z) + - -+ + pragra(x),

chaque p; étant égal & ’aire sous le graphe de f;, de telle sorte que les g; sont des
densités de probabilité. On obtient alors un moyen de simuler la loi en procédant de
la maniére suivante :

1) Simuler L € {1,...,14} selon la loi P(L =1i) = p;

2) Renvoyer V' simulé selon la densité fr,

Les densités f; pour ¢ = 1,...,7 sont tout simplement constantes, et par consé-
quent trés faciles & simuler. L’aire p1 + ... + p7 recouvrant ’essentiel de la surface
sous la courbe f, la méthode consistera donc la plupart du temps & effectuer une
simulation trés rapide. Dans le cas (trés peu fréquent) ot L > 8, on doit bien entendu

effectuer une simulation plus complexe.

6 Exemples de méthodes spécifiques

Nous avons mentionné le fait que les méthodes spécifiques — parfois trés ingé-
nieuses a la fois dans leur principe théorique et dans leur implémentation — reposent
sur des propriétés particuliéres des lois qu’elles visent a simuler. Bien entendu, cela
ne les empéche nullement d’incorporer et d’exploiter les idées provenant des mé-
thodes génériques décrites plus haut (notamment la méthode du rejet). Voici quelques
exemples de telles méthodes, qui sont donnés, rappelons-le, & titre d’illustration, et
non pas de référence. Nous vous invitons & consulter la bibliographie pour plus de

détails.

6.1 Simulation de variables aléatoires gaussiennes

Quitte & centrer et réduire en dimension 1, ou a diagonaliser la matrice de cova-

riance pour un vecteur gaussien de dimension d > 2, on peut ramener la simulation

21

de variables gaussiennes a la simulation de variables gaussiennes standards N (0, 1)
(unidimensionnelle, m = 0,02 = 1.)

Une méthode possible est la méthode dite «rectangle-wedge-taily (voir [K]), dé-
veloppée par R. Marsaglia, qui constitue une application a la loi normale de ’écriture
de la loi & simuler sous la forme d’un mélange de lois plus faciles & traiter. Le graphe
de la densité gaussienne est découpé en 31 portions, de trois types : rectangulaires,
correspondant & un petit trongon de gaussienne au-dessus d’un rectangle d’appui, et
queue de la distribution. Les rectangles sont aisément simulés. Les trongons égale-
ment, griace a un coincement entre deux portions de droite, en utilisant la méthode
du rejet, et en ne calculant la valeur de la densité que lorsque la droite minorante ne
suffit pas a déterminer si 'on doit accepter ou rejeter. La queue de la distribution
est traitée par la méthode du rejet basée sur la racine carrée d’une variable de loi ex-
ponentielle. La méthode ne requiert lors de la plupart des appels, que des opérations
arithmétiques élémentaires extrémement rapides.

Un autre exemple est la méthode polaire (ou encore de Box-Muller), qui renvoie
deux variables aléatoires Vi, V5 indépendantes distribuées selon la loi A/(0,1), et
repose sur des propriétés particuliéres de la loi gaussienne :

1) Générer deux variables aléatoires uniformes Uy, Us € [—1,1]

2) S — U +U3

3) Si S > 1 retourner en 1)

4) Si S =0 renvoyer V] «— V5 «— 0

5) Sinon, renvoyer V; «— U;(—21log(S)/S)Y/? | Vy «— Uy(—2log(S)/S)"/?

Pour prouver la validité de cette méthode, on remarque tout d’abord que 1 étape
de rejet 3) permet d’obtenir un point de coordonnées (Uy, Uz) de loi uniforme sur le
disque unité, et I’on passe en coordonnées polaires pour décrire plus commodément la
loi de (U, Us) conditionnellement au non-rejet, et en déduire celle du couple (V7, V3).
On constate que 'on ne rejette qu’avec une probabilité égale & 1 — /4 ~ 0,21. Une
alternative est de fabriquer directement (sans rejet) Ul et Us sous la forme U; =
VU cos(2nU3) et Uy = /Uy sin(27U3), ot Us et Uy sont deux variables aléatoires
indépendantes de loi uniforme sur [—1,1], ce qui nécessite le calcul de fonctions
trigonométriques.

Il existe encore bien d’autres méthodes...

22

6.2 Lois de Cauchy

Rappel : il s’agit de la famille de lois sur R dont les densités s’écrivent f(z) =
(am)~L(1+(x/a)?), oit a > 0. On se raméne par multiplication & une variable aléatoire
de loi de Cauchy de paramétre a = 1.

On peut par exemple 'obtenir en renvoyant tan(7wU;), ou encore en générant par
rejet (U, Uz) de loi uniforme sur le disque unité comme dans la méthode polaire

ci-dessus, et en renvoyant le rapport Uy /Us.

6.3 Lois Gamma et Beta

Rappelons qu'il s’agit des lois sur R dont les densités s’écrivent f(z) = I'(a) 'z te™®.

Pour a entier, on peut utiliser le fait qu'une somme de a variables aléatoires
indépendantes de loi exponentielle posséde une loi Gamma de paramétre a.

Lorsque a est grand, cette méthode n’est plus efficace. On peut appliquer la
méthode du rejet avec pour densité g celle de X = v/2a — 1Y +a — 1 conditionnée &
prendre des valeurs positives (que 1'on simulera également par rejet), ot Y suit une
loi de Cauchy de parameétre 1. On peut mettre g sous la forme g(z) = fgi(x), ou
gi(r) = (1+(x—(a—1))/(v2a —1))?) pour x > 0 (on a donc g1 (X) = 1/(1+Y?)),
et f sous la forme f(x) = vfi(x), avec fi(x) = 2% 1e~*. On vérifie que, pour a > 1,

f1 <cgi,ouc= (afl)afl. Lorsque a > 3, la probabilité de rejet est inférieure a 1/2.

En utilisant le fait que, si X7 et X9 sont deux variables aléatoires indépendantes
de loi Gamma de paramétres a et b respectivement, 'expression X; /(X1 + X2) suit
une loi Beta de parameétre (a,b) on peut effectuer des simulations a l'aide de la

méthode ci-dessus.

6.4 Loi binomiale

En utilisant le fait qu'une somme de variables aléatoires indépendantes de lois de
Bernoulli de paramétre p suit la loi binomiale de paramétres n et p, on peut effectuer
des simulations pour des valeurs de n raisonnables. Lorsque n est grand, d’autres
approches doivent étre utilisées. Par exemple la méthode récursive suivante.

On écrit n sous la forme n = a+b—1, ol a et b sont du méme ordre de grandeur.
On génére ensuite une variable aléatoire X de loi Beta de paramétre (a,b). Si X > p,
on génére en appelant récursivement la méthode une variable aléatoire N; de loi

binomiale de paramétres a — 1 et p/X, et 'on renvoie V.= Nj. Si X < p, on génére

23

par un appel récursif une variable aléatoire No de loi binomiale de paramétres b — 1
et (p—X)/(1—X), et l'on renvoie la valeur V= a+ N;. Clairement, aprés de 'ordre
de log(n) appels récursifs, on est ramené a la génération de variables aléatoires de
loi binomiale faisant intervenir des valeurs raisonnables de n.

La preuve de la validité de la méthode se fait en observant les faits suivants.
Tout d’abord, étant données n variables aléatoires indépendantes de loi uniforme sur
[0, 1], le nombre de ces variables qui sont < p suit une loi binomiale de paramétres
n et p. La loi de la b—éme plus grande de ces variables suit, quant & elle, une loi
Beta de paramétre (a,b). De plus, conditionnellement a la valeur X de ce b—éme
maximum, les b — 1 variables supérieures & X sont indépendantes et de loi uniforme
sur Uintervalle [X, 1], tandis que les a — 1 variables aléatoires inférieures a X sont

indépendantes et de loi uniforme sur l'intervalle [0, X].

Bibliographie

[D] L. Devroye. Non-Uniform Random Variate Generation, Springer-Verlag, New
York, 1986.

|G] GSL — The GNU Scientific Library http ://sources.redhat.com/gsl/

[K] D. Knuth. The Art of Computer Programming. Vol. 2. Seminumerical
Algorithms. Third edition. Addison-Wesley, 1998.

[W| A. Walker. An efficient method for generating discrete random variables with
general distributions, ACM Transactions on mathematical software 3 : 253-256.
1977.

